
Enabling OMNeT++-based Simulations on Grid Systems
M. Kozlovszky

MTA SZTAKI
Victor Hugo u. 18-22, H-1518,

P.O.Box 63., Budapest, Hungary
+36-1-2796072

m.kozlovszky@sztaki.hu

A. Balasko
MTA SZTAKI

Victor Hugo u. 18-22, H-1518,
P.O.Box 63., Budapest, Hungary

+36-1-2796072
balasko@sztaki.hu

A. Varga
OpenSim Ltd.
6] O N|]���

H-1032 Budapest, Hungary
+36 1 3882763

andras@omnetpp.org

ABSTRACT
Simulations are typically computationally intensive problems, and
lend themselves for execution on large-scale PC clusters or grids.
Using grid infrastructure for discrete event simulation is currently
not prevalent, but making grid technology easily accessible to
simulation users can change that picture significantly. In this
paper we give a detailed overview how the OMNeT++ simulation
framework was ported onto a gLite-based grid infrastructure. The
porting of the simulation framework to the grid infrastructure was
supported by the GASUC Team of the EGEE III project. Later on
in the paper we show an example grid service which is able to
execute queuing network simulations, and assess its performance
on the grid.

General Terms
Algorithms, Performance, Design.

Keywords
Grid, OMNeT++ simulation framework, gridification, grid
infrastructure

1. INTRODUCTION
Distributed computer environments are using different
technologies to coordinate their resources, such as processing
power, job scheduling, and storage consumption. Porting legacy
applications onto grid infrastructures is called "gridification".
Porting the OMNeT++[1] framework to grid is useful for users
running simulations with large-scale Parameter Studies (PS).
Speeding up simulations with large parameter studies can be done
by launching the applications on large computer farms. Potential
users or beneficiary community of the grid-enabled application
can be anyone running simulations with large parameter studies
(the total execution time should be well over a few hours for a
user to feel the need for grid; for example, when one simulation
run takes 10 minutes and 60 runs are needed for a study, that’s

enough incentive to put in that extra effort needed for grid
execution).

1.1 OMNeT++
OMNeT++ is a public-source, component-based, modular,
discrete event simulation environment. Due to its strong GUI
support and embeddable simulation kernel it is frequently used for
simulation of communication networks, IT systems, queuing
networks and for various business processes. OMNeT++ provides
mainly component architecture for models. Components
(modules) are programmed in C++, and then assembled into larger
compound models using a high-level language (NED). OMNeT++
supports different platforms, such as Linux, various Unix-like
systems and Windows (XP and 2000).

1.2 Related efforts
There have been several related efforts to exploit the computing
power of clusters or grids for running simulations.

Remote OMNeT++[11][12] is a now discontinued effort for
distributing simulations onto remote processing hosts; the
software was built on Java technology. A Remote OMNeT++
system is composed of Clients with GUI to control models and
simulation runs of a user, of Processing Hosts to execute the
simulations, and of Data Warehouses to store simulation models
and results.

Akaroa-2 [10] is an implementation of the MRIP (Multiple
Replications In Parallel) principle, which can be used to speed up
steady-state simulations. Akaroa runs multiple instances of the
same simulation program (but with different seeds)
simultaneously on different processors, e.g. on nodes of a
computing cluster, and a central process monitors certain output
variables of the simulation. When Akaroa decides that it has
enough observations to form an estimate of the required accuracy
of all variables, it halts the simulation. When using n processors,
simulations need to run only roughly 1/n times the required
sequential execution time. Support for Akaroa is integrated into
OMNeT++ [9] and is also available for ns-2 and Ptolemy Classic.

RSerPool (Reliable Server Pooling) [7] is an IETF protocol for
server pool management and access, and it can also help in
exploiting multiple computers for running simulations. The
SimProcTC toolchain [8] provides scripts and makefiles for
distributing OMNeT++ simulations to remote hosts for execution.
SimProcTC uses an RSerPool implementation to find processing
hosts (PE) that are suitable for running simulations, then proceeds
to upload a tarball containing the simulation files (binaries plus

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
OMNeT++ 2009, Rome, Italy.
Copyright 2009 ICST, ISBN 978-963-9799-45-5.

data files) onto them. The tarball gets unpacked into /tmp, then a
control script runs the simulation, and finally the result files are
retrieved. Parallelism is achieved via using make –j on the client
computer.

Apple’s Xgrid technology [23] makes it possible to turn an ad hoc
group of Mac OS X systems into a grid environment. Seggelmann
et al [6] show how to exploit Xgrid installations for running
OMNeT++ simulations. Xgrid’s advantage is that it offers a real
grid environment, it can be set up with low effort, and it provides
both a graphical and a command-line interface to submit and
monitor jobs.

Paper [13] describes running ns-2 [26] simulations on a grid
system. However, it seems like an isolated effort which received
little attention.

1.3 Grids
Grid computing differs from conventional cluster computing
systems by its heterogeneous, loosely coupled and geographically
dispersed infrastructure. There are two major grid infrastructure
development directions: service grids and desktop grids. Desktop
grids are built on the concept of best effort, and are often based on
Boinc [27] or XtremWeb [30] technologies (examples:
SETI@Home [28] and EDGeS [29]); service grids provide a 24/7
computing service. Service grid infrastructures are potentially
more suitable for running large-scale discrete event simulations.

One service grid example is EGEE (Enabling Grids for E-
sciencE), the largest multi-disciplinary grid infrastructure in the
world, which brings together more than 140 institutions to
produce a reliable and scalable computing resource available to
the European and global research community. At present, it
consists of approximately 300 sites in 50 countries and gives its
10,000 users access to 80,000 CPU cores around the clock.

Another large-scale grid is operated by the SEE-GRID-SCI (SEE-
GRID eInfrastructure for regional eScience) project, which spans
across 14 countries with 35 sites and 3000 CPUs. Other pan-
European grid efforts include GRIDSTART, DAMIEN,
DATAGRID, EUROGRID, CROSSGRID and DATATAG. In
addition, several universities and research institutes operate
specialized grids, and clusters running grid software; one example
is the LHC Computing Grid [18].

Grid systems are composed of a set of integrated services: job
queueing, scheduling policy, priority scheme, resource discovery
and monitoring, resource management, data storage and
management, security, user authentication and credentials
management. Grid software places user-submitted jobs into a
queue, chooses when and where to run the jobs based upon a
policy, carefully monitors their progress, and ultimately informs
the user upon completion.

Grid systems run various grid software packages. The Globus
Toolkit [16], EGEE gLite [17], ARC (aka. NorduGrid
middleware) [19], Sun Grid Engine [20], Condor [21] are all
open-source, widely deployed grid middleware packages,
themselves usually composed of several other, more fundamental
service components. Deploying these toolkits on a set of
computers usually requires substantial time and administrative
skills.

Real-world adoption of grids is hindered by several factors. First,
grid middleware functionality is most often exposed in the form of

complex command-line interfaces, which poses challenges to
average grid users who are used to point-and-click graphical user
interfaces. Second, the command interfaces of different grid
middleware packages differ significantly, so experience with one
grid does not immediately help with another. Third, users have to
get a login individually for each of the grids they intend to use.

Portal software solutions with web based easy-to-use user
interface (such as the P-GRADE Grid Portal) have been
developed to address the above issues and to help grid adoption.

1.4 P-GRADE Grid Portal
The P-GRADE Grid Portal (Parallel Grid Run-time and
Application Development Environment) [4][14][15] is an open
source, service-rich, workflow-oriented graphical grid front-end.
It supports workflows composed of sequential jobs, parallel jobs
and application services. The P-GRADE Portal hides the
complexity of the grids through its high-level graphical web
interface, and it can be used to develop, execute and monitor
workflow applications on grid systems built with Globus, EGEE
(LCG or gLite) and ARC middleware technologies. P-GRADE
Portal installations typically provide the user with access to
several grids, using a single login.

More than ten large-scale P-GRADE Portals are operating and
serving the user communities of international multi-institutional
grids and grid based virtual organizations in Europe and in the
U.S. The list of these installations and information on how to get
user accounts to the corresponding portals is available on the P-
GRADE Portal website [14].

Non-grid applications need to be "gridified" for use with P-
GRADE Portal. The gridification process includes developing a
specialized web interface extension to P-GRADE Portal,
specifically tailored for the application’s needs. Sections 2 and 4
of this paper describe the gridification process of OMNeT++
queueing simulations. Section 5 presents the resulting web
interface where users can submit simulations and download the
results.

1.5 The GASuC Team
The gridification of OMNeT++ simulations was done by the
GASuC team at MTA SZTAKI, Hungary. GASuC (Grid
Application Support Centre) is supported by the EGEE III
project1, provides assistance to grid users and application
developers during the application gridification process. GASuC
helps identify and apply best patterns, practices, tools and
infrastructures in order to decrease the porting time and get
application code running on production grids. The generic support
model of GASuC consists of 8 main steps: 1. Contact phase, 2.
Pre-selection phase, 3. Analysis phase, 4. Planning phase, 5.
Prototyping phase, 6. Testing phase, 7. Execution phase, 8.
Dissemination and feedback phase. In case of OMNeT++, these
phases were extended with more contacts during analysis and
planning phases.

1 EGEE-III is an FP7 project funded by the European
Commission under contract INFSO-RI-222667.

1.5.1 Workflow concept of the P-GRADE Portal
The P-GRADE Grid Portal environment is using a DAG (directed
acyclic graph) based workflow concept (shown in Figure 1).

In a generic workflow, nodes (shown in Figure 1. as large gray
squares) represent jobs, which are basically batch programs to be
executed on a computing element. Ports (shown here as small
squares around the large ones) represent input/output files the
jobs receiving or producing. Arcs between ports represent file
transfer operations. The basic semantics of the DAG-based
workflow is that a job can be executed if and only if all of its
input files are available.

Figure 1. Example workflow in P-GRADE Portal.

1.5.2 Parameter Study support in P-GRADE Portal
In our experience, user communities have shown substantial
interest in being able to run programs parallel with different input
files. P-GRADE Portal supports this kind of parallelization called
Parameter Study, or Parameter Sweep on a high level.

The original “job” idea has been extended by two special jobs
called Generator and Collector to facilitate the development of
Parameter Study type workflows in P-GRADE Portal. The
Generator job is used to generate the input files for all parallel
jobs automatically (called Automatic Parameter Input Generator),
or by a user-uploaded application (called Normal Generator),
while the Collector will run after all parallel execution and
collects all parallel outputs [5].

All jobs connected to a Generator will run in as many instances as
input files generated by the Generator. During the gridification of
OMNeT++ simulations, we have exploited these possibilities of
the P-GRADE Portal.

2. Gridification process
Main steps of the gridification process are shown on Figure 2. The
compilation of the source code on the UI machine assures that the
application will work on all the gLite-based Computing Elements
in the grid infrastructure. Standalone, single run tests showed that
we need to have the compiled binary code, the predefined NED
and INI files as inputs for the porting of the simulation into a grid
workflow.

We have also investigated the time and storage consumption and
running environment requirements (e.g. shared libraries:
libstdc++) of the simulator. For the first grid tests (single job
tests), we have written a JDL (Job Description Language) file and
created the workflow graph of the simulation in the P-GRADE
Portal environment. The parallel job submission into the grid
environment needs to have parameter assignment of the generated
parameters. P-GRADE Portal’s PS workflow components and
OMNeT++’s parameter study solution (a detailed description
about the PS handling in OMNeT++ follows in Section 3.) were
integrated together to create a grid-aware OMNeT++ simulator
environment and to realize a complex grid workflow as a proof of
concept. Later on, we have developed the web-based grid user
interface for OMNeT++ simulator framework with the help of the
Application Specific Module of the P-GRADE portal. On this
web interface, end-users can upload their network topology and
configuration files for queuing network simulations, and they can
submit the simulation into the grid environment with large
parameter fields.

Figure 2. Gridification steps of the simulator.

3. Parameter Study handling in OMNeT++
3.1 Overview
In a simulation study, we create a simulation model, then perform
experiments on it in order to learn about its behavior under
various conditions. OMNeT++ emphasizes separation of
concerns, which in this case means that the model and its input
parameters are in physically separate files. The simulation model
is represented by C++ code (and the libraries/executables built
from them) and NED files describing the topology and fixed
parameters. Input parameters for the experiments are in INI files,
which also contain configuration settings for the simulator.

In the OMNeT++ 4.0 version, an INI file (the default name is
omnetpp.ini) may contain several named configurations. Every
named configuration contains parameter assignments, each of
which typically sets more than one model parameters, using
wildcards (i.e. **.tcp.mss=1024 sets the MSS parameter for all
TCP instances in the model). Named configurations may also
contain simulator settings (stopping condition, seeds, etc), and
they can also inherit from each other which makes it possible to
factor out common parts. For every simulation run, a named
configuration needs to be specified where all parameters and
settings will be taken from.
A named configuration may also contain iterations and
repetitions, to support parameter studies. Thus, a configuration
may describe several simulation runs. They are identified with run
numbers, in the range 0..n-1. Each run may be executed
independent of the others. To perform a specific run, the user has
to tell the configuration name and the run number to the
simulation runtime, typically via command-line arguments. The
simulation runtime may also be asked about the number of runs a
particular configuration generates, or to enumerate the settings for
each run.
By default, result files will be created in the result/ subdirectory of
the simulation. Each run generates separate files, by default
named after the configuration and the run number. Result files are
self-describing, and contain enough metadata so that later it can
be identified how they were created.
Every run also gets a globally unique identifier, called a run ID,
concatenated from the configuration name and run number,
date/time, process ID, etc.2 Run IDs are also recorded into the
files, and can be used (for example) to relate different files created
by the same run.

3.2 Iterations
The value part of a parameter assignment in the INI file may
contain iterations. Syntax of an iteration is ${valuelist} or
${name=valuelist}, where valuelist is a comma-separated list of
values, and value is some arbitrary text (typically a numeric
constant). There is also a shorthand for generating numeric
sequences, with the syntax start..end or start..end step increment.
Each value generates a separate simulation run, where the value
gets textually substituted into the parameter assignment before the
parameter value gets interpreted.3 If there is more than one
iterations in a named configuration, they are combined with
Cartesian product, i.e. they essentially form nested loops. It is also
possible to specify a constraint expression, to take a subset of the
Cartesian product. In the constraint expression, one can refer the
current iteration values with the syntax ${name} or $0, $1, etc.
This iteration variable syntax also makes it possible to refer to an
iteration value in parameter assignments other than which defined
it.

2 Run IDs are only globally unique within reasonable limits,
because we held it more important that they are both short and
readable.

3 This macro-style implementation was chosen because in
OMNeT++ it would be impractical to iterate over individual
parameters directly, given that each parameter assignment in an
INI file typically assigns several parameters together, using
wildcard expressions. Macros also provide more flexibility,
much in the same way as C macros can do things not possible
with C functions.

A special parallel iteration syntax makes it also possible that an
iteration does not form a Cartesian product with another iteration,
but gets advanced in lockstep with it. Given the iterations
${N=10,20,50,100} and ${D="low","medium","high","veryhigh"
! N}, four simulation runs will be generated, with N and D being
(10,"low"), (20,"medium"), (50,"high"), and (100,"veryhigh").
There are also predefined variables: ${configname},
${runnumber}, ${runid}, ${datetime}, ${processid}, etc. They can
be useful for generating file names, for example.

3.3 Repeating runs with different seeds
It is directly supported to perform several runs with the same
parameters but different random number seeds. There are two
configuration options related to this: repeat and seed-set. The first
one specifies how many times a run needs to be repeated. For
example, repeat=10 causes every combination of iteration
variables to be repeated 10 times, with the ${repetition}
predefined variable being the loop counter; thus, repeat=10 is
essentially equivalent to adding ${repetition=0..9} to the ini file.
The ${repetition} loop always becomes the innermost loop.
The seed-set configuration option affects seed selection. Every
simulation uses one or more random number generators (as
configured by the num-rngs option), for which the simulation
kernel can automatically generate seeds. The first simulation run
may use one set of seeds (seed set 0), the second run may use a
second set (seed set 1), and so on. All automatic seeds generate
random number sequences that are far apart in the RNG’s cycle, so
they will never overlap during simulations. (OMNeT++ uses
Mersenne Twister, which has a cycle length of 219937.)

3.4 How to run
To run a parameter study expressed with iterations as described
above, one first needs to find out how many runs the iterations
unroll to. This is achieved by running the simulation executable
with the –x <configname> command-line option, which in turn
prints out the n number of runs in the given named configuration.
Individual runs can then be executed by running the simulation
program with the –c <configname> -r <runnumber> options,
where runnumber is an integer in the 0..n-1 range. The fact that
each run can be executed independently enables them to be
submitted to grids as well. Output files will be named after the
configuration and the run number (although this is configurable as
well).

3.5 Experiment-measurement-replication
OMNeT++ uses the concepts experiment, measurement and
replication to organize simulation results generated by batch
executions or several batches of executions. During a simulation
study, a person prepares several experiments. The purpose of an
experiment is to find out the answer to questions like "how does
the number of nodes affect response times in the network?" By
default, an experiment is represented by a named configuration in
the ini file, but it is also possible to group several configurations
into a single experiment. For each experiment, several
measurements are performed on the simulation model, and each
measurement runs the simulation model with a different parameter
settings. To eliminate the bias introduced by the particular random
number stream used for the simulation, several replications of
every measurement are run with different random number seeds.
Measurements map to iteration variables in the ini file, and
replications map to the repeat option.
In order to make result analysis tools aware of the above concepts,
OMNeT++ saves an experiment label, measurement label and

replication label into result files. The labels can be configured in
the ini file, but the suitable defaults are "${configname}",
"${iterationvars}" and the "#${repetition}, seed-set=<seedset>"
text.

4. Grid workflow structure
The grid-aware queuing model workflow was developed using the
P-GRADE Portal’s Workflow Editor. A simple queuing model
diagram (Tandem Queue) is depicted in Figure 3.

Figure 3. Simple queuing model diagram from OMNeT++

To enable the execution of the model as a parameter study
application, we have used the "Automatic Parameter Input
Generator", and the “Collector” elements of the P-GRADE Portal.

Figure 4. The resulting workflow diagram with PS support in
the P-GRADE Portal’s Workflow Editor

The upper left box (shown in Figure 4.) is the Automatic
Parameter Input Generator job, which automatically generates
index numbers, and separates the runs by providing instructions
which run should be executed. The generated indices become
arguments to the –r <runnumber> command-line option of the
OMNeT++ simulation executable. This job takes little CPU time,
so it always runs on the machine where the P-GRADE Portal was
installed.

The second box in the middle contains the application in the form
of a pre-compiled binary, the input parameter and topology files
(INI and NED files) and some additional libraries. This box will

be executed in parallel on different machines, once for each of the
index files generated by the Parameter Input Generator. These
processes perform the simulations, and produce OMNeT++ vector
and scalar result files. The result files are collected by the third,
“Collector” box (lower right). At the end of the workflow, the
Collector job automatically compresses the results, and enables
users to download the compressed file for further user analysis.
The user interface has an additional feature that users can
download a part of the output files during the execution.

This workflow structure is fully hidden from the end-users by a
web-based user interface.

5. User interface development for grid-aware
OMNeT++ models
We have created an easy-to-use service on the web for queuing
model simulations. On this web interface end users, who are not
grid professionals, are able to upload their configuration and
topology files, setup and submit their model into the grid
infrastructure. (In this setup, the end user cannot access and
change the compiled binary.) The results produced by the
submitted simulations are downloadable by normal web browser
when they are finished. The developed web-based (portlet) user
interface has three main views:

• The “OMNeT++ Measurement Manager” portlet.
This is where the end user can choose among the available
OMNeT++-based model workflows (shown in Figure 5).

Figure 5. OMNeT++ Measurement Manager portlet

• The “Upload inputs” portlet.
This is where the end user can upload the queuing topology
(NED) and configuration parameter (omnetpp.ini) files, and select
the indexes or interval of indexes to run (shown in Figure 6).

Figure 6. Upload inputs portlet

• The „Execution and download” portlet.
This is where the end user can execute the model by a single
button (which means basically a complex workflow submission
procedure into the grid infrastructure) with its parameter field.
(shown in Figure 7).

Figure 7. Execution and Download portlet

As the output files are generated in parallel during the execution,
users can download them by clicking “Download” button. It is
also possible to download the (partial set of) result files while
some jobs are still running or waiting for execution.

6. Performance
The EGEE[24] and SEE-GRID-SCI[25] grids were used for
submission of the developed workflow model. We have used
several times a simple queuing model to test our porting concept.
In our largest parameter study demo, the simulation time of the
used queuing model was only 1 minutes, however the parameter
field of the model generated 5000 “runs”, which would last about
80 hours to execute on a single average computer . We have
clustered the runs with the help of the “Automatic Parameter
Input Generator“ into smaller (100-run) chunks, and submitted the
model into the grid infrastructure.
The grid broker allocated 50 computers for these chunks from the
grid as it was requested. The results of the parallel grid
submissions were available after 3 hours, instead of 3.5 days.
Each running generated 25-225 kBytes of data (the compressed
sca files), size of the final output was about 6MB.

7. Future plans
Future plans include allowing for arbitrary OMNeT++ simulations
to be run on the grid. When the user's simulation is built
exclusively from unmodified components of a published model
framework (for example the INET Framework), the corresponding
binaries and NED files would already be pre-deployed on the grid
and the user would only have to upload the network NED file(s)
and INI files to run the simulation.

In the more common case when the user's simulation involves
nonstandard components or C++ code modifications, the user will
need to get access to the official P-GRADE Portal, and will need
to have a certificate for running applications in the grid
environment. Then the user has to develop the workflow, and a
compiled OMNeT++ simulation model has to be included into it.
Finally the user can use all of features of P-GRADE Portal to run
and manage the simulation.

8. Conclusion
We have successfully integrated the P-GRADE Grid Portal
environment with the OMNeT++ simulation framework to enable
additional, already existing, large-scale grid resources to the
simulation user community. We have used the parameter study
features from both (P-GRADE Portal and OMNeT++)
environments to create a generic workflow solution for
OMNeT++-based simulation models. We have shown that large-
scale grid infrastructure can provide significant performance
increase for OMNeT++-based simulations. As a proof of concept,

we have created from the developed queuing workflow a web-
based service, where a configurable queuing model can be
submitted by the end-user into the grid infrastructure without any
grid knowledge. If the developed workflow and the service
solution can grow beyond the concept phase, they have the
potential to become a useful tool for developers and end-users of
simulations.

9. REFERENCES
[1] OMNeT++ Home Page. Retrieved from:

http://www.omnetpp.org [accessed on November9, 2008]

[2] A. Varga. 2001. The OMNeT++ Discrete Event Simulation
System. European Simulation Multiconference (ESM2001).
June 2001.

[3] A. Varga, R. Hornig. 2008. An Overview of the OMNeT++
Simulation Environment. First International Conference on
Simulation Tools and Techniques for Communications,
Networks and Systems (SIMUTools 2008). March 2008.

[4] Cs. Nemeth, G. Dozsa, R. Lovas, P. Kacsuk. The P-GRADE
Grid Portal. ICCSA 2004: International Conference Assisi,
Italy, LNCS 3044, pp. 10-19

[5] P. Kacsuk, Z. Farkas; G. Herman. Workflow-level parameter
study support for production grids. Computational science
and its application - ICCSA 2007. International conference.
Part III. Kuala Lumpur, 2007. (Lecture notes in computer
science 4707.),: 2007.: Berlin, ISBN: 978-3-540-74482-5,
pp. 872-885.

[6] R. Seggelmann, I. Rüngeler, M. Tüxen, E. P. Rathgeb. 2009.
Parallelizing OMNeT++ simulations using Xgrid. 1st
International Workshop on OMNeT++ (OMNeT++ 2009),
March 2009.

[7] T. Dreibholz and E. Rathgeb. Reliable Server Pooling, A
Novel IETF Architecture for Availability-Sensitive Services.
Proceedings of the 2nd IEEE International Conference on
Digital Society (ICDS), February 2008.

[8] T. Dreibholz and E. Rathgeb. A Powerful Tool-Chain for
Setup, Distributed Processing, Analysis and Debugging of
OMNeT++ Simulations. 2nd International Workshop on
OMNeT++ (OMNeT++ 2008), March 2008.

[9] OMNeT++ User Manual Version 3.2. Retrieved from:
http://www.omnetpp.org/doc/manual/usman.html.

[10] G. Ewing, K. Pawlikowski, D. McNickle. Akaroa2:
Exploiting Network Computing by Distributing Stochastic
Simulation. Proc. European Simulation Multiconference
(ESM’99), Warsaw, International Society for Computer
Simulation, June 1999, pp. 175-181

[11] M. Erdei, A. Wagner, K. Sója, M. Székely. Networked
Remote Simulation Architecture and its Remote OMNeT++
Implementation. European Simulation Multiconference
(ESM 2001), June 2001.

[12] A. Wagner, M. Erdei. Agent-Based Resource Management
for Remote Simulation Systems and an Implementation for
Remote OMNeT++. European Simulation Multiconference
(ESM 2001), June 2001.

[13] A. Menychtas, D. Apostolopoulos, D. Kyriazis, K.
Christodoulopoulos, H. Avramopoulos and T. Varvarigou.

Enabling a Network Simulation Application on Grid
Infrastructure. 11th Panhellenic Conference in Informatics
(PCI 2007), May 2007.

[14] P-Grade Grid Portal. http://portal.p-grade.hu [accessed
January 15, 2009]

[15] Sourceforge.net: P-Grade Grid Portal.
http://sourceforge.net/projects/pgportal [accessed January
15, 2009]

[16] The Globus Toolkit. http://www.globus.org/toolkit/ [accessed
January 15, 2009]

[17] EGEE gLite: Lightweight Middleware for Grid Computing.
http://glite.web.cern.ch [accessed January 15, 2009]

[18] Worldwide Large Hadron Collider Computing Grid.
http://lcg.web.cern.ch/LCG [accessed January 15, 2009]

[19] NorduGrid middleware, the Advanced Resource Connector.
http://www.nordugrid.org/middleware [accessed January 15,
2009]

[20] Sun Grid Engine. http://gridengine.sunsource.net [accessed
January 15, 2009]

[21] Condor Project. http://www.cs.wisc.edu/condor[accessed
January 15, 2009]

[22] SEE-GRID eInfrastructure for regional eScience.
http://www.see-grid-sci.eu [accessed January 15, 2009]

[23] Xgrid, the simple solution for distributed computing.
http://www.apple.com/acg/xgrid [accessed January 15, 2009]

[24] EGEE website http://www.eu-egee.org/ [accessed January
15, 2009]

[25] SEE GRID website. http://www.see-grid.org/ [accessed
January 15, 2009]

[26] Ns-2 website. http://www.isi.edu/nsnam/ns/ [accessed
January 16, 2009]

[27] D. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D.
Werthimer. Seti@home: An experiment in public resource
computing. Communications of the ACM, 45(11):56–61,
November 2002.

[28] D. P. Anderson. Boinc: A system for public-resource
computing and storage. In Proc. of 5th IEEE/ACM
International Workshop on Grid Computing, Pittsburgh,
USA, November 2004.

[29] EDGeS website http://www.edges-grid.eu/ [accessed January
15, 2009]

[30] XtremWeb website http://www.xtremweb.org/ [accessed
January 15, 2009]

[31] GASuC website http://www.lpds.sztaki.hu/gasuc/ [accessed
January 15, 2009]

