PriorityShaper

Package: inet.queueing.shaper

PriorityShaper

compound module

This module combines a classifier, a scheduler and several traffic shapers into a single packet shaper. Packets are classified into one of the traffic shapers and the scheduler prioritizes among them.

classifier : like IPacketClassifier

PacketClassifier: This module connects one packet producer to multiple packet consumers.

IPacketClassifier: This module interface is implemented by packet classifier modules.

Source:
classifier: <default("PacketClassifier")> like IPacketClassifier {
    @display("p=100,150");
} shaper[numShapers] : like IPacketShaper

PacketShaper: This module combines a packet queue and a packet gate into a packet shaper module.

IPacketShaper: This module interface is implemented by packet shaper modules.

Source:
shaper[numShapers]: <default("PacketShaper")> like IPacketShaper {
    @display("p=300,150,column,150");
} scheduler : like IPacketScheduler

PriorityScheduler: This scheduler pulls packets from the first non-empty among its connected packet providers.

IPacketScheduler: This module interface is implemented by packet scheduler modules.

Source:
scheduler: <default("PriorityScheduler")> like IPacketScheduler {
    @display("p=500,150");
}

Usage diagram

The following diagram shows usage relationships between types. Unresolved types are missing from the diagram.

Inheritance diagram

The following diagram shows inheritance relationships for this type. Unresolved types are missing from the diagram.

Extends

Name Type Description
CompoundPacketQueueBase compound module

This compound module serves as a base module for complex packet queues formed by combining several queueing components.

Parameters

Name Type Default value Description
displayStringTextFormat string "contains %p pk (%l) pushed %u created %c\n pulled %o removed %r dropped %d"

determines the text that is written on top of the submodule

packetCapacity int -1

maximum number of packets in the queue, no limit by default

dataCapacity int -1b

maximum total length of packets in the queue, no limit by default

dropperClass string ""

determines which packets are dropped when the queue is overloaded, packets are not dropped by default; the parameter must be the name of a C++ class which implements the IPacketDropperFunction C++ interface and is registered via Register_Class

numShapers int

Properties

Name Value Description
display i=block/queue
class CompoundPacketQueueBase
defaultStatistic queueLength:vector

Gates

Name Direction Size Description
in input
out output

Signals

Name Type Unit
packetRemoved inet::Packet
packetPushStarted inet::Packet
packetDropped inet::Packet
packetPushEnded inet::Packet?
packetPulled inet::Packet

Statistics

Name Title Source Record Unit Interpolation Mode
queueBitLength queue bit length warmup(atomic(constant0(localSignal(packetPushEnded)) + sum(packetLength(localSignal(packetPushStarted))) - sum(packetLength(localSignal(packetPulled))) - sum(packetLength(localSignal(packetRemoved))) - sum(packetLength(localSignal(packetDropped))))) last, max, timeavg, vector b sample-hold
queueLength queue length warmup(atomic(constant0(localSignal(packetPushEnded)) + count(localSignal(packetPushStarted)) - count(localSignal(packetPulled)) - count(localSignal(packetRemoved)) - count(localSignal(packetDropped)))) last, max, timeavg, vector pk sample-hold
droppedPacketsQueueOverflow dropped packets: queue overflow packetDropReasonIsQueueOverflow(localSignal(packetDropped)) count pk none
queueingTime queueing times queueingTime(localSignal(packetPulled)) histogram, vector s none
incomingDataRate incoming datarate throughput(localSignal(packetPushStarted)) vector bps linear
flowQueueingTime flow queueing times queueingTime(demuxFlow(localSignal(packetPulled))) histogram, vector s none
incomingPacketLengths incoming packet lengths packetLength(localSignal(packetPushStarted)) sum, histogram, vector b none
flowIncomingDataRate flow specific incoming data rate throughput(flowPacketLength(demuxFlow(localSignal(packetPushStarted)))) vector bps linear
outgoingDataRate outgoing datarate throughput(localSignal(packetPulled)) vector bps linear
outgoingPacketLengths outgoing packet lengths packetLength(localSignal(packetPulled)) sum, histogram, vector b none
droppedPacketLengthsQueueOverflow dropped packet lengths: queue overflow packetLength(packetDropReasonIsQueueOverflow(localSignal(packetDropped))) sum, vector b none
flowOutgoingDataRate flow specific outgoing data rate throughput(flowPacketLength(demuxFlow(localSignal(packetPulled)))) vector bps linear
incomingPackets incoming packets localSignal(packetPushStarted) count pk
outgoingPackets outgoing packets localSignal(packetPulled) count pk

Source code

//
// This module combines a classifier, a scheduler and several traffic shapers
// into a single packet shaper. Packets are classified into one of the traffic
// shapers and the scheduler prioritizes among them.
//
module PriorityShaper extends CompoundPacketQueueBase like IPacketShaper
{
    parameters:
        int numShapers;
    submodules:
        classifier: <default("PacketClassifier")> like IPacketClassifier {
            @display("p=100,150");
        }
        shaper[numShapers]: <default("PacketShaper")> like IPacketShaper {
            @display("p=300,150,column,150");
        }
        scheduler: <default("PriorityScheduler")> like IPacketScheduler {
            @display("p=500,150");
        }
    connections:
        in --> classifier.in;
        for i=0..numShapers-1 {
            classifier.out++ --> shaper[i].in;
            shaper[i].out --> scheduler.in++;
        }
        scheduler.out --> out;
}
File: src/inet/queueing/shaper/PriorityShaper.ned