
Trace-driven Co-simulation of High-Performance
Computing Systems using OMNeT++

Cyriel Minkenberg
IBM Zurich Research Laboratory

Säumerstrasse 4
8803 Rüschlikon, Switzerland

sil@zurich.ibm.com

Germán Rodriguez Herrera
IBM Zurich Research Laboratory

Säumerstrasse 4
8803 Rüschlikon, Switzerland

rod@zurich.ibm.com

ABSTRACT
In the context of developing next-generation high-perfor-
mance computing systems, there is often a need for an “end-
to-end” simulation tool that can simulate the behaviour of
a full application on a reasonably faithful model of the ac-
tual system. Considering the ever-increasing levels of paral-
lelism, we take a communication-centric view of the system
based on collecting application traces at the message-passing
interface level. We present an integrated toolchain that en-
ables the evaluation of the impact of all interconnection net-
work aspects on the performance of parallel applications.
The network simulator, based on OMNeT++, provides a
socket-based co-simulation interface to the MPI task simu-
lator, which replays traces obtained using an instrumenta-
tion package. Both simulators generate output that can be
evaluated with a visualization tool. A set of additional tools
is provided to translate generic topology files to OMNeT’s
ned format, import route files at run time, perform rout-
ing optimizations, and generate particular topologies. We
also present several examples of results obtained that pro-
vide insights that would not have been possible without this
integrated environment.

Keywords
High-performance computing, interconnection network, PDES.

1. INTRODUCTION
The design of high-performance computing (HPC) sys-

tems relies to a large extent on simulations to optimize the
various components of such a complex system. To evaluate
processor performance, tools such as MAMBO [1] or SIMICS
[2] are used, which can perform cycle-accurate simulations
of entire applications at the instruction level. However, such
a level of detail prevents scaling of this type of simulation
to systems with more than a handful of processors.

The interconnection network of a HPC system is usu-
ally modelled at a higher level of abstraction, resorting to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OMNeT++ 2009, Rome, Italy.
Copyright 2009 ICST, ISBN 978-963-9799-45-5.

discrete-event simulation to enable scaling to systems with
hundreds or thousands of network ports. The purpose of in-
terconnection network simulation is to optimize the network
topology, switch and adapter architectures and parameters,
scheduling and routing policies, link-level flow control mech-
anism, and end-to-end congestion control mechanism. This
type of simulation is commonly of the“Monte Carlo”variety,
i.e., applying a synthetically generated workload with ran-
dom destination and interarrival-time distributions, rather
than the load from a real application.

Although such simulations are useful in determining load–
throughput and load–delay characteristics, they are not nec-
essarily a reliable performance indicator for the communi-
cation phases of specific applications. Therefore, we have
the situation that instruction-level processor simulation, al-
though accurate, does not scale to the desired system sizes,
whereas interconnect simulation does scale, but suffers from
unrealistic stimuli. This gap needs to be bridged to enable
true end-to-end full-system simulation.

One class of approaches to bridge this gap employs trace-
driven simulation. Instead of by an exact model of their
behavior, computing nodes are represented by a trace that
contains two basic kinds of records, namely computation and
communication. Computations are not actually performed,
but simply represented by the amount of CPU time they
would consume in reality. Communications are transformed
into data messages that are fed to a model of the intercon-
nection network. To ensure accurate results, the simula-
tion should preserve causal dependencies between records,
e.g., when a particular computation depends on data to be
delivered by a preceding communication, the start of the
computation must wait for the communication to complete.
As many scientific HPC applications are based on the Mes-
sage Passing Interface (MPI), tracing MPI calls is a suitable
method to characterize the communication patterns of an
important class of HPC workloads. An example of this ap-
proach is the MARS simulator presented in [3].

The simulation framework described here is the result of
joint project between the Barcelona Supercomputer Cen-
ter (BSC) and IBM, in which a follow-on machine to the
currently installed MareNostrum system is being designed
under the working title of MareIncognito. MareNostrum is
a 2,560-node cluster of IBM JS21 blades, each having two
dual-core IBM 64-bit PowerPCr 970MP processors running
at 2.3 GHz for a total of 10,240 CPUs. The computing
nodes are interconnected by means of a high-bandwidth,
low-latency Myrinetr network [5], with each blade having
one integrated Myrinet adapter. The switch fabric com-

prises ten 512-port and two 1280-port Myrinet switches ar-
ranged in a two-level fat-tree topology. However, as these
switches are constructed internally using 32-port switch el-
ements (again arranged in a fat-tree topology), the network
really has five levels. The nodes are also connected to a
Gigabit Ethernet local area network. MareNostrum has 20
TB of RAM and 280 TB of external disk storage. Peak
performance with respect to the LINPACK benchmark is
94.21 teraflops, which ranked it as the world’s 26th fastest
supercomputer on the Top500 list of June 2008.

Several teams at IBM and BSC are cooperating on key as-
pects of the design of MareIncognito, including applications,
programming models, tools, load balancing, interconnection
network, processor, and system modeling. This paper de-
scribes part of the effort responsible for the design of the
interconnection network.

The remainder of this paper is organized as follows. In
Sec. 3 we describe the existing BSC tools Dimemas and Par-
aver and the IBM interconnection network simulator MARS.
Section 4 explains how we integrated these tools to form a
co-simulation platform for MPI applications using realistic
interconnection network models. Section 5 provides exam-
ples of the type of new insights that this new environment
can help generate. Finally, we conclude in Sec. 6.

2. INTERCONNECTION NETWORK
The role of the interconnection network in scientific as

well as commercial computer systems is of increasing im-
portance. The underlying trend is that the growing demand
for computing capacity will be met through parallelism at
the instruction, thread, core, and machine levels.

The scale, speed, and efficiency of interconnects must grow
significantly, because of (i) increasing parallelism, (ii) the re-
placement of computer busses by switched networks, (iii)
consolidation of heterogeneous communication infrastruc-
ture (storage area, local area, and clustering networks; IO
and memory busses) onto a single physical network, and (iv)
virtualization of computing resources that leads to increased
variability and unpredictability in the network load.

As neither busses nor legacy LAN/WANs can meet all
datacenter and HPC requirements—notably low latency, high
bandwidth, high reliability, and low cost—a number of net-
working technologies designed specifically for the datacenter
environment have emerged. Examples are Fibre Channel,
commonly employed in storage area networks, Myrinet [5]
and QsNet (Quadricsr), used for low-latency, high-bandwidth
inter-process communication in HPC or clustering environ-
ments, and InfiniBand, designed as a comprehensive data-
center interconnect.

A consequence of these trends is that the interconnection
network is becoming a more significant factor in both the
overall system performance and the overall system cost. Ac-
cordingly, it is receiving more attention in the modelling of
such systems to determine the optimum cost-performance
trade-off. This is not possible without a detailed, faithful
representation of all aspects pertaining to the network.

3. TOOLS
To perform a detailed performance analysis of parallel pro-

grams, BSC developed a simulation tool, Dimemas, and a
visualization tool, Paraver. To study the performance of in-
terconnection networks, IBM developed a tool referred to as

the MPI Application Replay network Simulator (MARS) [3].
As these tools form the basis of our work, we briefly describe
them below.

3.1 Dimemas
Dimemas is a tool developed at BSC to analyze the perfor-

mance of message-passing programs. It is an event-driven
simulator that reconstructs the time behavior of message-
passing applications on a machine modelled by a set of per-
formance parameters.

The input to Dimemas is a trace containing a sequence of
operations for each thread of each task. Each operation can
be classified as either computation or communication. Such
traces are usually generated by instrumenting an MPI ap-
plication, although they can also be generated synthetically.
During instrumentation, each computation is translated into
a trace record indicating a “busy time” for a specific CPU,
whereas the actual computation performed is not recorded.
Communication operations are recorded as send, receive, or
collective operation records, including the sender, receiver,
message size, and type of operation.

Dimemas replays such a trace using an architectural ma-
chine model consisting of a network of SMP nodes. The
model is highly parametrizable, allowing the specification of
parameters such as number of nodes, number of processors
per node, relative CPU speed, memory bandwidth, mem-
ory latency, number of communication buses, communica-
tion bus latency, etc. Dimemas outputs various statistics as
well as a Paraver trace file.

3.2 Paraver
Paraver is a tool, also developed at BSC, to create visual

representations of the behavior of parallel programs. One of
the outputs of Dimemas is a Paraver trace that represents
the state of each thread at every time during the simula-
tion, all communications between threads, and occurrences
of punctual events.

A Paraver trace is a series of records, each one being as-
sociated with a specific thread. There are three basic kinds
of records: A state record specifies the state of a particu-
lar thread in a particular time interval. A communication
record specifies a point-to-point communication between two
threads, including the physical and logical start and end
times, the size of the communication, and a tag. An event
record specifies the occurrence of particular event at a par-
ticular thread, including the type of event, the time of oc-
currence, and an associated value.

Although Paraver was developed to analyze the perfor-
mance of parallel programs, its input trace format is highly
generic and can easily be adopted for other uses, see Sec.
4.2.

3.3 MARS
MARS [3] is a simulation framework based on OMNeT++

[4] for end-to-end simulation of HPC systems. It comprises
two key components: a computing node model and a de-
tailed interconnection network model. The computing node
model comprises submodules representing tasks, the system
kernel, processors, and the system bus. Each task is mod-
elled by an MPI task replay engine that reads its input from
a trace file containing a sequence of MPI and compute oper-
ations, akin to a Dimemas input trace. Tasks can be placed
onto nodes in an arbitrary fashion. As an alternative to

the trace-driven simulation mode, traffic can be generated
randomly by built-in generator nodes, which mainly serves
to determine the maximum throughput of the system for
GUPS-like (Giga-Updates Per Second) benchmarks.

The network model includes models of the adapter and
switch modules. The switch modules are arranged in a fat-
tree topology with a configurable number of levels. The
main objective of MARS is to optimize the design of the
interconnect, including (i) the network topology, (ii) routing
policies (iii) the switch hardware implementation, and (iv)
the adapter hardware implementation.

MARS also takes advantage of OMNeT++’s built-in sup-
port for parallel execution, enabling simulations of at least
65,536 processors on a 32-node cluster.

4. INTEGRATION
System design is tightly coupled to the workload that will

be executed on the machine. Accurately simulating entire
parallel applications with detailed models of the hardware is
a complicated task mainly because of the difficulty of writ-
ing a single simulator combining the capability of simulating
the sofware and hardware stacks in sufficient detail. One
trend has therefore been to simulate the behaviour of an
application with simplified models (such as the bus-based
model used by Dimemas) and then estimate the parame-
ters of this simplified models to match them either with real
components’ parameters or with more detailed simulations
using cycle-accurate simulators of such components. An-
other complementary trend has been to feed the detailed
hardware simulators with random traffic or synthetic traffic,
and drawing conclusions about the hardware design under
the assumption that they also apply to the applications.

To optimize the design of the interconnection network of
MareIncognito, we need to be able to replay traces from a set
of key applications over a detailed network model. Unfor-
tunately, the existing tools did not meet these needs. The
network model employed by Dimemas employs a (config-
urable) set of busses that each connect to all nodes. As
such, the effects of network topologies, routing policies, traf-
fic contention, and anything relating to switch implementa-
tion could not be studied with Dimemas alone.

Although MARS did provide the necessary, much more
detailed, network abstraction level, its trace in- and output
capabilities are not compatible with Dimemas and Paraver.
In addition, as it was designed to simulate a specific system,
it does not provide support for arbitrary network topologies.

To meet the needs of the MareIncognito project we started
with the MARS simulator as a basis, and extended it with
the following capabilities:

• A server mode to support co-simulation with Dimemas
via a standard Unix socket interface.

• Output of paraver-compatible trace files to enable de-
tailed observation of network behavior.

• A translation tool to convert Myrinet map files to OM-
NeT++ ned topology description files.

• Import facility to load Myrinet route files at simulation
runtime.

• Detailed models of Myrinet switch and adapter hard-
ware.

• A tool to generate any topology belonging to the class
of Extended Generalized Fat Tree (XGFT) topologies
[8].

• Built-in support for three-dimensional Torus networks
and n-dimensional Hypercubes.

• Support for multi-rail networks.

• A flexible mechanism to map Dimemas tasks to net-
work nodes.

Figure 1 depicts the complete toolchain of our simulation
environment. We refer to the enhanced network simulator
as Venus. The following sections describe each of the exten-
sions included in Venus in some detail.

4.1 Server mode
To achieve interoperability between Venus and Dimemas,

we implemented a hybrid approach between a Parallel Dis-
crete Event Simulation (PDES) and a server/client model.
The PDES approach enables a global simulation in which the
independent simulators are distributed components. The
natural boundary of the co-simulation lies between the de-
tailed simulation of the network (Venus) and the replaying of
an application’s trace (Dimemas). We extended the PDES
framework to make the Venus side act as server and the
Dimemas side as client. We defined a communication inter-
face between the two sides that allows one or more Dimemas
instances to be plugged in to one or more instances of Venus.

To synchronize the simulators’ event schedulers we adopted
a conservative version of the “Null Message Algorithm” [10,
11]. We assume that the earliest input time of each of the
simulators is 0, so that each of the parallel simulators can ex-
pect an event from the other one at the current timestamp.
The earliest output time is set to the next event in the local
event queue. Although the algorithm is borrowed from a
PDES technique, the actual lookahead settings make it run
in a serial way; the simulations take turns to perform at least
one action at a time, so that they always progress. To reduce
the communication overhead due to the “null messages” be-
tween the simulators, these are only exchanged when there
are messages in flight. Otherwise, Dimemas runs without
synchronizing with Venus until some communication event
is reached. On the other hand, when the next event in the
Dimemas queue is at a time t strictly greater than or equal to
the current time Venus runs without exchanging any mes-
sages until that time t, unless an event is processed that
could change the state of Dimemas, such as the arrival of a
message at the output of the network.

Venus has been extended with a module that acts as a
server receiving commands from Dimemas. Upon initializa-
tion, a listening socket is opened and Venus awaits incoming
connections. Once a client connects to Venus, it can send
new-line separated commands in plain text. Venus under-
stands several types of commands, including STOP and SEND.
STOP is the actual “null message” exchange: it only serves
to inform Venus of the timestamp of the next relevant event
in the Dimemas queue. The SEND command will force the
server module to send a message through the network sim-
ulated by Venus. When a message has been received by
an adapter, Venus passes it to the server module, which
in turn sends a corresponding COMPLETED SEND message to
Dimemas.

Figure 1: Integrated tool chain.

One of the difficulties we encountered is related to the dy-
namic precision of floating point numbers. Both OMNeT++
and Dimemas use floating point numbers to store the simu-
lation time. To facilitate human interaction, debugging and
extensibility of the integration, we took the implementation
decision of using plain text for the communication exchanges
between the simulators. When a double is printed in a base
10 representation and then read back, a rounding error can
arise. When this error is negative, the simulators’ kernels
will interpret this as an attempt to insert events in the past.
This will cause the simulation to bail out with an error, or,
more insidiously, introduce hard-to-find bugs due to these
events being ignored. Therefore, we have to check for “time
drifts”and advance the scheduling of the event to the current
simulation time.

We also observed that the simulation of the two simulators
together took much longer than either simulator running in-
dependently with the same traffic. This turned out to be
caused by the use of Nagle’s algorithm by the TCP stack,
which introduced large delays (up to 500 ms) at every syn-
chronization point. Using the TCP_NODELAY option solved
this particular problem by forcing immediate transmission.

4.2 Paraver output
As pointed out in Sec. 3.2, Paraver was originally intended

to represent the state of and communication between MPI
threads. However, owing to its generic trace format and high
level of configurability (association of semantic labels with
threads, states, and events) and the myriad ways in which
data contained in trace records can be translated to numbers
and colors for visual rendering, Paraver is also highly suit-
able to represent the state of the interconnection network.

We chose the following, natural mapping from network
entities to Paraver tasks and threads: Each adapter and

each switch is represented by one task. Each port within
each adapter and switch is represented as a thread belonging
to the corresponding task.

Table 1 shows the structure of all Paraver records, includ-
ing their semantics, both as originally intended at the MPI
level and as newly assigned in the context of the network
level. Regarding communication records, the main differ-
ence is that the logical and the physical send time now cor-
respond to the first and the last flit of a message. At the
network level, there will be one communication record for
each link traversal of a given message. In each record, the
sending entity corresponds to the transmitting port of the
switch, whereas the receiving entity corresponds to the peer
port of the receiving switch. The size corresponds in both
cases to the size of the MPI message in bytes, whereas the
tag uniquely identifies the message.

In each state record the entity identifies the specific switch
and port to which the record applies. The state value in-
dicates which state the entity was in from begin to end
time. Note that the begin and end times pertain to the state
record, but not necessarily to the state per se: there may be
subsequent state records for the same object with the same
state value. The key difference between state records at the
MPI and at the network level is that at the MPI level the
states correspond to certain MPI thread (in)activities (idle,
running, waiting, blocked, send, receive, etc.), whereas at
the network level it represents a buffer-filling level. The ac-
tual state value is quantized with respect to a configurable
buffer quantum. Also configurable is whether the backlog
should be counted per input or per output port.

An event record marks the occurrence of a punctual event.
At the network level, we implemented events to flag the is-
suance of stop and go flow-control signals, the start and end
of head-of-line blocking, and the start and end of transmis-

Table 1: Paraver state, event, and communication record structures.
field content MPI-level meaning network-level meaning

0 ‘1’ state record type same
1 entity app., task, and thread ID of sending thread switch/adapter and port ID of port
2 begin time starting time of state record same
3 end time ending time of state record same
4 state activity carried out by thread quantized buffer backlog at port

0 ‘2’ event record type same
1 entity app., task, and thread ID of sending thread switch/adapter and port ID of port
2 time time at which event occurred same
3 event type type of event same (but different set of events)
4 event value value associated with event same (but different semantics)

0 ‘3’ communication record type same
1 sending entity app., task, and thread ID of sending thread switch/adapter and port ID of sending port
2 logical send time time at which send is posted sender’s reception time of first flit of message
3 physical send time actual sending time of message sending time of first flit of message
4 recv. entity app., task, and thread ID of recv. thread switch/adapter and port ID of recv. port
5 logical recv. time time at which recv. is posted reception time of first flit of message
6 physical recv. time actual message reception time reception time of last flit of message
7 size message size in bytes same
8 tag message type (MPI operation) unique message identifier

sion of individual message segments, all at the port level.
The semantics of the value depend on the specific type of
event.

4.3 map2ned
As MareNostrum uses a Myrinet interconnect, our envi-

ronment also had to support this kind of network. To de-
scribe an arbitrary network topology comprising hosts and
switches, Myrinet defined a quite simple, yet very generic,
ASCII-based topology file format referred to as a map file.

We implemented a translation tool to convert such a map
file to an OMNeT++ network description (ned) file. This
map2ned tool assumes generic base module definitions for
both host (AbstractHost) and switch (AbstractSwitch). It
creates a compound module that comprises the entire net-
work, with input and output gates for every host to connect
to other parts of the simulation environment. Within this
compound module, a host array is created using the ned lan-
guage’s polymorphism construct (like AbstractHost) to
allow different kinds of hosts to be instantiated via a hostType
parameter. In addition, a switch array of AbstractSwitch
modules is created. These are also polymorphic, but because
we wanted to support different types of switches within the
same system, we needed to resort to one level of indirection
by passing a switchType parameter to the AbstractSwitch

module. This is in fact a compound module that just in-
stantiates the desired switch type. For convenience, the gate
sizes of the arrayed hosts and switches are simply set to the
maximum size encountered for each kind.

The connections section reflects all of the connections spec-
ified in the source map file. As not all ports may be con-
nected, it uses the nocheck option. Link latencies can be
passed to the compound network module via two parame-
ters for host-to-switch and switch-to-switch delays.

In addition to the ned file, map2ned generates an initial-
ization file that specifies the network address (which is as-
signed automatically by map2ned) name, and label for every
host and the number of ports and label for every switch and
adapter, as well as some top-level parameters.

4.4 routereader
As a companion to the map file format, there is also a

Myrinet format to specify routes between any pair of hosts.
Myrinet networks use turn-based source-routing, meaning
that each sender determines the full route and the message
carries it in its header. The route consists of one relative
port index (“turn”) for every switch on the path. In each
switch, the corresponding turn is added to the index of the
port on which the message arrived to obtain the output port
index. Turns can therefore also be negative numbers. There
may be multiple routes between any pair of hosts to support
multi-path routing. To be useful, a route file must match
a given map file, both in terms of topology and in terms of
host naming.

We implemented a library to import a route file into the
simulator at run time, to be able to utilize the routes corre-
sponding to given map file.

4.5 Myrinet hardware models
In addition to support for the Myrinet topology and rout-

ing file formats, we also implemented switch and adapter
models that accurately represent the real Myrinet hardware.
This includes such aspects as message segmentation and in-
terleaving in the adapters and wormhole routing and stop/go
flow control in the switches.

In addition to the Myrinet-specific models, the environ-
ment also includes more generic output-queued and com-
bined input-output-queued switch models.

4.6 Extended generalized fat trees
The property of full bisectional bandwidth provided by

the well-established class of k-ary n-tree networks [6] gener-
ally ensures good performance, but incurs significant cost in
terms of switch hardware and cabling. As these costs rep-
resent an increasing fraction of the overall system cost, the
prospect of trading off a modest reduction in performance
against a significant slimming of the topology is quite at-
tractive [7].

Perfectly suited to this task is the class of extended gen-

eralized fat tree (XGFT) topologies [8], which includes any
kind of slimmed (or fattened) tree topology. An XGFT is
completely described by its parameters (h; m1, . . . , mh; w1, . . . , wh),
where h equals the number of switch levels; the leaves count
as separate level (0). Each node at level i has mi children
for 1 ≤ i ≤ h and wi+1 parents for 0 ≤ i ≤ h− 1.

We implemented a tool that can generate a map file rep-
resenting any XGFT, which can then be converted to ned
using map2ned and loaded into the simulator.

4.7 Direct topologies
To be able to compare indirect network topologies such

as fat trees and XGFTs with direct networks, we provided
built-in support for three-dimensional Torus networks and n-
dimensional Hypercubes. The dimensions of the Torus and
the number of dimensions of the Hypercube are configurable,
as is the number of hosts attached to each switch.

4.8 Multi-rail networks
HPC systems often feature multiple networks in parallel,

each network carrying a different kind of traffic. Sometimes
multiple instances of the same network are used in parallel
to achieve higher overall throughput. In either case, a single
host is connected to multiple independent networks within
the same system; we refer to such networks as multi-rail
networks. Our environment provides explicit support for
such systems in two ways.

First, the map2ned tool accepts map files that specify mul-
tiple connections per host. map2ned also recognizes an op-
tional parameter for each switch and adapter to select the
type to instantiate. The output ini file specifies the number
of networks and computing nodes per host, as well as the
switch and adapter types selected.

Alternatively, a built-in MultiRail network type is pro-
vided, which takes the number of networks as a parameter.
The type of network to instantiate can be specified for every
network individually for full flexibility.

In multi-rail networks, the model instantiates an alter-
nate host implementation, MultiHost, which supports mul-
tiple adapters. Furthermore, the MultiHost host type also
provides support for multi-core nodes: the number of com-
puting nodes (processors) per host can be specified with a
parameter. The computing nodes and adapters are inter-
connected within the host using a router. The nodes need
to attach a routing tag to their outgoing messages so that
the router knows to which network to route the messages.
Vice versa, the adapters need to inform the router to which
node to route each incoming message.

4.9 Task mapping
To enable the evaluation of different mapping policies, our

environment allows arbitrary mappings of Dimemas tasks
to Venus hosts. This is accomplished by means of a simple
configuration file that contains one hostname (as known to
Venus) per line; task n is mapped to the host corresponding
to the hostname specified on line n. In principle, multiple
tasks can be mapped to the same host. The format could
also be extended to map one task to multiple hosts by al-
lowing multiple hostnames per line, but this is currently not
supported.

4.10 Remarks
Myrinet software on any real installation can generate

a matching map file. Being able to translate this file to
an OMNeT-compatible format enabled us, for instance, to
simulate the real topology of MareNostrum. Moreover, the
matching route files reflecting the actual routes can also be
generated, enabling an accurate simulation of both topology
and routing of real-world installations.

Although originating from Myrinet networks, the map and
route file formats are highly generic and can be used to de-
scribe basically any kind of topology and routing. In fact,
we also implemented a conversion utility to translate the
built-in topologies to the map format. This enables, for in-
stance, the use of map-based offline route optimization tools
to compute a set of routes with minimum conflicts for a
given topology, mapping, and traffic pattern.

5. CASE STUDY: MareIncognito
The combination of Dimemas and Venus enabled us to

gain new insights at various levels: (i) the application and
MPI library level, (ii) the MPI protocol level, (iii) topology
and routing, and (iv) switch and adapter hardware.

The space available does not permit us to go into detail
or even touch upon all of the issues, but the next sections
provide at least one example from each of these categories.

5.1 Application and MPI library level
Dimemas allows us to simulate changes in the application

level or MPI level and to obtain a Paraver trace that we
can analyze and compare with the trace obtained with the
real execution. Combined with the capabilities of Venus,
this enables a quantitative study of the potential benefits of
such a change in the software stack under specific hardware
configurations that match the target architecture.

We can, for instance, evaluate the gain of substituting
blocking MPI sends/receives by their non-blocking (asyn-
chronous) counterparts, or assess the benefit of changes in
the MPI library implementation. Such experiments provide
valuable feedback to the application and library developers
when taking a decision on whether to implement potentially
expensive changes.

As an example, one experiment demonstrated that chang-
ing the blocking (sendrecv) implementation of the exchanges
in a finite element solver program (ALYA) by non-blocking
sends and receives reduced the communication time by a
factor of two.

5.2 MPI protocol level
In typical MPI implementations, a so-called eager thresh-

old can be set to control how messages are injected into the
network: Messages smaller than this threshold are sent ea-
gerly, i.e., without first performing a rendez-vous exchange
with the receiving node. Larger messages need to wait for
the rendez-vous protocol to complete: the sender first sends
a request (REQ) to the receiver, which, if it has room to
store the message, will reply with an acknowledgment (ACK).
Only when the sender gets the acknowledgment will it actu-
ally send the message. As the protocol messages (REQs and
ACKs) share the network infrastructure with (potentially
very large) data messages, this can have a notable impact
on performance.

To test the effect, we used a trace of a 32-way all-to-all
personalized exchange of 32,679-byte messages. When send-
ing all messages eagerly, the exchange’s run time was 4.3 ms.
With the eager threshold set to 32,768 bytes, the run time

increased to 4.8 ms, an increase of just under 12%. How-
ever, when artifically introducing a small random imbalance
of less than 10 µs at the start of every thread, the run time
increased to 6.3 ms, an increase of more than 46%. The
reason is that the imbalance causes protocol messages to be
delayed by segments of data messages. Figure 2 shows per-
thread progress timelines in the first and the last case. The
color encodes the number of the message currently being
received.

Figure 2: All-to-all progress without imbalance and
rdvz (top), with imbalance and rendez-vous (bot-
tom).

5.3 Topology and routing
Deciding upon a particular topology is a crucial design

issue that has a big impact on the performance and cost of
a machine. Venus is able to model a wide range of topolo-
gies. Together with Dimemas, it can quantitatively estimate
the global performance that an application could achieve
with each topology. Using the Paraver traces generated by
Dimemas or Venus we can also understand the reasons of a
performance difference between two architectures.

For the MareIncognito project we evaluated several appli-
cations in detail across a set of topologies from the XGFT
family. We found that the routing policy can have a notice-
able impact on the performance of communication phases
of several applications in these network topologies. We ob-
served that random routing in k-ary n-trees has, contrary
to widespread belief, in general worse behaviour than simple
regular routings. We also explored several communication-
pattern-aware techniques by means of an offline tool that,
by analyzing the communication pattern and the network
graph, produces a set of routes with minimal routing con-
flicts for a particular pattern.

Figure 3 shows the relative performances that can be ob-
tained with different routing policies across a particular fam-
ily of XGFTs with decreasing connectivity (x axis). We
can classify these routing policies according to their perfor-
mance: some are severely affected by a decreasing connec-
tivity (brute force, naive), some remain close to the opti-
mum performance for the decreased connectivity (mod-k,
colored), and some do not show a particular trend (random
routings).

5.4 Switch and adapter hardware
An example of insights gained at the hardware level is

illustrated in Fig. 4. The trace used here is a 256-way WRF

 0

 2

 4

 6

 8

 10

 12

 14

8-8
8-7

8-6
8-5

8-4
8-3

8-2
8-1

7-7
7-6

7-5
7-4

7-3
7-2

7-1
6-7

6-6
6-5

6-4
6-3

6-2
6-1

5-5
5-4

5-3
5-2

5-1
4-4

4-3
4-2

4-1
3-3

3-2
3-1

2-2
2-1

1-1

T
im

e
/ (

T
im

e F
ul

l C
ro

ss
ba

r)

of middle switches in the upper Switching Levels

WRF, Progressive tree-slimming

Full-Crossbar
Naive
Random
Mod-k
Bruteforce
Colored

Figure 3: Performance of 256-node WRF on
slimmed 3-level XGFTs.

(weather research and forecast) pattern on a two-level fat-
tree network, in which each node n first sends one message
to node n + 16 and then one message to node n − 16. The
exceptions are nodes 0–15, which only send to n + 16 and
nodes 240–255, which only send to n− 16.

Most nodes completed after about 63 µs, whereas three
nodes took 24 µs longer than the rest (circled in Fig. 4).
Deep inspection of the Paraver traces revealed that this was
caused by head-of-line blocking: In the first phase, the last
16 nodes caused destination contention between communi-
cations from, e.g., nodes 253 and 221 to node 237. The mes-
sage from 253 was served first, forcing the message from 221
to wait. The first message from node 221 was still blocked
when the second message (to node 205) arrived on the same
input port of the second-level crossbar: this second message
was HOL blocked! The same thing happened for messages
from two other nodes. Additional instrumentation to ex-
plicitly detect HOL-blocking yielded the results shown in
Fig. 5, which shows the affected ports on all 16 second-level
switches. Three switches exhibit HOL blocking; it turned
out that this depends on the initial setting of the round-
robin pointer used by the switches to select which port to
serve in case of contention. As these pointers were initial-
ized randomly, blocking occurred on only a few ports. By
initially setting all pointer to the same value, we were able
to induce blocking on all or none of the ports. Simulations
with an output-queued switch architecture did not exhibit
this behavior, as expected.

6. CONCLUSION
We presented a communication-centric simulation envi-

ronment for HPC systems based on trace-driven co-simulation
between an MPI task simulator and a detailed network sim-
ulator. This combination builds on the strengths of these
two tools—and of an array of auxiliary ones—to enable a
thorough exploration of the impact of the interconnection
network on parallel application performance with an un-
precedented accuracy, depth, and flexibility. Moreover, the
extension of the visualization part of the toolchain to incor-
porate network communications, states, and events provides
a new level of evaluation power.

The purpose of the environment is to aid the design of

Figure 4: 256-way WRF pattern; communication
among threads.

Figure 5: 256-way WRF pattern; HOL blocking on
L2 switch ports.

next-generation HPC machines. We presented some exam-
ples of the kinds of insight the new environment can provide.
Most notably, these insights range across all four levels: ap-
plication, MPI library, topology, and hardware. We expect
these insights to help point the way towards scalable, cost-
effective, yet high-performance interconnection networks for
the next generation of supercomputers.

7. REFERENCES
[1] Peterson, J. L., Bohrer, P. J., Chen, L., Elnozahy, E.

N., Gheith, A., Jewell, R. H., Kistler, M. D., Maeurer,
T. R., Malone, S. A., Murrell, D. B., Needel, N.,
Rajamani, K., Rinaldi, M. A., Simpson, R. O., Sudeep,
K., Zhang, L. Application of full-system simulation in
exploratory system design and development. IBM
Journal of Research and Development, Vol. 50, No.
2/3, March/May 2006, pp. 321–332.

[2] Magnusson, P. S., Christensson, M., Eskilson, J.,
Forsgren, D., Hallberg, G., Hogberg, J., Larsson, F.,
Moestedt, A., Werner, B. Simics: A full system
simulation platform. IEEE Computer, Vol. 35, No. 2,
Feb. 2002, pp. 50–58.

[3] Denzel, W. E., Li, J., Walker, P., Jin, Y. A framework
for end-to-end simulation of high-performance
computing systems. In Proceedings of the First
International Conference on Simulation Tools and
Techniques for Communications, Networks and
Systems (SIMUTools 2008), Marseille, France, March
3–7, 2008, article No. 21..

[4] Varga, A. The OMNeT++ discrete event simulation
system. In Proceedings of the European Simulation
Multiconference (ESM’ 01), Prague, Czech Republic,
June 2001.

[5] Boden, N. J., Cohen, D., Felderman, R. E., Kulawik,
A. E., Seitz, C. L., Seizovic, J. N., Su, W.-K. Myrinet:
A gigabit-per-second local area network. IEEE Micro,
Vol. 15, No. 1, 1995, pp. 29–36.

[6] Petrini, F., Vanneschi, M. k-ary n-trees:
High-performance networks for massively parallel
architectures. In Proceedings of the 11th International
Symposium on Parallel Processing (IPPS ’97), Apr.
1–5, 1997, Geneva, Switzerland, pp. 87–93.

[7] Desai, N., Balaji, P., Sadayappan, P., Islam, M. Are
nonblocking networks really needed for
high-end-computing workloads? In Proceedings of the
2008 IEEE International Conference on Cluster
Computing (Cluster ’08), Tsukuba, Japan, Sep.
29–Oct. 1, 2008, pp. 152–159.

[8] Öhring, S., Ibel, M., Das, S. K., Kumar, M. J. On
generalized fat trees. In Proceedings of the 9th
International Symposium on Parallel Processing (IPPS
’95), Santa Barbara, CA, April 25–28, 1995, pp. 37–44.

[9] Geoffray, P., Hoefler, T. Adaptive routing strategies
for modern high performance networks. In Proceedings
of the 16th IEEE Symposium on High Performance
Interconnects (HOTI ’08), Stanford, CA, Aug. 27–28,
2008, pp. 165–172.

[10] Bagrodia, R., Takai, M. Performance evaluation of
conservative algorithms in parallel simulation
languages. IEEE Transactions Parallel Distributed
Systems, Vol. 11, No. 4, 2000, pp. 395–411.

[11] Varga, A., Sekercioglu, Y. A., Egan, G. K. A practical
efficiency criterion for the null message algorithm. In
Proceedings of the European Simulation Symposium
(ESS 2003), Oct. 26–29, 2003, Delft, The Netherlands.

