
Parallelizing OMNeT++ Simulations using Xgrid

Robin Seggelmann
Münster University of Applied

Sciences
Fachbereich Elektrotechnik

und Informatik
Stegerwaldstrasse 39

D-48565 Steinfurt, Germany
seggelmann@fh-

muenster.de

Irene Rüngeler
Münster University of Applied

Sciences
Fachbereich Elektrotechnik

und Informatik
Stegerwaldstrasse 39

D-48565 Steinfurt, Germany
i.ruengeler@fh-

muenster.de
Michael Tüxen

Münster University of Applied
Sciences

Fachbereich Elektrotechnik
und Informatik

Stegerwaldstrasse 39
D-48565 Steinfurt, Germany
tuexen@fh-muenster.de

Erwin P. Rathgeb
University of Duisburg-Essen

Institute for Experimental
Mathematics

Ellernstrasse 29
D-45326 Essen, Germany

erwin.rathgeb@iem.uni-
due.de

ABSTRACT
Working with simulations, testing and validating theories of-
ten requires a large number of simulation runs. The discrete
event simulation environment OMNeT++ already provides
functionality for distributed computing, yet the simulated
model and modules to be parallelized have to be declared
manually. Apple Mac OS X comes with Xgrid support,
which allows easily setting up an ad hoc grid for parallel
computing. In this paper we will describe the features we
had to add to OMNeT++ to be able to use Xgrid to par-
allelize even several thousand runs. We will point out how
to use Xgrid to distribute runs of a simulation not only to
multiple CPU cores but also to multiple machines without
modifying the simulation itself. Our analysis will reveal that
Xgrid allows to reduce the computing time almost propor-
tional to the added parallel computing power.

Categories and Subject Descriptors
I.6.8 [Simulation and Modeling]: Types of Simulation—
Distributed ; I.6.6 [Simulation and Modeling]: Simula-
tion Output Analysis; C.2.4 [Computer-Communication
Networks]: Distributed Systems—Distributed applications

General Terms
Distributed simulation, Grid computing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OMNeT++ 2009, Rome, Italy.
Copyright 2009 ICST, ISBN 978-963-9799-45-5.

Keywords
OMNeT++, Xgrid, Cluster

1. INTRODUCTION
Since we are working on the further development of the

Stream Control Transmission Protocol (SCTP) [14], we have
integrated SCTP in the INET framework [13], [4] of the
OMNeT++ simulation environment to evaluate new fea-
tures. Simulations with several thousand runs, depending
on the convergence, have often been necessary, that can
require several days even on a high-end workstation. As
today’s CPUs gain their performance mainly by more and
more cores rather than by raising the frequency, the maxi-
mum performance can only be obtained by parallelizing the
work load. The main issue is that OMNeT++ per default
only uses one process per simulation, which results in fully
loading only one core of the CPU. A solution would be to
parallelize the runs of a simulation without changing the
simulation itself.

The easiest way to parallelize the runs is to start them
manually one by one, the operating system should then as-
sign the processes to different cores. This is not very con-
venient because the simulation has to be supervised at all
times to start new processes as soon as computing power has
become available. A better solution would be to use Xgrid,
which can distribute a batch of processes not only to mul-
tiple cores but also to multiple machines. Hence, every run
can be listed with adequate parameters in a batch and as-
signed to any idle core of any machine within the grid. This
solution is generic and works with every simulation model,
even large frameworks like INET.

In this paper, a parallel computation of OMNeT++ sim-
ulations using Xgrid will be introduced. In Section 2 an
overview of Xgrid, its structure and features is given. Alter-
native approaches are pointed out in Section 3. In Section 4
we describe the generation of batch jobs with OMNeT++,

and in Section 5 we explain how Xgrid has to be set up to
process these jobs efficiently. The results are presented in
Section 6, while limitations of this solution are discussed in
Section 7. The conclusion is given in Section 8.

2. OVERVIEW OF XGRID
In 2004, Apple introduced Xgrid [10] to set up ad hoc grids

for parallel computing with as little administration costs as
possible. It consists of three roles: controller, client and
agent. The controller manages the jobs and the distribution
of tasks to the available machines, called agents, as shown
in Figure 1. A job consists of an arbitrary number of tasks,
each described by a command and associated parameters.
Any host running Mac OS X 10.4 Tiger or later can provide
an Xgrid controller, agent, or be a client which submits jobs
to and retrieves results from the controller. There is also an
agent for Mac OS X 10.3 Panther [9] and an open source
project of a Java-based agent [8] available. An overview is
given in Table 1.

Authentication
none Password Kerberos

Agent
Mac OS X 10.3 - 10.5 + + +
Java + – –

Controller
Mac OS X 10.3 – – –
Mac OS X 10.4 + + –
Mac OS X 10.4 Server + + +
Mac OS X 10.5 – – –
Mac OS X 10.5 Server + + +
Java – – –

Table 1: Availability of Xgrid

The minimal setup is a single machine combining all the
three roles, but a cluster of up to 128 agents connected over a
local network or the internet is also supported [7]. The agent
can be dedicated to the grid but this is not mandatory, it
can also be configured to only accept tasks when it is idle,
that is no user input has occurred for some time. This allows
to use user workstations to be part of the cluster when not
in use, e.g. over night or on weekends. Agents accept as
many tasks as they have CPU cores at a time, so assuming
it is single-threaded, each task gets its own core.

With Mac OS X 10.5 Leopard extended security features
have been added, which require the controller to be run on
the server edition of Mac OS X. The authentication ranges
from none over simple passwords to Kerberos with Open
Directory (see Table 1). The latter allows tasks to be run
on agents with the permission of a directory user, otherwise
each task will be sandboxed and will have no permission to
access anything beyond its working directory.

Clients can submit tasks individually or within a batch.
The files needed for each run can be included in a batch
file, which will be transferred to the agents before a task
is executed. Including files has the advantage that neither
a manual distribution of files to every agent nor a network
share is necessary, and that all data can be accessed within
the sandbox.

Submitted jobs can be watched and managed in the Xgrid
admin tool, shown in Figure 2, while the submission itself

Client

Controller

J
o

b
 B

a
tc

h

R
e

s
u

lt
s

Tasks

Results

Tasks
Results

Dedicated Agents

Desktop AgentsGrid

Figure 1: The three roles of Xgrid: controller, client
and agent

Figure 2: Xgrid administration tool

and the retrieval of results has to be done with a command
line tool. The simplest form of a job is a single command,
which can be committed directly to the grid and thus no
batch file is needed. The command to print a calendar for
March 2009 would be:

/usr/bin/cal 3 2009

This simple command can be submitted to Xgrid easily
with the following:

xgrid -h controllerhostname \

-auth Kerberos -job run /usr/bin/cal 3 2009

With the keyword run the call will block until any avail-
able agent executed the command. Alternatively run can
be exchanged with submit. The job will be queued to wait
for its turn, and the call returns immediately. The latter
always applies to batch jobs. To submit a batch, a plist or
XML formatted job specification file has to be generated and
committed to Xgrid with the keyword batch. That would
be:

xgrid -h controllerhostname \

-auth Kerberos -job batch job.xml

Further on, Xgrid supports the Message Passing Inter-
face (MPI) for inter-process communication. This requires
changes to the simulation, discrete modules have to be de-
clared and the MPI interface has to be implemented. As
the solution should be as easy and generic as possible we
will not apply these features.

3. ALTERNATIVE APPROACHES
There are already some alternative solutions to parallelize

OMNeT++ simulations. Although they are suitable for the
tasks they were designed for, they have some limitations
which led us to Xgrid. In the following, five alternative
approaches and their characteristics are described.

3.1 Parallel discrete event simulation
OMNeT++ comes with parallel discrete event simulation

(PDES) [5], which allows the definition of different modules
within a simulation in the configuration. These modules
are run as logical processes during a simulation and thus
can be parallelized. Communication between processes is
realized with MPI. This allows sending messages while direct
method calls are not possible unless the respective modules
are assigned to the same processor.

The partitioning has some drawbacks, as it limits the sim-
ulation design and does not always speed up the computa-
tion. If the modules are chosen unfavorably, the simulation
may run even slower than without parallelization. Addi-
tionally, the setup of an MPI-capable environment has to be
done in advance.

3.2 SimProcTC
SimProcTC, which is based on the architecture Reliable

Server Pooling (RSerPool) [11], can also be used to dis-
tribute OMNeT++ simulations to multiple CPUs [12]. An
RSerPool architecture consists of an arbitrary number of
servers, called pool elements (PE). A group of pool elements
is called pool and identified by a pool handle. Every handle
is managed by Pool Registrars (PR) to which pool elements
register themselves. The registrars keep track of the avail-
ability and load of their pool elements, synchronize with
other pool registrars and assign available pool elements to
pool users (PU) requesting their services.

Similar to the approach with Xgrid, runs of a simulation
can be distributed to the pool elements by requesting an
available pool element from the registrar for every run. The
pool element runs the simulation and sends the results back
to the pool user. Unfortunately this solution is not yet in-
tegrated on Mac OS X platforms and does not supply any
GUI-based tools.

3.3 Akaroa
The project Akaroa is an architecture designed for par-

allel computation of quantitative stochastic simulations [6].
Akaroa consists of two parts, the akslaves which are man-
aged by an akmaster. The akmaster accepts jobs and dis-
tributes them to the akslaves. The akslaves report their
results to the akmaster which decides if the data already
matches a given accuracy. Otherwise the slave has to con-
tinue the simulation.

There is an interface to use the Akaroa architecture for
OMNeT++ simulations [1]. Every output of the simulation
is reported to the akmaster for estimation. When an appro-
priate accuracy is reached, the simulation will be stopped

gracefully. To use this interface, every simulation has to be
modified to include calls to the Akaroa master to judge the
current accuracy.

3.4 make
The UNIX tool make can also be used to parallelize simu-

lations. In the necessary Makefile a target for each run of the
simulation has to be created which executes the run. Then
a main target is needed which invokes all the previously cre-
ated run targets. The number of concurrent processes can
be specified by calling the make command with the param-
eter -j, usually with the number of available CPU cores.
It will then execute the given number of targets simultane-
ously and each process will be assigned to a different core by
the operating system. This approach is limited to a single
machine, no distribution to multiple hosts can be realized.

3.5 Eclipse for OMNeT++ 4.0
In the upcoming 4.0 release of OMNeT++ an IDE based

on Eclipse [3] will be included. This environment supports
developing and running simulations. It can be configured to
start multiple simulation runs at once. This allows to fully
load multiple CPU cores of a single machine but like make

it cannot distribute runs to other machines.

4. GENERATING BATCH JOBS WITH OM-
NET++

Starting an OMNeT++ simulation with just one run in
Xgrid can be done without any alterations to OMNeT++.
But as simulations normally consist of several runs which
correspond to tasks in Xgrid, a batch file is needed to provide
the command and the necessary parameters for each task, so
that the controller can distribute them. After a job has been
started, a job id is returned, that can be used to retrieve the
job specification.

xgrid -job specification -id n

This batch file is in XML format, and therefore its genera-
tion can be automated. A simple batch job has the following
structure:

jobSpecification = {

applicationIdentifier

= "com.apple.xgrid.cli";

inputFiles = {};

name = "/usr/bin/cal";

taskSpecifications = {

0 = {arguments = (3, 2009);

command = "/usr/bin/cal";

};

};

}

The section inputFiles consists of a list of files that are
needed by each agent. For OMNeT++ simulations, this
is usually the binary, the ned-files, the configuration file,
routing files and so on. If the agents do not have a shared
medium, all input files have to be written in ASCII coded
hexadecimal representation in the XML file. The taskSpeci-
fications specify the different runs in OMNeT++. All nec-
essary arguments, e.g. the name of the configuration, the
number of the run, and the command are listed. Without

the integration of the generation of the complete file in OM-
NeT++, the job specification could be written manually by
retrieving the specification file for one run and adding the
task specifications for all the others. As this is a very tedious
work, when it has to be done for hundreds of runs, the aim
is to automate the whole process.

To generate the job specification file automatically, two
prerequisites have to be fulfilled:

• It has to be figured out, which files have to be included.

• The possible number of runs has to be known.

• Each file has to be converted letter by letter into the
ASCII coded hexadecimal representation.

Looking at small examples in OMNeT++, for instance
FIFO, the necessary files are all included in the working
directory of the example. But with the growing complexity
of the frameworks, the input files can be distributed among
different directories. To start, for instance, an example of
the INET framework [4], about 170 ned-files in 50 different
directories are loaded in addition to the example related files.
To solve this problem, all directories are searched recursively,
and the positions of found files are set relative to a base
directory.

Figure 3 illustrates the mapping of the original files to the
ones in the batch file for the following -n switch

-n ../..:../../../src

starting from the working directory
INET/examples/sctp/fair.

The most important task is to map the ned-files. The two
paths, separated by a colon, refer to the two ”base direc-
tories” INET/examples and INET/src/. Each base directory
contains a file called package.ned, that includes the root
package, i.e. the name of the package, from which the hier-
archy of all the other ned-files below this directory stem. If
the files in the ellipses on the left hand side were just copied,
the second package file would overwrite the first one, which
would result in errors when matching the expected to the
package names provided in the ned-files. Therefore, each
base directory has to be given an individual name, from
which the relative paths can start. In our case we just name
the directories temp1 and temp2. Thus the hierarchy of the
files is kept and can be copied to the agents.

Hence, an entry for one input file has the following layout:

"temp1/transport/sctp/SCTP.ned"={

fileData = <7061636b 61676520 696e6574>;

}

In addition to the ned-files, there are example dependent
files, that are needed to run the simulation. In INET, these
could be routing files or files to be interpreted by the sce-
nario manager. Assuming, that the necessary files are usu-
ally kept in the example’s directory where the simulation is
started, we include all files from this directory. They are
not set relative to temp2, but stored in the top directory. It
is advisable to provide a subdirectory for the specification
files to prevent older files from being included in the actual
specification.

The configuration files can be specified with the -f-switch.
If no file is defined, omnetpp.ini from the working directory

is taken by default. In the ini-files, the network to use is
set and the parameters for the modules the network consists
of. As it is expected, that the ini-file and the network’s
ned-file reside in the same directory, the location of the ini-
files must also be transferred to the relative hierarchy of
the base directories. An alternative would be to store the
ini-file in the working directory and provide the complete
package path for the network.

Our aim was to change as little in OMNeT++ as possible.
Therefore, we took advantage of already existing features,
that provided us with the number of runs, which we could
use to write the task specifications. Each task includes the
paths for the ned-files and the configuration files, that have
to be adjusted to the new hierarchy. In our example, one
task specification looks as follows:

taskSpecifications = {

0 = {arguments = (

"-n",

"temp1:temp2",

"-f",

"temp2/sctp/fair/config.ini",

"-c",

"testconfig",

"-r",

0

);

command = "/home/user/INET/src/inet";

};

In the first stage we added only one new command line
switch to set the name of the job specification file. The
creation of a specification file is started from the example’s
directory. For a complex framework like INET the command
can be as follows:

../../../src/inet -n ../..:../../../src -u Cmdenv \

-f config.ini -c testconfig -s specfile.xml

In addition to the parameters for the normal run, that is
the location of the ned and configuration files, the command
environment has to be chosen (-u Cmdenv), the configura-
tion with the flag -c and the name of the specification file.
The job can then be started with the batch job command of
Section 2.

As we mentioned before, also the executable belongs to
the input files. This file can easily have a size of several
megabytes, which will lead to a very large specification file
that has to be transferred to the agents. In Section 6 we
will prove that Xgrid is very inefficient in transferring large
files and will repeat the entire file transfer for every task
submitted to an agent. To improve the performance, it is
advisable to keep the batch file as small as possible, so we
will leave the executable out in further batch jobs. It should
rather be stored on a shared medium or copied to the same
location on each agent in advance.

Using a shared medium for all the input files can reduce
the size of the specification file further. Therefore, we in-
troduced the command line switch -t to give the user the
opportunity to decide against a self-contained job and to ex-
clude the input files from the batch file and call them from
the shared medium. As a consequence, the job specification
is altered to contain only absolute paths to the files of the
working directory in the inputFiles section and to the ned

and configuration files in the task specifications.

INET

src

networklayer

ipv4

IP.ned
ICMP.ned
RoutingTable.ned
IP.cc
IP.h

transport

tcp
TCP.ned
TCP.cc
sctp
SCTP.ned
SCTP.cc
SCTP.h

package.ned

examples

ethernet

arptest

ARPTest.ned

sctp

fair

client.mrt
config.ini
fair.ned
omnetpp.ini
router.mrt
run
server.mrt

package.ned

inet

nclients
NClients.ned
omnetpp.ini
run

networklayer

ipv4

IP.ned
ICMP.ned
RoutingTable.ned

transport

tcp

TCP.ned

sctp

SCTP.ned

temp1

package.ned

temp2

ethernet

arptest

ARPTest.ned

sctp

fair

fair.ned
config.ini

package.ned

inet

nclients

NClients.ned

client.mrt
router.mrt
run
server.mrt

Figure 3: Mapping of the original files to the Xgrid hierarchy

5. SETTING UP XGRID
A basic setup of Xgrid is just activating the controller

and agents with or without password authentication. Every
agent in the same network only needs the password and will
then use Bonjour [2] to discover the server and connect to
it. Bonjour is a Zeroconf service to automatically detect and
configure services offered by other hosts in a network.

That is basically everything needed to be done before jobs
can be submitted to the controller and then get distributed
to the agents. However, since 10.5 Leopard the agents are
running received tasks within a sandbox which limits read
and write access to a temporary working directory. Every
file needed by the tasks has to be included in the submis-
sion of the job and has to be transferred to the agents by
the controller for each task in advance. Files that have been
created by the task are transferred back to the controller
after finishing the computation and can be retrieved by the
client. Xgrid is not very efficient at transferring files, the

maximum supported cumulative size is 128 MB, so it is bet-
ter to configure the simulations to use a network share for
reading and writing large files.

If Xgrid agents authenticate to the server only with a pass-
word or do not authenticate themselves at all, they will run
every task they receive in a sandbox. This makes it impos-
sible for the tasks to access any network share. The only
possibility to grant access to anything outside their working
directory is to run the job with normal user permissions.
This is achieved by setting up an Open Directory server
on the controller’s machine to which every host running an
Xgrid agent has to be bound to. Open Directory requires
a configured DNS service on the controller as well. Both
services can be configured with a graphical user interface.

Binding a host to an Open Directory server allows users
within the directory, called network users, to log on to any
of the connected machines. Network users have the same ac-
cess rights as local standard users but exist on every bound
host. This is an essential prerequisite to execute a task as a

0 20 40 60 80 100
0

500

1000

1500

Simulation runs

T
i
m
e

@s
e
c

D
INET via Xgrid - Input via Xgrid - Results via Xgrid
INET via NFS - Input via NFS - Results via NFS
INET via NFS - Input via Xgrid - Results via Xgrid

Figure 4: Performance comparison of a large INET binary input file either read from an NFS share or
transferred by Xgrid

0 20 40 60 80 100
0

50

100

150

200

250

Simulation runs

T
i
m
e

@s
e
c

D

INET via NFS - Input via NFS - Results via NFS

INET via NFS - Input via NFS - Results via Xgrid

INET via NFS - Input via Xgrid - Results via NFS

INET via NFS - Input via Xgrid - Results via Xgrid

Figure 5: Performance comparison of input and result files either read from an NFS share or transferred by
Xgrid

0 20 40 60 80 100
0

500

1000

1500

Simulation runs

T
i
m
e

@s
e
c

D

XGrid, 10x 2.5 GHz Power G5
XGrid, 8x 3.0 GHz Xeon
XGrid, 4x 3.0 GHz Xeon
XGrid, 2x 3.0 GHz Xeon
XGrid, 1x 3.0 GHz Xeon
no parallelization, 1x 3.0 GHz Xeon

Figure 6: Conventional computing compared to Xgrid with an increasing number of CPU cores

standard user because every task within a job has to be run
with the same permissions on all agents. After the agents
have been bound to the Open Directory, Kerberos authen-
tication can be used. The client has to create a Kerberos
ticket for a user which will automatically be valid on every
agent. When the job is submitted to the controller the tasks
are run with the permissions of the ticket’s owner. This al-
lows the tasks to access anything a normally logged on user
would be able to, including network shares.

Since the tasks are now able to access the network, shares
have to be set up for users who should be allowed to submit
jobs. A convenient solution is to enable home directories
stored on the Open Directory server which the connected
hosts can mount via NFS. This allows network users to ac-
cess their files from every host in the directory and thus from
every agent. Any permission issues should be solved without
any additional administrative work.

It is then possible to create tasks for which the agents
either get the data from the controller or just read them
from the home directory of the submitting user. The results
can be written directly to the home directory, whereby the
available computing power of the agents can be used most
efficiently.

6. MEASUREMENT RESULTS
To compare the performance of Xgrid supported compu-

tations, our agents are an 8 core Mac Pro and several dual
core G5 Powermacs accepting tasks from a dedicated con-
troller which also provides NFS shares. The simulation used
is always the SCTP example ’fair’ of the INET framework,
which is a quite simple simulation with a short runtime and
small configuration and result files. The time needed to

compute an increasing number of runs is measured.
With the first series of measurements we examined the

most efficient job specification, more precisely, which files
should be included in the batch file and which better be dis-
tributed via a network share. The easiest way to handle jobs
is to make them self-contained, that is include everything.
Unfortunately we discovered that this may be slower even
with all 8 cores of the Mac Pro than running the simula-
tion without Xgrid. All included files are transmitted to the
agents every time before a task is submitted and the results
are sent back to the controller after finishing a task. With
growing file sizes this can be a severe problem because the
agents do not only have to wait until they have received all
data to start computation, they also have to wait until the
results are transferred back. Depending on the network this
can take several minutes and lead to some agents always
waiting for data transfer without doing any computations.
Figure 4 shows the topmost graph that, letting Xgrid handle
all the file transfers, is up to 10 times slower than using an
NFS share, which corresponds to the lower graphs.

To avoid this bottleneck, only files of a cumulative size
of up to a few megabytes should be included or transferred
back as results. We therefore moved the large 34 MB INET
binary to an NFS share and only included the small con-
figuration files in the batch file and set the simulation to
write its results to an NFS share, too. This is a convenient
solution because the INET binary usually does not change
and so the jobs are almost self-contained. The results can
be obtained from the share with similar effort like retrieving
them from the Xgrid controller. Storing all input files on a
network share is actually slightly faster but the files cannot
be moved or modified during simulation, so only one simu-

lation can be submitted to Xgrid at a time or there must be
a separate directory structure for each job. Figure 5 shows
the differences between files on NFS shares and transferred
by Xgrid, while the more NFS is used instead of Xgrid, the
more it tends to result in a higher performance.

With the combination of including files and using a net-
work share as a viable setup, the performance of Xgrid sup-
ported can be compared to conventional computation. The
number of CPU cores used with Xgrid is increased with every
series of measurements. As shown in Figure 6, Xgrid with
only one core enabled is as fast as only running OMNeT++.
An additional core almost halves the computation time and
even more cores reduce the time to complete the simulation
nearly linearly. This can be seen in Figure 6, where from
top to bottom with every graph the measurement series is
done with additional CPU power, except for the third from
the bottom, which is just for comparison how many slower
Power G5 cores perform against fewer faster Xeon cores.

7. LIMITATIONS AND CONSTRAINTS
The transmission of necessary files before running a job is

usually no issue, even though they have to be transferred for
each job separately, because they tend to be small. However,
the collection of the results can cause significant delays for
large files and only a cumulative size of 128 MB is supported
anyway. To avoid this delay and limit, it is more efficient to
have the agents write their results continuously to a network
share. This causes a constant network and disk usage which
should be lower than trying to write everything at once after
finishing a task and no pausing is necessary. Unfortunately
this requires a more complex setup with an Open Directory
service and network shares.

The parallelization using Xgrid can be used to parallelize
multiple runs of the same simulation. However, the depicted
solution only allows the variation of parameters. Xgrid sup-
ports the use of MPI and therefore simulations could be
partitioned for distributed computing, but this is specific to
every simulation and requires an elaborate preparation.

In the course of this paper we assumed that OMNeT++
is built without shared libraries, so that no additional li-
braries have to be transmitted to run the simulations. In a
future version the necessary libraries shall be automatically
included in the task specifications to allow an even easier
use of our extension.

Another limitation is that the ini-files are not searched
for the inclusion of other files. Therefore, the user has to
specify all needed configuration files explicitly.

8. CONCLUSION
This paper described the parallelization of OMNeT++

simulations with Xgrid. Changes in OMNeT++ are re-
quired to generate job description files for Xgrid automati-
cally, which enable the user to easily set up his simulation for
Xgrid. Processing the job specification file, the Xgrid con-
troller then distributes the separate runs of the simulation
to all available machines for parallel computation. Smaller
files, such as configuration files, can be included in the job
description file, whereas larger files should be read from or
written to network shares for better performance. Such a
setup accelerates the computation of a simulation almost
linear to the additional computing power compared to con-
ventional computation with a single process.

It is planned to include this extension as a tool in an
upcoming OMNeT++ release.

9. REFERENCES
[1] Akaroa2 for OMNeT++. Retrieved from:

http://www-tkn.ee.tu-berlin.de/research/akaroa-
omnetpp/index.html.

[2] Bonjour Protocol Specifications. Retrieved from:
http://developer.apple.com/networking/bonjour/
specs.html.

[3] Eclipse Open Source Integrated Development
Environment. Retrieved from: http://www.eclipse.org.

[4] INET Framework Documentation. Retrieved from:
http://www.omnetpp.org/staticpages/index.php?
page=20041019113420757.

[5] OMNET++ User Manual Version 3.2. Retrieved from:
http://www.omnetpp.org/doc/manual/usman.html.

[6] Project Akaroa. Retrieved from:
http://www.cosc.canterbury.ac.nz/research/RG/
net sim/simulation group/akaroa/about.chtml.

[7] Xgrid Administration and High Performance
Computing. Retrieved from:
http://images.apple.com/server/macosx/docs/
Xgrid Admin and HPC v10.5.pdf.

[8] Xgrid Agent for Java.
http://sourceforge.net/projects/xgridagent-java.

[9] Xgrid Agent for Mac OS X 10.3.
http://www.apple.com/support/downloads/
xgridagentformacosx103.html.

[10] Xgrid: High Performance Computing for the Rest of
Us. Retrieved from:
http://developer.apple.com/hardwaredrivers/hpc/
xgrid intro.html.

[11] T. Dreibholz and E. Rathgeb. Reliable Server Pooling
A Novel IETF Architecture for Availability-Sensitive
Services. Proceedings of the 2nd IEEE International
Conference on Digital Society (ICDS), February 2008.

[12] T. Dreibholz and E. Rathgeb. A Powerful Tool-Chain
for Setup, Distributed Processing, Analysis and
Debugging of OMNeT++ Simulations. International
developer’s Workshop on OMNeT++ (OMNeT++
2008), March 2008.

[13] I. Rüngeler, M. Tüxen, and E. Rathgeb. Integration of
SCTP in the OMNeT++ Simulation Environment.
International developer’s Workshop on OMNeT++
(OMNeT++ 2008), March 2008.

[14] R. Stewart. Stream Control Transmission Protocol.
RFC 4960, September 2007.

