
Modeling Obstacles in INET/Mobility Framework:
Motivation, Integration, and Performance

Hermann S. Lichte, Jannis Weide
University of Paderborn
Paderborn, Germany

{hermann.lichte, jannis}@upb.de

ABSTRACT
Wireless network protocols are commonly evaluated through simu-
lations. The achieved results may vary significantly with the mod-
eled propagation environment. Protocols that use carrier sensing
for collision avoidance may not operate properly in the presence of
obstacles (e.g. buildings) that shield hosts from each other. These
failures may not be recognized when using a long-term stochastic
model (e.g. log-normal shadowing), leading to inadequate simu-
lation results. Studying a simple carrier-sensing protocol, we find
that when shielding effects are properly modeled, they increase col-
lisions dramatically with increasing transmission power as opposed
to the stochastic model. Thus, we formally introduce a model that
describes shielding effects and which is still simple enough to be ef-
ficiently implemented. We discuss how such implementation looks
like, using the Mobility Framework and the INET Framework for
OMNeT++ as specific examples. We identify connection-specific
caches to be crucial for the run-time performance of the model’s
implementation.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—Wireless communication; C.4 [Performance
of Systems]: Modeling Techniques; I.6.5 [Simulation and Mod-
eling]: Model Development

General Terms
Design, Performance

1. INTRODUCTION
Nowadays, computer scientists rely on simulations for evalu-

ating new wireless network protocols. Especially, in the area of
Wireless Sensor Networks (WSNs) and Mobile Ad Hoc Networks
(MANETs), the alternative of building large-scale prototypes for
experimentation may not be possible due to resource limitations,
e.g. the hardware may be too expensive or the deployment may be
impracticable. In contrast, simulations are easily programmed, eas-
ily deployed, and – with appropriate computing power – even scale

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OMNeT++ 2009, Rome, Italy.
Copyright 2009 ICST, ISBN 978-963-9799-45-5.

d

b

c

a Obstacle

Figure 1: An obstacle in-between four hosts a, b, c, and d may
shield hosts a↔ d and b↔ c from each other.

well in numbers that are infeasible for prototyping. Unfortunately,
results obtained through simulations can be misleading just as eas-
ily if inappropriate models are used. The most common errors are
due to overly simplistic radio and environmental models, e.g. [3]:

• Transmission areas are circular.

• All radios have equal range.

• If I can hear you, you can hear me.

• If I can hear you at all, I can hear you perfectly.

In the OMNeT++ community, several frameworks have evolved
for computer network simulation, e.g. the Mobility Framework,
MiXiM, and the INET Framework. Many people have contributed
suitable models that depart from the overly simplistic assumptions
mentioned above, e.g. the publicly available ChSim [7] offers an
implementation of a time-correlated and frequency-correlated Ray-
leigh fading model.

In this paper we address the issue of modeling obstacles in the
propagation environment. Commonly, a stochastic model is used to
capture the effect of obstacles, e.g. log-normal shadowing. Such a
model fails to properly describe specific obstructions in the propa-
gation environment. Consider Figure 1 as a simple, motivating ex-
ample. Here, the obstacle in the center of the four hosts a, b, c, and
d hinders communication between a ↔ d and b ↔ c by severely
attenuating signals on these channels. On the other hand, a ↔ b,
a↔ c, b↔ d, and c↔ d are not affected.

Wireless network protocols that rely on carrier-sensing to avoid
collisions may fail in scenarios such as the one depicted in Figure 1.
Since b and c are shielded from each other, they cannot sense each
other’s transmission and, if both have data to transmit, they may si-
multaneously start a transmission which will then collide at d. This
paper shows that protocol failures caused by shielding effects can-
not be captured properly by a stochastic model. Thus, we describe
an alternative obstacle model in Section 2 that properly captures
shielding effects to derive more meaningful simulation results. We
discuss an implementation of this obstacle model in Section 3 from

start to finish using the Mobility Framework and INET Framework
as concrete examples of how the model can be integrated into an ex-
isting framework. Especially, in simulations where network sizes
may be large, an efficient implementation is needed. Hence, we
discuss optimization strategies of the implementation and measure
its performance in Section 4, finding that caches are crucial for ef-
ficiency. Finally, we evaluate an opportunistic wireless network
protocol exemplarily in Section 5 using both models. We discuss
how the models dominate the results and, thus, the conclusions to
be drawn from them. In Section 6, we briefly summarize the related
work that this paper is based on, concluding the paper in Section 7.

The complete implementation of our obstacle model for the Mo-
bility Framework is publicly available, but with the model and im-
plementation issues described in this paper, implementations for
other frameworks should be straightforward.

2. SYSTEM MODEL
We assume that two hosts Hi and H j with their respective loca-

tions (x(Hi),y(Hi)) and (x(H j),y(H j)) can communicate without
error if

SINR(i, j)≥ ν , (1)

i.e. the Signal to Interference plus Noise Ratio (SINR) exceeds a
certain threshold ν required for successful reception. The threshold
ν typically depends on the modulation and coding used. The SINR
for a transmission from i to j is given by

SINR(i, j) :=
Pi a(i, j)

N0 +∑k 6=i Pk a(k, j)
(2)

where a(i, j) describes the effect of the wireless channel on the
transmitted signal power Pi. All nodes other than i cause inter-
ference if they are simultaneously transmitting, contributing to the
noise level N0.

2.1 Propagation

Path loss The well-known Friis equation describes how the signal
transmitted by some host i to host j decays over distance di j
in free space [8]:

aPL(i, j) =
GtGrλ 2

(4π)2d2
i jL

Gt and Gr describe the transmitter and receiver antenna gains,
respectively, L captures circuit losses, and λ refers to the
wave length. The ratio between received signal power and
transmitted signal power is referred to as path loss.

Shadowing Obstructions in the propagation environment cause the
signal strength to vary even for equal distances. Measure-
ments indicate that these variations can be described by a
stochastic model, e.g. by a zero-mean Gaussian distributed
random variable with standard deviation σ (log-normal shad-
owing), expressed by the term aSH(i, j). This model is an ag-
gregate of several physical effects, e.g. reflection, diffraction,
and scattering [8].

Fading In a multi-path propagation environment, slight changes
in a host’s position may lead to drastic fluctuations in the re-
ceived signal strength. This is caused by constructive and
destructive interference of the signals received on multiple
paths with their phase shifts being random. We use the fad-
ing model described in [5] in conjunction with the obsta-
cle model proposed here to jointly represent large-scale and

OBR
k

(xc,yc) hk

OTL
k

OBL
k

OTR
kwk

(a) Non-rotated
OBR

k

OTL
k

hk
OTR

k

wk

(xc,yc)βk
OBL

k

(b) Rotated obstacle

Figure 2: Obstacles are modeled as rectangular shapes.

small-scale effects. We capture the small-scale effects of fad-
ing through the term aFD(i, j).

The SINR at the receiver is influenced by all three phenomena, thus

a(i, j) = aPL(i, j)aSH(i, j)aFD(i, j). (3)

2.2 Obstacles
Obstacles Ok ∈O are modeled as rectangular shapes as depicted

in Figure 2. The following set of parameters characterizes an ob-
stacle:

• Center position (xc(Ok),yc(Ok))

• Dimension (width wk and height hk)

• Angle of rotation βk

• Attenuation factor ak

Given two hosts Hi and H j , an obstacle Ok affects the transmission
between the hosts if any of the obstacle’s borders intersects with the
line segment connecting Hi and H j . From computational geometry,
we use the algorithm ANY-SEGMENTS-INTERSECT(S) that deter-
mines whether any of n line segments given by the set S intersect
[1]. In this case, we need to specify S = Si j

k such that it contains the
line segment that represents the connection between the two hosts,
namely HiH j , as well as the four line segments that constitute the
borders of the obstacle Ok. For a non-rotated obstacle, the corner
points are given using width wk and height hk as follows:

x(OTL
k) = xc(Ok)−wk/2 and y(OTL

k) = yc(Ok)−hk/2

x(OTR
k) = xc(Ok)+wk/2 and y(OTR

k) = yc(Ok)−hk/2

x(OBL
k) = xc(Ok)−wk/2 and y(OBL

k) = yc(Ok)+hk/2

x(OBR
k) = xc(Ok)+wk/2 and y(OBR

k) = yc(Ok)+hk/2

If the obstacle is rotated at an angle βk, then, for every corner point
(x,y) of the non-rotated obstacle, the corresponding corner point
(x′,y′) after rotation is given by:

x′ = xc(Ok)+(x− xc(Ok))cosβk− (y− yc(Ok))sinβk

y′ = yc(Ok)+(x− xc(Ok))sinβk +(y− yc(Ok))cosβk

Altogether, this defines the set of line segments Si j
k as

Si j
k :=

{
HiH j,OTL

k OTR
k ,OTR

k OBR
k ,OBR

k OBL
k ,OBL

k OTL
k

}

If the test ANY-SEGMENTS-INTERSECT(Si j
k) succeeds, the attenu-

ation ak of the obstacle further reduces the strength of the received
signal. The total attenuation caused by all obstacles in the simu-
lated propagation environment is then given as

aOB(i, j) = ∏
Ok∈O

abi j
k

k (4)

b dca

(a) Interference possible

ba c d

(b) No interference due to shielding

Figure 3: An obstacle that obstructs the line segment connect-
ing two hosts may prevent them from interfering.

where the exponent bi j
k indicates whether the obstacle Ok intersects,

i.e.

bi j
k =

{
1 if ANY-SEGMENTS-INTERSECT(Si j

k) is true
0 otherwise

We obtain the SINR at the receiver in presence of obstacles by mul-
tiplying (2) with (4) and inserting the resulting term into (1). An
efficient implementation of (4) is crucial for the run-time of simula-
tions. In Section 4 we discuss both a trivial approach and a more ef-
ficient implementation using caching and compare their run-times.

2.3 Connectivity
Theoretically, a signal sent out by one host affects all other hosts.

Due to attenuation, the received power at hosts very far away from
the sender may be low enough to be negligible in simulations. Thus,
many wireless frameworks for OMNeT++ define a Maximum In-
terference Distance (MID) up to which hosts can possibly disturb
each other. This is practically motivated as it reduces the run-
time of simulations by avoiding unnecessary processing at far away
hosts. The MID is given by solving the Friis equation for distance
and assuming that a minimum power at the receiver Pmin is required
for interference and the maximum power being transmitted is Pmax.

dI = α

√
Pmax

Pmin

(
λ
4π

)2
(5)

The presence of obstacles in the propagation environment may
shield two hosts from interfering with each other as shown in Fig-
ure 3. This is because the additional attenuation imposed by the
obstacle affects the MID. The obstacle’s shielding effect may cause
two hosts to be disconnected, increasing the probability of the hid-
den node problem [4]. Thus, shielding effects must be considered
when computing the MID as they have direct consequences on the
behavior of wireless network protocols, illustrated in detail in Sec-
tion 5. Considering obstacles for computing the network’s con-
nectivity makes the MID connection-specific. It is modeled by (6)
where the maximum transmission power decays proportionally to
the additional attenuation imposed by all obstacles that obstruct the
connection.

di j
I = α

√
aOB(i, j)

Pmax

Pmin

(
λ
4π

)2
(6)

3. INTEGRATION
In this section we describe how the obstacle model integrates into

the Mobility Framework and the INET Framework. We assume
the reader to be familiar with the basic concepts of the OMNeT++
simulator and these frameworks.

3.1 New modules and classes

Figure 4: Obstacles may cause hosts to be disconnected.

Here, we describe modules and classes that represent fundamen-
tal concepts of the extension that implements the obstacle model.
We believe that they are independent of the frameworks and need
to be implemented in any case.

Matter module Captures the characteristic properties of obstacles
introduced in Section 2.2. The associated Matter class com-
putes the corner points of the obstacle during initialization
and offers methods for querying these points.

Attenuation class Objects of this class store attenuation factors
for different frequencies, making it possible to define fre-
quency-specific attenuation, i.e. ak(f), as well as a single
attenuation value ak for all frequencies.

Obstacle module Defines an obstacle to be placed on the play-
ground where all hosts reside. This two-fold implementation
of Matter/Obstacle module was chosen as it allows existing
simulation objects (e.g. hosts) to be given physical attributes
as well. We give an illustrative example when discussing the
Mobility Framework integration.

ObstacleControl class This core class implements the geometri-
cal algorithm ANY-SEGMENTS-INTERSECT(S). Further, it
provides a method for returning the additional attenuation for
transmission between two hosts Hi and H j given by (4). In
a trivial implementation, this method always iterates over all
registered obstacles Ok ∈ O, invoking the algorithm ANY-
SEGMENTS-INTERSECT(Si j

k) to obtain the attenuation fac-
tors. In Section 4 we see that this imposes tremendous run-
time and one can do better by employing appropriate caching
strategies.

3.2 Mobility Framework
Figure 4 shows a TkEnv window of a simple wireless network

modeled with the proposed extension. Some hosts are disconnected
due to obstacles intersecting their connections, e.g. host[0] and
host[5] are shielded from each other by obstacle[3]. We now dis-
cuss the peculiarities of a Mobility Framework integration.

3.2.1 Making obstacles mobile
The Mobility Framework provides many mobility models for

moving hosts during a simulation. For this, every host module
contains a Mobility sub-module that controls the movement of that
host independently from other hosts. It was a primary goal of the
integration to be able to re-use the existing mobility models for ob-
stacles as well. In our implementation of extended mobility, two
new cases need to be considered.

Physical hosts Hosts in the Mobility Framework are modeled as
points, whereas in our integration a Matter sub-module may
be added to a Host module, thereby giving the host a phys-
ical dimension with the antenna at its center. The existing
mobility models may still be used to move the host and the
matter associated with it.

Movable obstacles Similarly, an Obstacle module that contains
a Matter sub-module allows a Mobility sub-module to be
included as well. Note that it is not feasible to have Matter-
less obstacles.

For the existing mobility models to work, collisions with the
playground’s border and other objects need to be handled. Bor-
der handling is already part of the original Mobility Framework. It
is implemented in the super-class of all mobility models, BasicMo-
bility. For hosts modeled as points, a collision with the border is
detected by testing whether, after the move, the point is outside the
playground. This has been adapted to obstacles by testing whether
any of the obstacle’s corner points are outside the playground. The
Mobility sub-module defines a parameter called border policy that
indicates how a collision with the border is handled (e.g. reflection).
With mobile obstacles, collisions between obstacles and hosts with
physical dimensions become possible, thus requiring further colli-
sion detection and handling. Collisions between obstacles can be
detected by checking if one of the line segments that belong to the
moving obstacle intersects with any segment belonging to obsta-
cles that are in the vicinity of the move. Unfortunately, even if no
intersection is detected, a collision may still have occurred if, after
the move, the obstacle is completely contained in another. Thus, an
additional check is necessary. The above algorithm is implemented
in a new method of BasicMobility called checkCollision(). Simi-
lar to border handling, we define a collision policy per obstacle that
defines how to resolve collisions individually.

3.2.2 Additional attenuation
The additional attenuation caused by obstacles needs to be con-

sidered in two cases.

Connectivity Connectivity (see Section 2.3) between hosts is de-
termined in ChannelControl. Here, updateConnections()
must compute for every pair of hosts the connection-specific
interference distance. For this, calcInterfDist() queries the
ObstacleControl module for additional attenuation values
whenever connections need to be updated instead of using
a constant interference distance.

Reception During transmission, the SnrEval module collects the
SINR values and stores them in an SnrList. This list is passed
on to the Decider module for checking whether a frame was
received correctly, e.g. using the model given by (1). The
method calcRcvdPower() computes the power of the recei-
ved signal considering the effects of the channel, as stated
by (3). For the obstacle model, we additionally use aOB(i, j)
given by (4), thus the ObstacleControl module needs to be
queried in calcRcvdPower() for the additional attenuation.

Entry Description

sim.numObstacles Number of obstacles on playground
sim.obstacle[k] Module representing obstacle Ok

.mobility Mobility sub-module
.x Placement on x-axis xc(Ok)
.y Placement on y-axis yc(Ok)
.speed Speed of movement
.updateInterval Time interval to update the position
.collisionPolicy Policy for collisions between obstacles
.borderPolicy Policy for collisions with the border

.matter Matter sub-module
.attenuation Attenuation factor(s) ak(f)
.width Width wk
.height Height hk
.angle Angle of rotation βk

Table 1: OMNeT++ configuration of the obstacle extension.

Since ObstacleControl is the core of the implementation, we brief-
ly describe its interface.

calcObstacleDecrease() Given either the IDs of two hosts or
their coordinates, this method returns the total attenuation of
obstacles intersecting the connection of the given hosts.

getIntersectingObstacles() Given the coordinates of two hosts,
this method stores pointers to obstacle modules in a vec-
tor for any obstacle intersecting the connection of the given
hosts. This method is useful if a developer needs to perform
some operation on some or all obstacles obstructing the con-
nection.

Additionally, the following helper methods are available and also
used internally.

testIntersect() Returns a boolean value indicating whether two
line segments, each given by their endpoints, intersect. This
implements the algorithm ANY-SEGMENTS-INTERSECT(S)
with |S|= 2, but it can be easily extended to arbitrary S.

getIntersection() Given two intersecting line segments as its ar-
guments, this method returns the coordinates of the point
where the line segments intersect.

getIntersectionLength() Given a line segment and a pointer to
an obstacle, this method returns the length of the line seg-
ment that lies within the obstacle. This is useful if the atten-
uation caused by an obstacle shall be made proportional to
its thickness.

3.2.3 Configuration
Obstacles are defined in the configuration file similar to hosts.

Table 1 shows how the characteristic properties of obstacles intro-
duced in Section 2.2 are mapped to module parameters. Note that
the obstacle extension need not be deterministic. The attenuation
factor ak is a volatile parameter so it can be specified using a ran-
dom variable in the configuration, allowing for varying attenuation
when an obstacle intersects.

3.3 INET Framework
An integration into the INET Framework is straight forward,

since the INET Framework is based on the Mobility Framework.
It shares the ChannelControl class as well as the mobility models
so that the integration described above applies in the same way. A

0
2

4
6

8

2

4

6

8
0

50

100

150

200

250

Number of obstaclesNumber of hosts

R
un

−
tim

e
in

cr
ea

se
 [%

]

(a) Run-time increase of a trivial extension

0
2

4
6

8

2

4

6

8

5

10

15

Number of obstaclesNumber of hosts

R
un

−
tim

e
in

cr
ea

se
 [%

]

(b) Reduced run-time increase with caching

Figure 5: Comparing the increase in run-time without (left) and with (right) caching for small networks with static obstacles.

notable difference is that the power received at some host is calcu-
lated in an IReceptionModel sub-class. For computing the received
power, the coordinates of the hosts need to be known, thus requir-
ing a modification of this interface.

4. IMPROVING RUN-TIME BY CACHING
This section investigates the increase in run-time caused by the

obstacle extension and introduces an effective caching strategy to
speed up simulations significantly. The time-consuming part of the
extension is the algorithm that checks for intersections, e.g. calc-
ObstacleDecrease() and getIntersectingObstacles() in our inte-
gration. These methods are called on two occasions.

1. When hosts or obstacles move, the connections must be up-
dated.

2. During transmission of a frame, the additional attenuation
caused by obstacles must be considered.

We first estimate the worst-case run-time for a network consisting
of n hosts and m obstacles.

Connections We need to check for all connections whether an
obstacle intersects or not. With n hosts there can be up to
1
2 n(n−1) connections, where 1

2 accounts for symmetry. For
every connection, m obstacles need to be checked for inter-
section, leading to a worst-case run-time of

1
2

mn(n−1) = O(mn2).

Transmission In a fully connected network, a host can transmit to
at most n− 1 other hosts. With m obstacles, the worst-case
run-time for a single host is

m(n−1) = O(mn).

We first investigate the increase in run-time of a trivial implementa-
tion where the test of intersection is executed whenever obstacles’
attenuation factors need to be queried. We define the increase g in
run-time by

g =
tenabled− tdisabled

tdisabled

a

m
ov

e

c

b

a

(a) Before moving

c

m
ov

e

a

ba

(b) After moving

Figure 6: All connections of a moving host (here host a) need to
be invalidated.

where tenabled denotes the run-time when the obstacle extension is
enabled and tdisabled when the extension is disabled. Figure 5(a)
shows the increase in run-time for varying numbers of hosts and
obstacles. We see that for very small networks (up to 8 hosts) with
few obstacles (up to 8) the increase can already be as high as 250 %.
Clearly, a trivial implementation is infeasible, so we discuss how an
efficient caching strategy can improve the run-time of the obstacle
extension.

We introduce a cache C for attenuation factors. This cache stores
for every connection HiH j the total attenuation of all obstacles in-
tersecting it (which may be zero). If the cache is valid, instead of
executing the intersection tests to compute aOB(i, j) given by (4),
the cached value C(i, j) is returned.

Unfortunately, the value stored in the cache is not valid forever.
If a host or an obstacle changes its position, the cache needs to
be invalidated. It is important to invalidate only those cache en-
tries which are affected by the movement. Otherwise, every move-
ment would invalidate the entire cache, leading to the worst-case
run-time of O(mn2) again. Therefore, we illustrate what caching
strategies can improve for moving hosts and obstacles.

Host moves Whenever a host moves, all its connections need to
be invalidated. Consider Figure 6 for an example. Host a
has two connections ab and ac which are both affected by
the move. An obstacle obstructs ab which after the move of
a becomes unobstructed. For ac, the situation is vice versa.
The connection bc is not affected since it does not involve
a. In general, the movement of some host causes all its con-
nections to be invalidated, whose number is at most n− 1.
Since for every connection all obstacles have to be checked,

−10 −5 0 5 10 15 20
10

−2

10
−1

10
0

Transmission power [dBm]

P
ac

ke
t e

rr
or

 r
at

e

No obstacles
Obstacle model (30 dB)
Obstacle model (∞ dB)
Log−normal shadowing

(a) Packet error rate

−10 −5 0 5 10 15 20
0

100

200

300

400

500

600

700

800

900

1000

Transmission power [dBm]

N
um

be
r

of
 c

ol
lis

io
ns

No obstacles
Obstacle model (30 dB)
Obstacle model (∞ dB)
Log−normal shadowing

(b) Number of collisions at host d

Figure 7: Evaluation of an opportunistic wireless network protocol that relies on sensing frames for coordinating transmissions. The
stochastic model fails to capture shielding effects, leading to better performance results than when the obstacle model is used (left).
Missing coordination due to shielding increases the number of collisions at the destination d dramatically (right).

the overhead of this strategy is only O(mn) as opposed to
O(mn2).

Obstacle moves An obstacle shielding two hosts from each other
obstructs their connection. When the obstacle moves, these
connections might become free and, thus, need to be inval-
idated. Unfortunately, there is no easy relation to identify
the connections that might become obstructed. If all connec-
tions would need to be checked, this again leaves us with a
run-time of O(mn2).

Figure 5(b) shows the increase in run-time when caching is used
and obstacles are static. Comparing to the previous results, now
with 8 hosts and 8 obstacles the run-time increase is only 15 % as
opposed to 250 % without caching. This indicates that caching is
vital for an efficient obstacle extension and developers should take
the effort in implementing it.

5. EVALUATION
The quality of the propagation model chosen for a simulation

significantly impacts the quality of its results and, when an inap-
propriate model is used, may lead to wrong conclusions. We now
illustrate the usefulness of the obstacle model by using an oppor-
tunistic protocol in a toy topology as an example.

5.1 A simple opportunistic protocol
Consider the topology shown in Figure 8(a) where hosts com-

municate on orthogonal channels that are separated in time. Host
a wants to send data to host d with host c as an intermediate hop.
The transmission of DATA frames must be acknowledged by the
receiver using ACK frames. Another host b in the vicinity of a, c,
and d can overhear frames between a and c. If b overhears DATA
from a but not the associated ACK from c, it retransmits DATA
in the hope that either c or d can decode it [6]. If d decodes, the
data has reached the final destination using an opportunistic trans-
mission via b. If d cannot decode, there is still a chance that the
opportunistic retransmission helped c to decode now and, thus, c
can continue the transmission to d. Overhearing the ACK frame is
essential for coordinating the transmission between b and c.

da

b

c

se
ns

in
g

xo
r

(a) Unobstructed

d

c

b

a

co
lli

si
on

(b) Obstructed

Figure 8: An obstacle in-between four hosts a, b, c, and d may
shield hosts a ↔ d and b ↔ c from each other, leading to colli-
sions at d due to missing coordination between b and c.

In presence of obstacles, this simple protocol suffers from in-
creased collisions. Refer to Figure 8(b) for an example where an
obstacle shields hosts a ↔ d and b ↔ c from each other. In this
case, the coordination fails. Assume that host c has successfully
decoded DATA from a and so did b. Now c will acknowledge it
and continue the transmission to d. In presence of the obstacle,
the ACK frame never reaches b, causing b to retransmit the DATA
frame as well since it must assume that c did not receive it. With
this failed coordination, a collision at host d is possible because the
DATA transmitted by c interferes with the DATA transmitted by b.
In fact, the correct reception of DATA at both b and c will, with-
out coordination, inevitably result in a collision at d and, thus, in a
packet error.

This behavior arises from the design of the protocol where broad-
casts are exploited for coordination. Unfortunately, if the perfor-
mance of such a protocol is evaluated using simple stochastic shad-
owing models (e.g. log-normal shadowing), the adverse effects of
shielding do not become obvious.

5.2 Performance results for both models
We evaluate the example protocol in a fading scenario. Fig-

ure 7(a) shows the end-to-end Packet Error Rate (PER) from host a
to d for varying transmission powers. Without any obstacle model
(i.e. aSH = aOB = 1) the PER constantly decreases when the trans-
mission power increases, showing best performance. With log-
normal shadowing enabled, more packets are lost due to higher

variations in received power. These additional losses are limited
within a constant offset as compared to the obstacle-less case, de-
pending on the standard deviation σ . Again, the PER diminishes
for high powers. However, using the obstacle extension with a
perfectly shielding (i.e. the attenuation is infinite) obstacle instead
causes almost all packets to be lost even for high transmission pow-
ers. This occurs because the number of collisions at d increases dra-
matically as shown in Figure 7(b). An infinite attenuation causes
a(i, j) = 0 and, thus, the SINR to become zero for any power Pi. No
coordination is possible between b and c and the protocol will fail
if both hosts receive the DATA frame. This especially happens at
high power when it is very likely that both b and c can sucessfully
decode DATA frames.

For medium transmission powers (0-10 dBm), the PER shows a
slight decrease. This is because the protocol works as intended if
only one intermediate hop, namely b or c but not both, receive data.
Then the other host remains silent and no coordination is needed.
This happens for medium powers when correct reception over both
ab and bc is unlikely, but as soon as both receive (with increasing
power), this inevitably results in a collision.

Even if the obstacle’s attenuation is finite (e.g. 30 dB), the PER
performance varies significantly as opposed to the log-normal shad-
owing model. As soon as the number of collisions increases, the
slope of the PER declines. But due to the finite attenuation, for
very high powers, the PER approaches that of the obstacle-less case
again.

6. RELATED WORK
Jardosh et al. [2] describe an obstacle mobility model that cap-

tures the effect of obstacles on the movement behavior of nodes and
on the obstruction of transmissions. They apply the same model of
obstacles, i.e. reducing the signal power when a transmitted signal
passes an obstacle. Unlike this work, they focus more on the suit-
ability of their mobility model in presence of obstacles rather than
on the propagation characteristics of the obstacle model compared
to stochastic models. Also, they do not discuss challenges of the
implementation, which we do thoroughly for OMNeT++.

In [4] we already envisioned this obstacle model to be imple-
mented for MiXiM, but due to the early state of that framework at
the time, no implementation was carried out and, consequently, no
performance measurements have been made. So the feasibility and
performance of the envisioned approach and its impact on protocol
evaluation is first shown in this paper.

7. CONCLUSION
By simulating a wireless network protocol with OMNeT++ we

have shown how simulation results are greatly dominated by the
propagation models used. Particularly, protocols that rely on carrier-
sensing for coordinating transmissions require a proper model of
shielding effects. Otherwise, the performance of such a protocol
may be overestimated in environments where shielding occurs.

The proposed obstacle model and its implementation in OM-
NeT++ is suitable for investigating such adverse effects while still
being simple enough to be efficient. The model is suitable to de-
scribe large-scale shielding effects, e.g. those caused by buildings,
but let alone cannot capture small-scale effects in the same way.
However, considering all details that influence propagation in the
smaller scale as realistic as possible, e.g. scattering, refraction, and
diffraction, requires raytracing-based simulations with a precise de-
scription of the propagation environment and impracticable run-
times. This is when stochastic models are still of value. In fact,
when our obstacle model for describing large-scale shielding ef-

fects is combined with stochastic models that describe the smaller
scale, both large-scale and small-scale effects can be adequately
reflected in simulations while still keeping complexity low enough
for simulating large networks in feasible amount of time.

We contribute our implementation to the OMNeT++ community
in the hope that with the availability of more sophisticated yet ef-
ficient models of the propagation environment, the existing frame-
works, e.g. the INET Framework, will become invaluable tools for
research on wireless network protocols that are open to anyone.

8. REFERENCES
[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.

Introduction to Algorithms. MIT Press, 2nd edition, 2001.
[2] A. P. Jardosh, E. M. Belding-Royer, K. C. Almeroth, and

S. Suri. Real-world environment models for mobile network
evaluation. IEEE J. Sel. Areas Commun., 23(3):622–632, Mar.
2005.

[3] D. Kotz, C. Newport, and C. Elliott. The mistaken axioms of
wireless-network research. Technical report, Dartmouth
College, July 2003.

[4] A. Köpke, M. Swigulski, K. Wessel, D. Willkomm, P. T. K.
Haneveld, T. Parker, O. Visser, H. S. Lichte, and S. Valentin.
Simulating wireless and mobile networks in OMNeT++: The
MiXiM vision. In Proc. 1st Intl. Workshop on OMNeT++,
Mar. 2008.

[5] H. S. Lichte and S. Valentin. Implementing MAC protocols
for cooperative relaying: A compiler-assisted approach. In
Proc. 1st Intl. Conf. on Simulation Tools and Techniques for
Communications, Networks and Systems (SIMUTools), Mar.
2008.

[6] H. S. Lichte, S. Valentin, H. Karl, I. Aad, L. Loyola, and
J. Widmer. Design and evaluation of a routing-informed
cooperative MAC protocol for ad hoc networks. In Proc. Ann.
Joint Conf. of the IEEE Computer Societies (INFOCOM),
Apr. 2008.

[7] T. Pawlak and S. Valentin. Chsim – a wireless channel
simulator for OMNeT++. Project website
wwwcs.upb.de/cs/chsim, 2005.

[8] T. S. Rappaport. Wireless Communications – Principles and
Practice. Prentice Hall, 2nd edition, 2002.

