
An Accurate and Extensible Mobile IPv6 (xMIPV6)
Simulation Model for OMNeT++

Faqir Zarrar Yousaf
Communication Networks

Institute,
Dortmund University of
Technology, Germany

faqir.yousaf@tu-
dortmund.de

Christian Bauer
Institute of Communications and

Navigation,
German Aerospace Center,
Oberpfaffenhofen, Germany

christian.bauer@dlr.de

Christian Wietfeld
Communication Networks

Institute,
Dortmund University of
Technology, Germany

christian.wietfeld@tu-
dortmund.de

ABSTRACT
MIPv6 is the IPv6 based mobility management protocol and it is
expected to become the mobility management protocol of choice
for the Next Generation Wireless Access Networks. In order to
develop the understanding of the protocol’s behavior, its
suitability for deploying in a wireless environment and in order to
be able to propose and develop appropriate improvements and
optimizations, it is imperative to have an accurate, reliable and
scalable simulation model for the MIPv6 protocol which is fully
compliant to the IETF standards and specifications.

This paper presents the logic, design and performance results of
an extensible MIPv6 (xMIPv6) simulation model integrated into
the INET20061020 framework for the OMNeT++ discrete event
simulator.

Categories and Subject Descriptors
I.6.4 [Simulation and Modeling]: Model Validation and
Analysis
I.6.5 [Simulation and Modeling]: Model Development –

Modeling methodologies.
I.6.6 [Simulation and Modeling]: Simulation Output Analysis

General Terms
Measurement, Performance, Design, Reliability, Experimentation,
Verification.

Keywords
Protocol Simulation, MIPv6, OMNeT++, C++ Discrete Event
Simulation model.

1. INTRODUCTION
Mobile IPv6 is a mobility management protocol that allows nodes
to remain reachable while moving around in the IPv6 Internet and
became an RFC in June 2004. Although MIPv6 protocol provide
the basic mechanics for supporting the communication needs of

MIPv6 enabled mobile nodes with single wireless interface, the
overall delay and overhead incurred by the protocol is not suitable
for handling real time communications and/or high speed users. In
order to circumvent the shortcoming of the base MIPv6 protocol
[1], several extensions like Fast MIPv6 (FMIPv6) [3],
Hierarchical MIPv6 (HMIPv6) [4], Mobile Nodes and Multiple
Interfaces (MONAMI6) [5], Proxy MIPv6 (PMIPv6) [6], Network
Mobility (NEMO) [7] - to name a few - have been proposed that
extend the basic MIPv6 protocol to offset its disadvantages and
offer solutions for different application scenarios.
As Next Generation Network (NGN) is envisaged to be based on
IP [8], MIPv6 based protocols are expected to be the mobility
management protocol of choice. It was therefore necessary to
have an accurate, extensible and simple MIPv6 simulation model
that would provide the base in evaluating the implication and
applicability of MIPv6 based protocols in the context of NGN in
general and hence develop and propose optimised protocol
solutions and network architectures on top of this base
implementation that would fulfil the operational and functional
requirements of NGN.
As part of our ongoing research efforts in the areas of Fast
Handovers in IP based Heterogeneous Wireless Access Networks
and IP Mobility for Aviation, we are developing an MIPv6
simulation model in OMNeT++, which is a C++ based discrete
event simulator. The motivations for adopting OMNeT++ as the
base simulation framework are the same as presented in [9].
Although a MIPv6 simulation model for OMNeT++ already
exists in the IPv6SuiteWithINET framework, an IPv6 protocol
framework developed in 2004 for OMNeT++ [10], this
implementation was developed as an independent framework and
hence it doesn’t scale well to any new developments in the INET
framework. The overall protocol design and coding style diverts
from the main design approach of the INET framework and in the
absence of any support, it seemed to be more reasonable for us to
step over IPv6SuiteWithINET and to re-implement the MIPv6
protocol, that should be integrated in the existing INET
framework, rather than integrating the INET framework into an
independent MIPv6 framework, while conforming to the basic
design and coding style of the official INET framework.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

The main design goals behind implementing the MIPv6 model
was simplicity and extensibility, hence the name Extensible
MIPv6 (xMIPv6), with minimum but necessary and flexible
modifications to other related simple modules, such as
IPv6NeighborDiscovery, IPv6, RoutingTable6, InterfaceEntry,
InterfaceTable, IPv6InterfaceData etc., so that the base INET
framework functionality is not affected.

OMNeT++ 2008, March 3, 2008, Marseille, France.
Copyright 2008 ACM 978-963-9799-20-2…$5.00.

2. MIPv6 PROTOCOL OVERVIEW
IP has been designed for fixed networks and therefore suffers
from problems related to mobility. As soon as a node – which is
mobile – attaches to a new access network, the continuity of
upper layer data communication is broken and active sessions
would have to be reestablished. Mobile IPv6 [1] addresses this
problem by providing a static Home Address (HoA) to the
protocols/applications above the IP layer, which has the prefix of
the home sub-network.
As long as the mobile node (MN) is attached to its home link,
packets addressed to the HoA are routed to the MN via means of
normal routing mechanisms. As soon as the MN moves away
from the home link and attaches to a foreign link, it becomes
addressable via a Care-of Address (CoA) that has the subnet
prefix of the particular foreign link and is acquired through
standard address configuration means such as Stateless Auto-
configuration [11] or Stateful Address Configuration (DHCPv6)
[12].
While away from home, the MN node establishes a binding, an
association between the HoA and the CoA, with the router on its
home link that acts as a Home Agent (HA), by sending Binding
Update (BU) message with both the CoA and the HoA.
Any Correspondent Node (CN) communicating with the MN
sends packets to the home network, where the HA intercepts these
packets and tunnels them to the current CoA as defined by the
binding. Packets from the MN destined to the CN are first
tunneled to the HA from where they are normally routed to the
CN.
The MN may try to perform route optimization with the CN by
initiating the Return Routability procedure. In case the CN has
MIPv6 support, this message exchange will be successful and the
MN can establish a binding with the CN as well, which eliminates
the need to communicate via the home network/home agent and
therefore allows communicating over the shortest path via the
MN’s CoA.

3. xMIPv6 SIMULATION MODEL
SUMMARY
The MIPv6 simulation is developed by using the existing modules
of the INET20061020 framework and building on top of that. For
instance the nodes are derived from the existing modules and the
whole MIPv6 protocol is implemented by making use of the
existing IPv6 and IPv6 Neighbor Discovery protocol
implementation.
The MIPv6 protocol mechanics itself are defined inside an
xMIPv6 simple module which is connected to the IPv6 simple
module at the network layer (see Figure 3-1).
The Binding Update List (BUL), maintained by the MN only, and
Binding Caches (BC), maintained by the HA and CN(s), are
implemented as simple modules at the node level (see Figure
 3-2).
Necessary modifications have been made to the existing relevant
modules but care has been taken so as not to affect the base
functionality of these modules.
In general the xMIPv6 simulation model supports the following
operations:

• Generic movement detection

• CoA auto-configuration

• Home registration

• Reverse tunneling

• Return Routability procedure

• Correspondent registration

• Returning home scenario

Figure 3-1 Architecture of the MIPv6 Enabled Network Layer

Figure 3-2 Architecture of Mobile Node and Correspondent
Node with Binding Update List and Binding Cache

respectively.

3.1 xMIPv6 Nodes
[1] defines three types of nodes, the Mobile Node (MN), Home
Agent (HA) and Correspondent Node (CN). These nodes have
been implemented using the existing modules available in the
INET framework; two boolean parameters namely
“isMobileNode” and “isHomeAgent”, besides the already existing
“isRouter” flag, have been added within the simple module of
RoutingTable6 to differentiate the definition of these nodes.
The description of these nodes is detailed below:

1. Mobile Node
The MN is derived from the existing StandardHost6 (an IPv6
enabled host) compound module but with the Ethernet interface
replaced by a WLAN interface (Ieee80211NicSTA) and a
mobility agent to handle the mobility of the MN. In principle it is
possible to integrate every type of network interface card (even
wired) within the xMIPv6 framework.

The isMobileNode parameter is set to true while the other two
parameters are false. The MN will contain a single instance of the
BindingUpdateList module, the details of which are presented in
section 5.2.

2. Home Agent
The HA is derived from the existing Router6 node, which is
actually an IPv6 enabled router, but with isRouter and
isHomeAgent parameter set to true while isMobileNode parameter
set to false. The HA will carry a single instance of the
BindingCache module, the details of which are given in section
5.2

3. Correspondent Node
The StandardHost6 node of the INET framework is used as a CN
but with all three parameters set to false.
Like the HA, the CN also carries a single instance of the
BindingCache module.

3.2 xMIPv6 Messages
[1] defines modifications to an existing IPv6 Neighbor Discovery
message and a message option besides introducing a new IPv6
extension header called Mobility Header. This subsection
summarizes the message constructs used in the xMIPv6
simulation model.

cMessage

IPv6NDMessage

IPv6RouterAdvertisement
homeAgentFlag: bool

IPv6NDPrefixInformation[]

Figure 3-3 Modified Router
Advertisement Message

cPolymorphic

IPv6NDPrefixInformation

routerAddress: bool

Figure 3-4 Modified Prefix
Information Option

3.2.1 Mobility messages.
The mobility header is derived from OMNeT++`s cMessage class
and all other mobility messages inherit from the Mobility Header
subclass as shown in Figure 3-5.

cMessage

BindingUpdate

BindingAcknowledgement

BindingError

HomeTestInitHomeTest

CareOfTest

CareOfTestInit

BindingRefreshRequest

MobiltiyHeader

Figure 3-5 xMIPv6 Mobility Messages

This mobility header is sent encapsulated as IPv6 payload,
however in the future the mobility header could inherit from the
IPv6ExtensionHeader and sent as an IPv6 extension header as
specified in [1]. The rationale of the current approach is to limit
the modifications to the existing IPv6 module, which forwards
payloads after decapsulation to the respective module, based on
the type of class (ICMPv6, TCP, UDP, etc.).

3.2.2 IPv6 Neighbor Discovery Messages
As stated earlier, MIPv6 uses the modified version of the IPv6
Neighbor Discovery protocol’s Router Advertisement (RA)
message and Prefix Information Option.
The existing RA message is modified by adding a Home Agent
flag (H-Flag), distinguishing a HA from an ordinary router. It is
false by default.
On the other hand the Prefix Information Option used in the RA
message is modified with the addition of the Router Address flag
(R-flag), which is set when the H-flag in the RA message is true.
The relevant modification to the IPv6 Neighbor Discovery
message and message option is shown in figure 3-3 and 3-4.

4. MODIFICATIONS TO THE EXISTING
MODULES / CLASSES
In order to implement MIPv6 protocol mechanics and to integrate
it with the INET framework, modifications were required in the
existing general and IPv6 specific modules of the INET
framework. However, these modifications were made as
additional add-ons without altering the original functionality of
the existing modules/classes.
The discussion about the relevant modules/classes and
corresponding modifications in them is given in the proceeding
sub-sections.

4.1 IPv6InterfaceEntry
In MIPv6, it is essential for a MN to store its home network
information, comprising of the MN’s HoA, the address of the HA
as well as the home address prefix that will be used by the MN
during home and correspondent registration process while in the
visited network. For this purpose a HomeNetworkInfo data
structure has been defined, which stores the home network
information of the MN’s interface. The rationale behind storing
this information at the interface level is to accommodate MN with
multiple interfaces, where each interface may belong to a
different home network.
Also it may be required that not all interfaces of a router
participate in MIPv6 operation. For instance, the interface having
hasMIPv6Support() returning true is required to send periodic RA
at rates specified in [1], whereas other interfaces – with Mobile IP
support disabled – will be transmitting RA periodically at rates as
specified in [13].
For this purpose a function isConnectedToWLANAP() is invoked
during interface initialization stage for each interface of a router,
which will enable shorter RA interval only on those Ethernet
interface(s) that are found connected to a WLAN Access Point
(AP).

4.2 RoutingTable6
The RoutingTable6 simple module, shown in figure 3-2, has been
modified to accommodate information regarding the type of node,
i.e., whether the node is a standard host (CN), a MN or a HA. For
this purpose two additional methods namely; isHomeAgent() and
isMobileNode(), have been added to RoutingTable6 module.

4.3 IPv6NeighbourDiscovery
Since the MIPv6 operations is built on top of the IPv6 Neighbor
Discovery protocol [13], quite a number of modifications in the
existing code of the IPv6NeighborDiscovery simple module have
been made, especially in functions dealing with creating, sending
and processing of RA message.
In the original module, a router’s interfaces would only be
configured with their respective prefixes by the INET’s network
configurator (FlatNetworkConfigurator6) module but with
appropriate modifications to the IPv6NeighborDiscovery module,
each router’s interfaces will auto-configure a global scope 128-bit
IPv6 address at the time of initialization, which is subsequently
required in the BU messages.

4.4 IPv6
The functionality of the IPv6 simple module has been enhanced to
receive, recognize and forward mobility packets to and from the
xMIPv6 module for MIPv6 message transmission and processing.
In addition, relevant modifications related to packet tunneling has
been included to accommodate the tunneling functionality
provided by the new IPv6Tunneling module as explained in
section 5.1.
An additional new feature has been added that enables the IPv6
module to check whether the IPv6 address of an interface that is
used as source address in a datagram is tentative or not. In case it
is tentative, instead of being sent to the network interface card the
packet is inserted into the normal processing queue of the IPv6
module.
Besides, additional gates have been defined for its connection
with the xMIPv6 and IPv6Tunneling module as seen in figure
3-1.

5. FUNCTIONAL SUMMARY OF NEW
MODULES
5.1 IPv6Tunneling Module
Mobile IPv6 operation relies on the creation and maintenance of a
bidirectional IPv6 tunnel between the MN and the HA for
communicating with non-MIPv6 CN(s) and for communicating
with MIPv6 enabled CN(s) till the MN completes the binding
with such CN(s). For this purpose a new module IPv6Tunneling
has been created to support the IPv6 tunneling mechanism as per
the specifications provided in [14].
This new module is connected to the IPv6 module as shown in
figure 3-1.
As suggested in the RFC, this module behaves like a normal link
and accepts the following two types of input messages:

a. IPv6Datagrams to be decapsulated if they arrive at the
upperLayerIn gate

b. IPv6Datagrams to the encapsulated if they arrive at the
linkLayerIn gate.

The output of the tunneling module is as follows:
a. Encapsulated datagrams are sent back to the IPv6 module

via the upperLayerOut gate.
b. Decapsulated datagrams are sent via the linkLayerOut

module.

It is important to note that the actual encapsulation/decapsulation
is not performed within the tunneling module. By sending the
datagrams to the appropriate input/output gate, the IPv6 module
takes care of performing these operations.

5.1.1 Generic Tunneling
 5.1As explained in section , the tunneling module is implemented

like a link module that accepts normal datagrams for input and
also outputs normal datagrams.
Before checking the neighbor cache or even the routing table, the
IPv6 module calls a C++ method of the tunneling module to
check whether there exists a tunnel for the specified destination
address. In case a tunnel exists and a valid virtual interface
identifier (VIf) is returned, the datagram is sent to the tunneling
module. There, the IPv6ControlInfo is updated with a new source
and destination addresses, as defined by the tunnel entry and exit
points. The datagram is sent back to the IPv6 module, which will
treat it as a higher layer payload and therefore encapsulates the
packet again. After checking that the next header value of the
datagram is IP (implying that the datagram has already been
encapsulated) it is handled by normal processing instead of going
to tunneling again and will finally be sent down to the appropriate
link module.

This process is illustrated in Figure 5-1.

IPv6 IPv6TunnelingApplication

routePacket()

getVIfIndexForDest()

encapsulate()

routePacket()

Link

send

send

encapsulate
Datagram()

send

encapsulate()

send

Figure 5-1 Flow from Application Over IPv6, IPv6Tunneling

to the Link Module.
The following types of tunnels are supported:

a. Split Tunnel
b. Non-Split Tunnel

Only a single non-split tunnel is supported per node; all packets -
as long as they have a scope larger then link-local - will be
encapsulated and sent via a non-split tunnel. The tunnel from the
mobile node to the home agent is an example for such a non-split
tunnel. For split-tunnels, only those packets are encapsulated

which match a certain destination address associated to the tunnel,
hence several split-tunnels are allowed per node. The tunnel(s)
from the HA to the MN(s) are examples for this kind of
forwarding, as datagrams are tunneled only to the specific MN
and hence only to a single exit point out of the several ones
available in case of several split tunnels.
Establishing and destroying tunnels is achieved by means of
direct C++ method calls to the IPv6Tunneling module.

5.2 Binding Cache and Binding Update List
Modules
The BindingCache and BindingUpdateList are simple modules
that don’t handle and /or process any messages but maintain the
binding information for the MN. In other words the BindingCache
and BindingUpdateList modules are map based data structures
implementing the Binding Cache (BC) and the Binding Update
List (BUL) as per the specifications given in [1]. The MN, as
mentioned before will contain a single instance of the
BindingUpdateList that maintains the required information for
each BU message sent by the MN. The information of each BU is
keyed by the destination address of the BU.
Home agent and correspondent node use the BC to store bindings
of MN(s) that registered with valid BUs. The key is the HoA of
the MN.

5.3 xMIPv6 Module
The following sections provide a more detailed overview of our
implementation.

5.3.1 (Re-)Transmission Timers
As specified in [1], BU, Home Test Initiate (HoTI), Care-of Test
Initiate (CoTI) and Binding Refresh Requests (BRR) have to be
sent periodically until a Binding Acknowledgement (BA), Home
test (HoT), Care-of Test (CoT) or a BU are received respectively.
For this purpose, a so called TransmitIfEntry structure was
defined which contains the destination address of the message,
numeric values for the current ACK timeout and the next
scheduled time, a pointer to the interface over which the message
is supposed to be sent and a pointer to the message itself.

Figure 5-2 Class Structure of the Retransmission Timers.

Figure 5-2 shows the class diagram of the implemented
retransmission timers. TransmitIfEntry is only the base class from
which a BUTransmitIfEntry, a TestInitTransmitIfEntry (for
HoTI/CoTI) or a BRTransmitIfEntry (for BRR) are derived,
depending on the type of message to be sent. The structure is
attached as a context pointer to the scheduled message and
therefore allows retrieving all necessary information that is

necessary in order to (re-)transmit the mobility message. As soon
as the acknowledgement has been received the list holding all
transmission structures is traversed, the correct one deleted and
the corresponding scheduled message canceled.

5.3.2 Autoconfiguration in visited networks
Upon receiving a RA on a certain interface, the MN checks
whether the prefix within the advertisement is different from the
one already configured for the current address. If so, a new global
unicast address (the new CoA) with the provided prefix is formed
and Duplicate Address Detection (DAD) initiated. As soon as the
uniqueness has been verified the tentative flag is cleared and the
MIPv6 protocol gets initiated.
Configuring a new address however is not sufficient, what has to
be performed as well is an update of the Neighbor Cache (NC).
As of now, all routers for that interface which are specified as
default router (where usually all packets from the MN are sent to
as next-hop address) are timed out and therefore removed from
the cache. This guarantees that the address of the new router will
be used instead of the old one which probably already is
unreachable and therefore invalid due to moving to the new
network. All prefixes and the default route for that interface are
removed as well, hence only information related to the newly
configured router is used by the mobile node in the future.

5.3.3 Returning Home
Returning home is a special case within the procedure explained
in section 5.3.2. In case the prefix in the RA is equal to the home
subnet prefix and the MN still has a CoA (as it previously was in
a foreign network), the Returning Home procedure is initiated.
Besides removing the now invalid and unnecessary CoA; the
returningHome() method of the xMIPv6 module is called, which
cancels all TransmitIfEntry messages, destroys the tunnels and
creates the BU messages for deregistration.

5.3.4 Return Routability Procedure
The Return Routability procedure is a prerequisite for the MN to
be able to send BU(s) to CN(s).
Both HoTI and CoTI are sent at the same time and periodically
(with the help of the TransmitIfEntry structure – see section
 5.3.1) until a HoT or CoT message is received in response. The
CN processes the messages conforming to the RFC and sends
back a CoT and HoT with dummy values for the cookie and the
tokens. Tokens are normally generated by means of cryptographic
functions, but as security is not supposed to be assessed within
our research framework, implementing this functionality would
have only increased the complexity and processing overhead,
while not having any direct effect on the simulation results. As
soon as the MN has received both messages from the CN it
periodically sends a BU until the reception of the matching BA.
The CN, upon receiving a BU, also creates a message timer for
the BRR that is sent in a timely fashion to make sure that the MN
sends a new BU well in time.

5.3.5 Type 2 Routing Header and Home Address
Option
Once Return Routability has been performed, and the MN
completes correspondent registration, subsequent communication
between MN and CN will bypass the HA and packets will be
directly transmitted to the MN’s CoA. These packets carry either

the HoA in a Type 2 Routing Header (T2RH) or the Home
Address Destination Option which is later on swapped with the
destination address in the IPv6 header at the MN/CN.
According to [1], the CN has to check the BC whether there is an
entry for the destination address; if so, the T2RH is inserted into
the extension header list. In order to keep the existing IPv6
module as clean as possible without any MIPv6 code fragments,
the lookup operation is realized with the help of the
IPv6Tunneling module. The T2RH is a pseudo-tunnel established
by the xMIPv6 module; besides split tunnels it will be the first
category that is going to be searched through for any existing
routes before the routing table or the destination cache, which
makes it useful to be used as a substitute for the binding cache
lookup. If successful, the datagram is sent to the tunneling module
where an IPv6ControlInfo object with a T2RH is attached. The
IPv6 module properly processes the header by copying it to the
extension headers of the currently processed datagram to which
the IPv6ControlInfo was attached.
At the MN, if it is in a foreign network and has a valid binding
cache entry, packets are directly routed to the CN(s) with the help
of the Home Address Option, which is carried by a Destination
Option Extension Header. Just like with the T2RH, this extension
header is a pseudo-tunnel managed by the tunneling module, to
which the MN sends the packets to. An IPv6ControlInfo with the
Home Address Option is attached which is then copied to the
extension header list in the IPv6 module.
Once the datagram has been routed to the CN, the IP source
address is swapped with the home address in the extension
header.

6. MEASUREMENTS AND RESULTS
In this section we present the handover delay incurred during the
scenario when the MN leaves its home network and enters the
domain of another network. The simulation results are then
compared with the reference results obtained from a real MIPv6
test-bed.

6.1 Handover Delay Components
The MIPv6 handover procedure is composed of several sub-
processes and each sub-process incurs its own delay which will
contribute to the overall handover delay, and this is expressed as
follows:

THO = TMD + THR + TRR +TCR

Where:
THO = Total Handover Delay
TMD = Movement Detection Delay
THR = Home Registration Delay
TRR = Return Routability Delay
TCR =Correspondent Registration Delay
The delay incurred due to movement detection (TMD) is
furthermore composed of the following delay sub-components:

TMD = TL2 + TRD + TDAD

Where
TL2 = Layer 2 (L2) Handover Delay
TRD = Router Discovery Delay

TDAD = Proxy Duplicate Address Detection Delay
The overall handover latency is a sum of the handover latency
incurred by L2 handoff process (TL2) and Layer 3 (L3) handoff
process (THO -TL2). TL2 is dependent on the WLAN AP and
WLAN NIC hardware performance. As demonstrated in [15],
there is a large variation in L2 handoff latency for WLAN
hardware from different vendors.
Since MIPv6 is a L3 mobility management protocol, the handoff
delay incurred by this protocol mainly depends on the speed with
which the MN is able to detect its movement and discover a new
access router. This delay is represented by TRD, and is dependent
on the RA interval, the value of which is determined using a
uniform distribution function over a minimum and maximum
value, whereas the other delay components are more or less
constant and they depend on the quality and reliability of the
wireless link. For this reason a minimum RA interval value of
0.03 seconds and a maximum RA interval value of 0.07 seconds
has been specified in [1].
Since the MIPv6 handoff latency is dependent on TRD, we have
chosen three reference values of the RA interval, as depicted in
Table 1, to analyze its impact on the overall handoff latency.

6.2 CNI-MIPv6 Test Bed
A real Linux based MIPv6 test-bed [16] has been established at
the Communication Networks Institute (CNI), Dortmund
University of Technology.
Due to the infrastructural restraint/limitations of the lab
environment and a wide area of coverage (in 100’s of meters) of
the WLAN APs, it was not possible to keep the Access Router of
the visit network and the HA far apart to effectively realize an
actual MIPv6 network infrastructure. Therefore in order to get
effective insights into the various delay incurring
parameters/factors and to quantify their overall effect on the
MIPv6 handover latency, the movement of the MN from home
network to visit network was emulated by manually switching the
MN to the visit network.
This emulated movement of the MN was repeated 10 times for
each of the three reference RA intervals depicted in Table 1.
Ethereal [17] was used to capture the traffic and custom bash
scripts were used to parse the ethereal traffic log and calculate the
average delay incurred by each of the delay component. The total
average handover delay was then calculated as the sum of all the
measured delays. The average delay incurred by individual delay
components and the total handover delay is listed in Table 2.

6.3 xMIPv6 Simulation Model
Figure 6-1 shows the simulation network topology that is
representative of the network topology of the real CNI-MIPv6
test-bed described in section 6-2. This simulation model is based
on the xMIPv6 simulation model described in the preceding
sections.
In the simulation model, the MN’s movement from its home
network towards the visit network is repeated 100 times for each
of the 25 seed values generated using OMNET++’s sedtool [2],
constituting a total of 2500 runs. This is repeated for each of the
three reference RA intervals (see Table 1).

Custom bash scripts were used to automate the test process and to
parse the scalar files which recorded the time stamps of the
parameters of interest.

Figure 6-1: Reference Simulation Network Topology

The total handover delay was then calculated as the average sum
of all the measured delays. The average delay incurred by
individual delay components and the total handover delay is listed
in Table 2.

Table 1. Minimum and Maximum Values of the RA Interval
(in seconds) for the Three Reference Test Runs

Table 2. Handover Latency Comparison between the Real
Test Bed and Simulation Model for the Three Reference Test

Runs

6.4 Analysis
Table 2 compares the total handover delay measured in both the
CNI-MIPv6 test-bed and the xMIPv6 Simulation model and
figures 6-2 and 6-3 depicts the results graphically.
As depicted in Table 2, it is evident that overall, the operational
and functional characteristics and performance of the xMIPv6

simulation model is very much similar to that of the CNI-MIPv6
test bed, in that the RA interval mainly affects the delay
component TMD, whereas the other MIPv6 protocol specific delay
incurring components (THR,, TRR, TCR) are independent of the
effect of RA interval, and hence remain constant through all the
test runs in both the test bed and simulation model. This is
expected as the value of RA interval has a direct impact on the
time it takes for the MN to determine whether it has moved to a
new network or not, as explained in section 6.1. The value of RA
mainly impacts the TRD component of the TMD whereas TDAD
remains constant and TL2 depends on the performance and quality
of the WLAN hardware.
Comparing the results of the real test bed and simulation model, it
is seen that there is not much difference in the various delay
components except in TMD which is comparatively more
pronounced for Test 1 than for the other tests. This can be
explained in terms of the large difference between the minimum
and maximum RA interval and also the difference in the number
of experiments carried out in the two test beds (10 repetitions in
real test bed vs. 2500 repetitions in simulation test bed).
The other delay components are very much constant owing to
strict adherence to the various timing requirements as laid out in
the standard and modelling messages based on real message
formats and IPv6 addressing schemes.

0,00

1,00

2,00

3,00

4,00

5,00

CNI-MIPv6 xMIPv6 Sim CNI-MIPv6 xMIPv6 Sim CNI-MIPv6 xMIPv6 Sim

Test Run

H
an

do
ve

r D
el

ay
 (s

ec
)

Correspondent Registration Delay
Return Routability Delay
Home Registration Delay
Movement Detection Delay

Test 1 Test 2 Test 3

Figure 6-2: Comparison between Various Delay Incurring

Components

1,50

2,50

3,50

4,50

1 2 3

Test Run

H
an

do
ve

r D
el

ay
 (s

ec
)

CNI-MIPv6 Test Bed xMIPv6 Simulation Test Bed

Figure 6-3: Handover Delay Comparison

7. CONCLUSION AND FUTURE WORK
The test results shows the appreciable accuracy and consistent
behaviour of the simulation model in terms of the handover delay
as compared to the handover delay measured in the real test bed.

The accuracy of the simulation framework has been ensured by
modelling messages based on the actual message formats,
carefully selecting and implementing message/event timers and
timeouts and by careful and close conformance and strict
adherence to the relevant standards.
The accuracy of the xMIPv6 simulation model makes it ideal for
building other MIPv6 related mobility management protocols
with a great degree of confidence in its accuracy.
Furthermore the effect of handover delay on higher layer
protocols such as TCP and UDP needs to be compared for both
the real test bed and simulation model.
For the future, features like IP Security and Dynamic Home
Agent Address Discovery (DHAAD) are also planned.

8. ACKNOWLEDGMENTS
We would like to thank Mr. Alain Tigyo for his assistance in
performing simulation measurement tests.

9. REFERENCES
[1] D. Johnson, C. E. Perkins, and J. Arkko, ``Mobility Support

in IPv6'', Request for Comments (Proposed Standard) 3775,
Internet Engineering Task Force, June 2004.

[2] OMNeT++ Community Site, http://www.omnetpp.org, 31st
January 2008.

[3] R. Koodli, “Fast Handovers for Mobile IPv6”, Request for
Comments (Draft Standard) 4068, Internet Engineering Task
Force, July 2005.

[4] H. Soliman, C. Castellucia, K. El Malki, L. Bellier, “
Hierarchical Mobile IPv6 Mobility Management (HMIPv6)”,
Request for Comments (Draft Standard) 4140, Internet
Engineering Task Force, August 2005.

[5] R. Wakikawa et al., “Multiple Care-of Addresses
Registration”, draft-ietf-monami6-multiplecoa-04 (work in
progress), November 2007.

[6] S. Gundavelli et al., “Proxy Mobile IPv6”, draft-ietf-netlmm-
proxymip6-07 (work in progress), November 2007.

[7] V. Devarapalli, R. Wakikawa, A. Petrescu, P. Thubert,
“Network Mobility (NEMO) Basic Support Protocol”,

Request for Comments (Draft Standard) 3963, Internet
Engineering Task Force, January 2005

[8] P. Bhagwat, C. Perkins and S. Tripathi, “Network Layer
Mobility: An Architecture and Survey”, IEEE Personal
Communication , Volume 3, June 1996.

[9] Lai, J., Wu, E., Varga, A., Sekercioglu, A. “A Simulation
Suite for Accurate Modeling of IPv6 Protocols”, 2nd
International OMNeT++ Workshop. January 2002, Berlin,
Germany.

[10] Wu, E., Lai, J., and Sekercioglu, A. 2004. A Simulation
Model of Mobile IPv6 Protocol. Proceedings of the
Australian Telecommunications Networks And Applications
conference - ATNAC’04 (Dec. 204), Sydney, Australia.

[11] S. Thomson, T. Narten, T. Jinmei, ”IPv6 Stateless Address
Autoconfiguration”, Request for Comments (Draft Standard)
4862, September 2007.

[12] R. Droms, et al, “Dynamic Host Configuration Protocol for
IPv6 (DHCPv6)”, Request for Comments (Draft Standard)
3315, July 2003.

[13] T. Narten, E. Nordmark, W. Simpson, H. Soliman,
“Neighbor Discovery for IP Version 6 (IPv6)”, Request for
Comments (Draft Standard) 4861, September 2007.

[14] A. Conta, S. Deering, “Generic Packet Tunneling in IPv6
Specification”, Request for Comments (Draft Standard)
2473, December 1998.

[15] Arunesh Mishra, Minho Shin, William Arbaugh, “ An
Empirical Analysis Of The IEEE 802.11 MAC Layer
Handoff Process”, ACM SIGCOMM Computer
Communication Review, Volume 33 , April 2003.

[16] MIPL Mobile IPv6 for Linux, http://www.mobile-ipv6.org,
31st January 2008.

[17] Network protocol analyzer, http://www.ethereal.com, 31st
January 2008.

http://www.omnetpp.org/
http://portal.acm.org/results.cfm?query=author%3AArunesh%20Mishra&querydisp=author%3AArunesh%20Mishra&coll=GUIDE&dl=GUIDE&CFID=8740602&CFTOKEN=66803680
http://portal.acm.org/results.cfm?query=author%3AMinho%20Shin&querydisp=author%3AMinho%20Shin&coll=GUIDE&dl=GUIDE&CFID=8740602&CFTOKEN=66803680
http://www.mobile-ipv6.org/
http://www.ethereal.com/

	1. INTRODUCTION
	2. MIPv6 PROTOCOL OVERVIEW
	3. xMIPv6 SIMULATION MODEL SUMMARY
	3.1 xMIPv6 Nodes
	3.2 xMIPv6 Messages
	3.2.1 Mobility messages.
	3.2.2 IPv6 Neighbor Discovery Messages

	4. MODIFICATIONS TO THE EXISTING MODULES / CLASSES
	4.1 IPv6InterfaceEntry
	4.2 RoutingTable6
	4.3 IPv6NeighbourDiscovery
	4.4 IPv6

	5. FUNCTIONAL SUMMARY OF NEW MODULES
	5.1 IPv6Tunneling Module
	5.1.1 Generic Tunneling

	5.2 Binding Cache and Binding Update List Modules
	5.3 xMIPv6 Module
	5.3.1 (Re-)Transmission Timers
	5.3.2 Autoconfiguration in visited networks
	5.3.3 Returning Home
	5.3.4 Return Routability Procedure
	5.3.5 Type 2 Routing Header and Home Address Option

	6. MEASUREMENTS AND RESULTS
	6.1 Handover Delay Components
	6.2 CNI-MIPv6 Test Bed
	6.3 xMIPv6 Simulation Model
	6.4 Analysis

	7. CONCLUSION AND FUTURE WORK
	8. ACKNOWLEDGMENTS
	9. REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

