
A realisitic VoIP traffic generation and evaluation tool
for OMNeT++

Mathias Bohge
Telecommunication Networks Group, TU Berlin

Einsteinufer 25, 10587 Berlin, Germany
bohge@tkn.tu-berlin.de

Martin Renwanz
Telecommunication Networks Group, TU Berlin

Einsteinufer 25, 10587 Berlin, Germany
renwanz@tkn.tu-berlin.de

ABSTRACT
The fraction of voice over Internet Protocol (VoIP) based
telephone calls among the totality of voice based commu-
nication acts has been significantly growing during the last
years. In wired, as well as wireless communication appli-
cations, VoIP is expected to completely replace former cir-
cuit switched telephony approaches, and is, thus, a major
factor to be considered when designing sophisticated com-
munication networks. The C++ based simulation library
OMNeT++ has gained a lot of attention among the com-
munication networks research community. It is being used
as a design tool for next generation networks and their per-
formance evaluation. In this paper, we present an OM-
NeT++ based VoIP traffic generator that creates realistic
VoIP packet streams thanks to the utilization of real au-
dio data and an existing VoIP standard codec. Moreover,
by applying ITU-T’s perceptual evaluation of speech qual-
ity (PESQ) approach at the sink, the perceived quality of
a transmitted VoIP stream can be determined. The pro-
cess of creating, transmitting, receiving and evaluating VoIP
streams is carefully explained. Some examples are presented
and an exemplary quality evaluation is done. 1

Keywords
Voice over IP, VoIP, G.726, PESQ, OMNeT++, Simulation,
Quality Evaluation

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

1. INTRODUCTION
The group of voice over Internet protocol (VoIP) related

applications belongs to the fastest growing Internet appli-
cations today. Compared to the traditional circuit switched

1This work has been supported by the German Ministry
of Education and Science (BMBF) and Ericsson Research,
Germany, in the context of the project ScaleNet.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OMNeT++ 2008March 3, 2008, Marseille, France
Copyright 2008 ACM 978-963-9799-20-2 ...$5.00.

telephone service, packet switched VoIP telephony requires
significantly less system bandwidth per call, and, thus, is ex-
pected to completely displace the plain old telephone system
(POTS). Moreover, VoIP has entered the domain of wireless
applications. It is being used over wireless local area net-
works (WLANs), as well as in global cellular systems, such as
the Universal Mobile Telecommunications System (UMTS).
However, especially in WLAN [1], but also in cellular [2]
and even wired applications, the use of VoIP poses a high
number of challenges due to its special transmission require-
ments, such as low delay, or low jitter. Even though VoIP
has been around for quite some time, there is a crucial need
for an improvement in VoIP transmission performance in al-
most all networks. Moreover, the creators of next generation
communication networks have VoIP as one of the major fac-
tors that determine the network design. As a consequence,
there is a lot of VoIP related communication networks re-
search going on at the moment.

Simulation tools are a frequently used opportunity to ex-
plore communication network behavior. Simple models of
upcoming sophisticated networks are relatively easy to be
implemented. Moreover, simulation models that can be used
for testing performance increasing ideas already exist for a
high number of different network types. The C++ based
simulation library OMNeT++ [3] has gained a lot of atten-
tion among the communication networks research commu-
nity. At the simulator’s project page, there is a high num-
ber of standard network implementations, modules, items,
as well as simulation tools freely available. However, to the
best of our knowledge, there is no VoIP traffic generator im-
plementation among the available tools. Hence, so far each
OMNeT++ user that wanted to test his simulated network
on VoIP traffic behavior had to implement its own VoIP
traffic generator. As a consequence, there is no unique way
of treating VoIP in OMNeT++ simulations.

In this paper,we present an OMNeT++ based VoIP traf-
fic generation and evaluation tool that creates realistic VoIP
packet streams thanks to the utilization of real audio data
and the application of a VoIP standard codec G.726 [5]. It
takes an arbitrary sound file (e.g. WAV or MP3 format)
as input, creates according packet streams that are sent
via standard OMNeT++ connections. Moreover, it tracks
packet errors, and reassembles the sound file at the receiver
side, such that the original can be compared to the received
version using ITU-T’s perceptual evaluation of speech qual-
ity (PESQ) standard [6]. In the following, the process of cre-
ating, transmitting, receiving and evaluating VoIP streams

WAV/MP3

IT
U−

T
P.

86
2

PE
SQ

 T
O

O
L

Generator
VoIPGenerator.cc

Soundfile Packetstream
VoIPSink.cc

Sink

X
PESQ

Value

 Original

G.726 coded
Degraded

G.726 coded

OPTIONAL
Packettrace

Figure 1: The presented tool consists of the packet generator, and a sink. Optionally the transmission results
can be used as input for ITU-T’s perceptual evaluation of speech quality (PESQ) tool to obtain the according
PESQ value.

MOS Quality Impairment

5 Excellent Imperceptible
4 Good Perceptible but not annoying
3 Fair Slightly annoying
2 Poor Annoying
1 Bad Very annoying

Table 1: ITU-T’s Mean opinion score (MOS).

is carefully explained. Some examples are presented and an
exemplary quality evaluation is done.

The remainder of the paper is structured as follows: In
the next chapter, we briefly review the PESQ idea. Then, in
Chapter 3, the general design and functionality of our tool
is introduced. In Chapter 4, we explain how to download
and install the required components. Moreover we introduce
the VoIP related simulation parameters in use. Afterwards,
in Chapter 5, we show some example studies that are easy
to be reproduced. Finally, in Chapter 6, we present our
conclusions.

2. PESQ
PESQ stands for ’Perceptual Evaluation of Speech Qual-

ity’ and is an enhanced perceptual quality measurement for
voice quality in telecommunications. PESQ was specifically
developed to be applicable to end-to-end voice quality test-
ing under real network conditions, like VoIP, POTS, ISDN,
GSM etc.

Each PESQ test results in the mean opinion score (MOS),
which expresses voice quality. The PESQ MOS as defined by
the ITU recommendation P.862 [6] ranges from -0.5 (worst)
up to 4.5 (best). This is different from ITU’s original MOS
scale, which ranges up to 5.0 (see Table 1). The explanation,
however, is simple: PESQ simulates a listening test. It, thus,
is optimized to reproduce the average result of all listeners.
Statistics show that the best average result one can expect
from a listening test is ca. 4.5 (it seems like human beings
are always cautious to score a 5, meaning ”excellent”, even
if there is no degradation at all). In order to differentiate
between the original MOS and the PESQ-MOS value, we
will simply refer in the following to the PESQ-MOS value
as PESQ value.

3. VOIP TOOL DESIGN
The general design of the VoIP traffic generation and eval-

uation tool is shown in Figure 1. It mainly consists of a VoIP
packet generator and a VoIP sink.

3.1 VoIP packet generator
The VoIP packet generator’s task is to create a stream

of VoIP packets out of an arbitrary sound file. Before the
actual simulation, the generator parses the input sound file
and fragments it into pieces that fit into a VoIP packet,
whose size is determined by the combination of the VoIP pa-
rameters samplesPerPacket and codeRate (for a detailed
description of all VoIP related simulation parameters see
Section 4.4). For the audio-file analysis, the free C++ au-
dio/video library avcodec of the FFmpeg project is used [7].
The packet-size audio snippets are individually parsed. De-
pending on the individual maximum signal amplitude, the
packet generator decides on whether an actual VoIP packet,
or a silence packet should be sent to represent the related
samples at the sink. The decision is based on a comparison
between the maximum signal amplitude and the selected
silenceThreshold parameter (see Section 4.4). The packet
creation information is stored in a packet trace list (see Sec-
tion 3.3 for detailed information about the trace).

Once the actual simulation is started, the generator parses
the packet trace list for packet generation: at initialization,
it reads the transmission time of the first packet to be sent
and schedules an according event (in OMNeT++ this relates
to self-message scheduling). If the event execution time is
reached, the related packet is sent to the sink, the trans-
mission time of the next packet is read from the trace, and
an according event is scheduled. Note that the audio con-
tents are not actually sent. Instead, a standard OMNeT++
IP message of according size is transmitted. All audio data
handling is done at the sink.

3.2 VoIP sink
For each packet that arrives at the sink, the arrival time

is logged in the packet trace. In addition, using the stan-
dard OMNeT++ cMessage error handling functionality, the
packet is checked for transmission errors. An according en-
try is added to the trace. The trace is then used to create
two different wave files:

1. a wave file representing the original sound file at a
sampling rate of 8000Hz, and

2. a wave file representing the transmitted G.726 encoded
VoIP stream, including silence packets and packet er-
rors.

Note that all erroneous packets are omitted. They are
replaced by silence in the reconstructed sound-files. For hu-
man subjective evaluation, the created sound files can be
played in standard wave file players.

Also note that the avcodec library contains a number of
different codecs that might be used to replace the chosen
G.726. Since our implementation is not very G.726 specific,
the migration to another codec should be quite easy.

If the PESQ evaluation switch pesqV alueComputation
is set to 1, the wave files are piped into ITU-T’s PESQ
evaluation tool. The resulting PESQ value is piped back
and stored, together with the number of silence packets and
the number of transmission errors, in the results log-file.
Note, however, that the ITU-T’s PESQ tool needs to be
individually downloaded and properly installed (for details
on prerequisites and installation see Section 4).

3.3 VoIP packet trace
The VoIP packet trace is created at the generator. Addi-

tional information about transmission errors and the packet
arrival time is added at the sink. It is held in memory, such
that both entities have direct access to it. However, if the
writeTracesToDisk switch is set to 1, the trace is written
to disk and can be used for further processing and analysis.
For each packet belonging to a VoIP stream, the trace holds
the following information:

• transmission time

• arrival time

• type (VoIP/silence)

• size (packet size in bit)

• pos/wav (position in the related wave-file)

• packetNo (VoIP stream packet number)

• error (packet erroneous true(1)/false(0))

• wavfile (the wave file the packet belongs to)

Recall that a single VoIP stream consists of multiple con-
catenated sound files, if random sound file selection is chosen
(see Section 4.4) and the selected simulation time is greater
than the duration of the randomly selected sound file.

If, due to simulation time limits, some sound packets are
not send, those packets are marked with the packet number
’−1’in the trace file.

4. USING THE VOIP TOOL
In this section we explain how to set up and use the tool.

4.1 Prerequisites
In order to use our VoIP traffic generation and evalua-

tion tool you need to download and install a working OM-
NeT++ version (3.1 or higher) from [3] (note that for OM-
NeT++ to run, you will also have to download the appro-
priate TK and TCL libraries). If you want to evaluate the
VoIP transmission using ITU-T’s P.862 PESQ tool, you need
to download and install it as well. The P.862 standard in
combination with the evaluation tool source code is avail-
able at the ITU homepage [4]. After having OMNeT++
(and optionally the PESQ tool) up and running, you can
download our VoIP traffic generation and evaluation tool
from [8]. Note that the download file OMNeT VoIPTool.tgz
is a zipped tar-archive file, which can be decompressed call-
ing ’tar xvzf OMNeT VoIPGenerator.tgz’ on a Linux shell,
or using an arbitrary archive manager.

4.2 Installation
Once the archive file is downloaded and decompressed,

switch to the just created VoIPGenerator directory. Then
execute the shell script makemake.sh, which generates a
Makefile that includes all necessary libraries (using the opp
makemake command). Calling makemake.sh will also set
links to the codec libraries, which are stored in the libs
folder. After that, type make to compile the generator
code. If the compilation was successful, a VoIPGenerator
executable has been created. The generator is started by
executing it. Note that if you want to use ITU-T’s PESQ
evaluation tool, the executable file pesq must be stored in
the VoIPGenerator directory.

4.3 OMNeT++ Example Network Setup
The present VoIP traffic generation and evaluation tool

can be used in arbitrary OMNeT++ simulation environ-
ments. It can e.g. be used in combination with the OM-
NeT++ standard framework INET (see [3] for more details).
An exemplary combined application of the VoIP tool and the
INET framework is described in the Appendix. However,
for simplicity reasons, in the following we assume the tool
to be used as a stand-alone tool. We provide an according
simple example network setup (stored in the SimpleNet.ned
file) consisting of a single source, a single sink, and a wire-
less channel. Note, that in OMNeT++ the wireless channel
characteristic is determined by the following properties:

• propagation delay (in seconds)

• bit error probability

• datarate (in bits/second)

These wireless channel characteristics can be changed by
modifying the according values in the SimpleNet.ned file.

4.4 VoIP Simulation Parameters
This section provides an overview of the VoIP generation

and evaluation related simulation parameters we use in our
implementation. All parameters can be accessed and modi-
fied in the omnetpp.ini. file.

Samples per packet.
The number of audio samples that are sent in a single

packet. Note that G.726 works with 8000 Hz as sampling fre-
quency. Thus, the length tpacket (in seconds) of each sound

snippet that corresponds to a single VoIP packet can be
computed as follows:

tpacket =
samplesPerPacket

8000
(1)

Consequently, the length of a standard 64 samples packet
can be computed to tpacket = 8ms.

Coding rate.
The G.726 codec supports 4 different coding rates (in

bits/second): 16000, 24000, 32000, 40000. Coding rates dif-
ferent from these four are not supported. Note that the
VoIP packet payload size is determined by the combination
of the two parameters samples per packet and coding rate.

Voip header size.
The VoIP header size in bits. A common size is 32bits (=

4bytes), which is the size of the standard real-time transport
protocol (RTP) header. A regular VoIP packet consists of
the header and the coded audio data.

Silence threshold.
Our generator, as most VoIP generators, owns the oppor-

tunity to create silence packets that omit the VoIP payload,
if the amplitude of the sound signal is low. In this particular
case, the highest absolute amplitude value among the cur-
rent samplesPerPacket samples is compared to the thresh-
old. If it is smaller, the samples are omitted. Consequently,
silence packets solely consist of the VoIP header. Thus, their
utilization significantly increases the network’s efficiency. To
disable silence packet generation in the simulation, the value
can be set to 0.

Write-traces-to-disk switch.
The tool provides the possibility to store the information

about the transmission by creating traces and store them
on the disk. The traces are written to disk, only if this
parameter is set to ’1’.

Tracefile base-name.
A string variable that is used as the first part of the name

of created trace-files, if writeTracesToF ile is set to 1.

Results file name.
A string that holds the name of the file that logs the sim-

ulation results, such as transmission errors, silence packets
and total number of packets, and (optional) the PESQ val-
ues.

Sound file directory.
Another string variable that holds the path for the sound

files to be processed by the generator.

Sound file selection.
This string holds the name of the sound file to be used. If

it is set to ”random”, the generator randomly selects a sound
file from the sound file directory.

Converted sound file names.
The sink creates two wav files once all packets of a VoIP

stream are received:

1. a down-converted (8000Hz) wave file of the original

Parameter Value

Nr of Soundfiles 4
Coderate 16; 32; 40 kBit/s
Silence Threshold 0; 100

OMNeT++ channel delay 0 s
OMNeT++ channel error (BEP) 0; 10e-3; 10e-4
OMNeT++ channel data rate 2 MBit/s

Table 2: Example VoIP stream and OMNeT++
channel parameter settings.

sound file, and

2. a (degraded) wave file that corresponds to the trans-
mitted VoIP stream.

The two wave files serve as input for the PESQ tool, if PESQ
evaluation is switched on.

PESQ value computation switch.
If set to 1, the two G.726 coded wav files (original and

by transmission degraded version) constructed at the sink
are piped to ITU-T’s PESQ tool. Recall that it needs to
be correctly installed (see Section 4.2). The PESQ value is
computed and piped back to the sink for furhter processing.

5. EXAMPLE SIMULATION
Using the simple OMNeT++ example network setup in-

troduced in Section 4.3, we have conducted a number of
example test runs. We have tested our tool by utilizing four
different input sound files, three different code rates, two
different silence threshold values, as well as three different
OMNET++ channel error (bit error probability - BEP) set-
tings (for details see Table 2).

5.1 Results
In Figure 2 the simulation results are shown. The two

graphs on top represent the perceptual evaluation of speech
quality (PESQ) values of the four files in an ideal chan-
nel scenario (channel error is set to 0). By comparing the
values on the left side, which represent the quality for the
G.726 encoded audio files without silence packet generation
(silenceThresh set to 0), with the right side values, which
correspond to the adequate files assuming silence packet gen-
eration with a silenceThresh set to 100, it can be seen that
the use of silence packets can significantly degrade the per-
ceived VoIP stream quality. Note that the degradation of
the music sound files (music loud.mp3 and music soft.mp3)
is smaller, because the fraction of silence packets among all
generated packets per stream is smaller than for the voice
files. In all cases, the PESQ value increases with the en-
coder’s code rate (16kBit/s, 32kBit/s, 40kBit/s). In some
cases, the optimal PESQ value of 4.5 is almost reached.

The lower two graphs show the results of the simulated
non-ideal channel scenarios. In all cases, silence packet gen-
eration with a silenceThresh set to 100 is considered. At
the left side, the packet errors subject to the encoder’s code-
rate and the channel error setting (BEP) are presented. As
expected, in all cases the order of magnitude of the packet
errors decreases with the order of magnitude of the BEP

"talk_1.wav" "talk_2.wav" "music_loud.mp3" "music_soft.mp3"

−1

0

1

2

3

4

P
E

S
Q

 v
al

ue
No Errors, Silence Threshold = 0

16 kBit/s
32 kBit/s
40 kBit/s

"talk_1.wav" "talk_2.wav" "music_loud.mp3" "music_soft.mp3"

−1

0

1

2

3

4

P
E

S
Q

 v
al

ue

No Errors, Silence Threshold = 100

16 kBit/s
32 kBit/s
40 kBit/s

"talk_1.wav" "talk_2.wav" "music_loud.mp3" "music_soft.mp3"
0

100

200

300

400

500

600

700

800

900

1000

pa
ck

et
 e

rr
or

s

Packet errors subject to channel errors and coderate

16 kBit/s
32 kBit/s
40 kBit/s

10e−410e−410e−410e−4

10e−3 10e−3 10e−3 10e−3

"talk_1.wav" "talk_2.wav" "music_loud.mp3" "music_soft.mp3"
−1

0

1

2

3

4

5

P
E

S
Q

 v
al

ue

PESQ value subject to channel errors and coderate

16 kBit/s
32 kBit/s
40 kBit/s

10e−3

10e−4

10e−3

10e−4

10e−3

10e−4

10e−3

10e−4

Figure 2: The simulation result graphs.

(10e-3, 10e-4). However, note that the number of packet
errors per file increases with the encoder’s code-rate. This
is due to the fact that higher code-rates yield larger VoIP
packets, and large packets are more susceptible to bit errors
than small packets for the same BEP.

The related PESQ values are shown at the lower right side
of Figure 2. Comparing the PESQ values to the values in
the two graphs on top, it can be seen that in all cases a
significant degradation due to channel errors has happened.
Note that the PESQ values in the low channel error set-
ting (BEP=10e-4) mostly increase with the encoder’s code-
rate, while they decrease in the high channel error scenario
(BEP=10e-3). This is due to the fact that the difference
in packet errors is much smaller in the low channel error
scenario, and, thus, a higher code rate accounts for a bet-
ter sound quality. In the high channel error scenarios, the
additional amount of erroneous packets when switching to
a higher code-rate is so large that the quality loss due to
packet losses is larger than the quality gain due to the higher
encoder code-rate.

6. CONCLUSIONS
The increasing importance of VoIP related traffic in to-

day’s communication networks makes it one of the most im-
portant factors when it comes to the design of future com-
munication network architectures. A major tool for design-
ing communication networks are network simulators, such
as the C++ based network simulation library OMNeT++.
However, so far no OMNeT++ based VoIP generation and
evaluation tool has been standardized and made available to
the OMNeT++ community. In this paper we have presented
an according tool that offers the opportunity to generate,
transmit, receive and evaluate realistic VoIP packet streams
within the standard OMNeT++ simulation environment. It
uses a standard VoIP codec (G.726) and ITU-T’s PESQ
evaluation tool to process arbitrary sound files, convert them
to VoIP packet streams, and evaluate the stream’s quality
in terms of ITU-T’s perceptual evaluation of speech quality
(PESQ) metric. We believe that our VoIP traffic generation
and evaluation tool will significantly ease and improve the
application of OMNeT++ in the context of VoIP related
communication network research.

7. REFERENCES
[1] W. Wang, S.C. Liew, and V.O.K. Li, “Solutions to

performance problems in VoIP over a 802.11 wireless
LAN,” IEEE Transactions on Vehicular Technology,
vol. 54, pp. 366–384, Jan. 2005.

[2] W. Bang, K.I. Pedersen, T.E. Kolding, and P.E.
Mogensen, “Performance of VoIP on HSDPA,” in Proc.
of the 61st IEEE Vehicular Technology Conference
(VTC 2005-Spring), Stockholm, Sweden, May 2005,
vol. 4, pp. 2335–2339.

[3] “Omnet++ 3.3,” Project Homepage:
http://www.omnetpp.org [status:12/07/2007].

[4] Telecommunication Standardizatoin Sector
of ITU (ITU-T), “Perceptual evaluation of speech
quality (PESQ) tool, available at:
http://www.itu.int/rec/t-rec-p.862-200102-i/en
[status:12/07/2007],” .

[5] The International Telegraph and Telephone
Consultative Committee (CCITT), “Recommendation
g.726: 40, 32, 24, 16 kbit/s adaptive differential pulse
code modulation (ADPCM),” Oct. 1990.

[6] Telecommunication Standardization Sector
of ITU (ITU-T), “Recommendation P.862: Perceptual
evaluation of speech quality (PESQ): An objective
mehtod for end-to-end speech quality assessment of
narrow-band telephone networks and speech codecs,”
Feb. 2001.

[7] FFmpeg Project, “AVCODEC: the leading audio/video
codec library,” Project web-page:
http://ffmpeg.mplayerhq.hu [status:12/12/2007].

[8] M. Bohge and M. Renwanz, “A realistic VoIP traffic
generator for OMNeT++, source code,” available at
http://www.tkn.tu-berlin.de/research/omnetVoipTool
[status: 2007/12/12].

APPENDIX

A. COMBINED USAGE WITH INET
The VoIP tool presented in this paper was originally im-

plemented as a stand- alone simulation. However, only a few
modifications are necessary to use the tool in combination
with other simulation models, such as the INET framework
(a sophisticated TCP/IP protocol suite for OMNeT++),
which is freely available at the OMNeT++ homepage [3].
To ease the usage of the VoIP tool with this frequently used
framework, an additional source code archive file that in-
cludes all necessary modifications is provided on our project
homepage [8].

A.1 Additional Installation Steps
In addition to the regular installation process (described

in Section 4.2), the following steps need to be taken: In or-
der to use the INET enabled version of our tool (that, of
course in an initial step needs to be downloaded from our
project homepage [8]), you need to download and build the
INET framework.

After unzipping the VoIP toll source code and before ex-
ecuting the shell script makemake.sh, open it with any text
editor, and edit the following line concerning your system:

INET=”/path/to/your/INET”.

Afterwards execute it. In addition to creating links to all
necessary libraries, calling makemake.sh will also create the
script you need to execute in order to run the simulation:
InetVoIPTest.

Then, type ’make’ to compile the generator code. The
dynamic library OMNeT VoIPTool INET.so has been cre-
ated, if the compilation was successful. The generator can
now be started by executing the InetVoIPTest script. Note
that, opp makemake names the output file (here, the name
of the dynamic library) according to the name of the folder
the command is executed in. Thus, if you move the files
to another folder, the library will have a different name. If
you choose to move the files to another folder, you need
to modify the file omnetpp.ini : The name of the library to
load must be specified (without the .so extension) in the line
”load-libs =” in the General section.

Recall that if you want to use ITU-T’s PESQ evaluation
tool, the executable file ’pesq’ must be stored in the ’VoIP-
Generator’ directory.

