
SIMCAN: A SIMulator Framework for Computer
Architectures and Storage Networks

Alberto Núñez, Javier Fernández, Jose D. Garcia, Laura Prada and Jesús Carretero
Architecture Group, Computer Science Department
Universidad Carlos III de Madrid, Leganés. Spain

{anunez, jfmunoz, jdgarcia, lprada, jcarrete}@inf.uc3m.es

ABSTRACT
This paper presents an OMNeT-based Framework to simu-
late large complex storage networks, with its corresponding
underlying subsystems (I/O, Networking, etc.). With this
Framework, custom environments can be configured and de-
ployed on a flexible and easy way. The most interesting fea-
tures of this Framework are its flexibility and scalability, so
the simulation of distributed storage environments can be
performed with the required detail level. Thus, we will able
to study the behaviour of complex distributed environments
to several purposes, like detecting system bottlenecks, cal-
culating the scalability degree of the system or testing the
performance of developed algorithms, without using a real
system.

Keywords
I/O simulation, distributed systems simulation, network stor-
age simulation

1. INTRODUCTION
Nowadays, distributed and parallel computing is increas-

ing its role due to the fast evolution on computer networks
and communication technologies. The complexity of this
systems and the need of storing great amounts of data, sug-
gest that the process of performing studies of real complex
distributed environments, will becomes a time-consuming
and expensive task.

There are two ways to perform studies of complex dis-
tributed environments: running tests on a real system or
on a simulated environment that represents the real system.
The first choice is more complex and expensive; it requires
having the real hardware of the system, with their nodes
connected with the corresponding network, etc. Meanwhile,
performing simulations do not require the real hardware; ba-
sically it needs a computer system of any kind to execute the
program that simulates the real environment behaviour.

Another point to be considered is the speed of the whole
testing process. In most cases, developing and perform-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OMNeT++ 2008 March 3, 2008, Marseille, France
Copyright 2008 ACM 978-963-9799-20-2 ...$5.00.

ing real tests is slower that simulated tests. Moreover, real
tests should be performed as they are, while simulated tests
can be improved, parallelizing their execution, on a cluster,
where the performance can be scaled with the number of
nodes involved.

The scalability of the tests is another feature to have in
mind. Scaling the architecture of the real system is more
expensive and time-consuming that performing the same
changes in a simulated environment. Generally, simulated
environments are parameterized, thus, making a change in
the simulated architecture only requires changing some pa-
rameters.

Another feature that makes simulations a good choice for
studying complex distributed environments is when the real
system does not exist. Simulation process let us test new
architectures before building them.

The main problem with the use of simulated tests instead
of real tests is the accuracy of the results. The simulations
have to obtain results that must be similar enough to those
obtained on a real system. Obtaining and assuring this ac-
curacy is the problem that must be solved when designing
new simulation environments.

Our primary goal is to develop a Framework that let us
make simulated storage networks environments with its cor-
responding underlying subsystems, like the I/O subsystem
and networking subsystem. A real storage network con-
tains several components that must been simulated, like
Disk Drives, File Systems, Volume Managers, Schedulers,
Caches, Communication Networks, etc. Storage subsystem
performance is one of the major concerns that arise on this
kind of large computing networks. The I/O subsystem is
usually a system bottleneck in most of the computing sys-
tems.

The proposed Framework is being developed using OM-
NeT++ [1]. OMNeT++ is a discrete event simulation en-
vironment that let us develop modules and communicate
them.

The most important features of the proposed Framework
are flexibility and scalability. SIMCAN follows a modular
and hierarchical architecture, like OMNeT++. Each mod-
ule represents a component in the system, that can con-
tain other nested modules, or not. A module that does not
contain nested modules represents an independent entity in
SIMCAN (for example, a Disk Drive, a File System, etc.).
These kinds of modules implement the entity’s behaviour.

With our proposed Framework we intend to validate and
verify distributed algorithms, locate system bottlenecks and
detect poor resources management, with an acceptable accu-

racy degree and performance. To make it possible, a module
in SIMCAN can be implemented with a custom detail level,
thus we can obtain more accurate results if we implement a
module with a high detail level. An example of a high level
entity implementation is the emulation of a File System. We
can implement a File System algorithm to manage blocks on
a module that represents this component. Also, if a module
does not require a high detail level, it can be implemented
with stochastic models. This last kind of implementation
only requires a stochastic model to simulate a component’s
behaviour. Mixing these two kinds of implementations, we
are able to make custom environments to get the best results
and performance.

The rest of paper is structured as follows: Section 2 shows
some state-of-the-art works. Section 3 presents the archi-
tecture of our proposed Framework. Section 4 presents a
performance evaluation. Finally, Section 5 presents some
conclusions and future work.

2. STATE OF THE ART
Our work is based on make a Framework that let us sim-

ulate storage networks with customized nodes. Each one of
those nodes could be a compute node or a storage node, with
its corresponding I/O subsystem.

At present, there are many kinds of simulation environ-
ments, like ONMeT++ [1], Parsec [2] or CSIM [3]. These
environments are used to create general purpose simulators
and are not oriented to simulate specific systems.

OMNeT++ is a component-based, modular and open ar-
chitecture discrete event simulation environment that pro-
vides a component architecture for models. Components
(modules) can be parameterized to customize module be-
haviour. Modules at the lowest level of the module hierarchy
encapsulate behaviour and are programmed in C++ using
the simulation library. This is a very important feature be-
cause we have chosen OMNeT++ to develop the proposed
Framework. Currently OMNeT++ is gaining popularity in
the scientific community as well as in industrial settings; also
simulation models are being published on the Net and can
be used freely.

PARSEC is a discrete event simulation language. Basi-
cally consists on a performed C compiler with the capability
to define and create simulation entities and constructors to
message communication between entities. Basically PAR-
SEC consists of three primary components: a parallel sim-
ulation language called Parsec (parallel simulation environ-
ment for complex systems); its GUI, called Pave; and the
portable runtime system that implements the simulation al-
gorithms.

CSIM is a discrete event simulator for describing parallel
processor architectures and software mappings. The CSIM
environment consists of a set of tools for describing parallel
systems, for running simulations, and for viewing simulation
results. The CSIM simulator is the core tool in the tool set.

There are several simulation environments to simulate more
specific scenarios. For example, network simulators like NS
[4] or NetSim [5]. Also, there is a Framework to use with
OMNeT++ called INET [6].

NS is a discrete event simulator targeted at networking
research. NS provides substantial support for simulation
of TCP, routing, and multicast protocols over wired and
wireless (local and satellite) networks.

NetSim is a even-driven network simulator with X win-

dow support that allow an interactive use. Also, NetSim’s
Virtual Packet Technology sets it apart because it actually
emulates the functions of a real network - a real network
that can be custom-designed.

The INET Framework is suited for simulations of wired,
wireless and ad-hoc networks. Beyond IP and UDP/TCP
there is 802.11, Ethernet, PPP, IPv6, OSPF, RIP, MPLS
with LDP and RSVP-TE signalling, and several other proto-
cols. We use INET to establish and perform communication
between nodes. INET lacks of high detail level in nodes. Its
nodes have applications that make request and serve them,
but we need a more specific customizable node with more
detail level, especially in I/O subsystem.

With those environments we have the network part sim-
ulation, but moreover, we need to simulate compute and
storage nodes. Also there are several simulation environ-
ments to simulate parts of I/O subsystem, like DiskSim
[7]. DiskSim is an efficient, accurate, highly-configurable
disk system simulator developed at the University of Michi-
gan and enhanced at CMU to support research into vari-
ous aspects of storage subsystem architecture. It is writ-
ten in C and requires no special system software (just ba-
sic POSIX interfaces). DiskSim includes modules for most
secondary storage components of interest, including device
drivers, buses, controllers, adapters, and disk drives.

In literature we have found few examples of concrete stor-
age networks simulators. Those simulators are focused on
specific architectures (SAN, NAS, etc) meanwhile SIMCAN
can cover any kind of storage architectures. An example is
SIMLAB [8]. SIMLAB is a simulation environment for stor-
age area networks. It is implemented on C++. Currently,
the class library of SIMLAB contains models for hard disks,
routing nodes and network interfaces. Another work that
simulates storage networks is [9]. This work proposes a Stor-
age Area Network (SAN) simulator. This simulator is able
to consider both real-world I/O traces and synthetic I/O
traffic, message paquetization, faults in links and switches,
virtual channels, different routing algorithms, . . .

Those works can be an approximation of our aim, but we
need a more modular, hierarchical and high detailed model.
Also, we intend to make a Framework to build storage net-
works simulation with a custom detail level, even simulating
networking protocols like TCP or UDP and concrete File
Systems like Ext2 [10] or reiser File System [11].

3. ARCHITECTURE
The SIMCAN Framework consists of a set of modules. All

those modules were developed using OMNeT++. A SIM-
CAN module (like in OMNeT++) is a building block.

The higher level in the SIMCAN architecture consists of
nodes, networks and components that communicate them
(like routers or switches). A node in SIMCAN can act like a
computing node or a storage node. Computing nodes con-
tains applications that performs I/O requests (these kind of
nodes can contain, or not, local storage devices). Storage
nodes contain a complete I/O storage subsystem, with its
corresponding storage devices and the corresponding server
application, like a NFS server.

An example of SIMCAN architecture is showed in figure
1. In this example several clients (computing nodes) make
requests to stored data at storage node (server).

In SIMCAN, each module represents a component of a
real system; for example: Block Servers, Volume Managers,

Figure 1: SIMCAN architecture

Disk Drives, etc. These modules are nested hierarchically,
thus a module can contain zero, one or several modules. A
module that does not contain any module is called entity.
For example an entity can be a Disk Drive, a File System,
a Cache, etc. This kind of modules must implement the
entity’s behaviour.

Figure 7 shows a Block Server module. This module con-
tains 2 modules (a cache module and a disk module). Each
one of these modules (cache and disk) are entities, and con-
tains a corresponding implementation of a cache and disk
behaviour, respectively.

Modules communicate themselves by message passing. Each
module has gates. These gates can be input gates (to receive
messages) or output gates (to send messages). Modules are
connected with links to pass messages. A link communicates
a module output gate with a module input gate.

There are situations in which a message has to be split.
For example, suppose a node that contains 3 Disks. When
a request message arrives to Volume Manager, this module
has to make a request to each disk that contains requested
blocks. If the request contains blocks that are stored in all
disks, at least, Volume Manager will have to make 3 requests,
one per disk.

To manage this kind of messages, a message library has
been developed. This library works as shows figure 2. When
a message arrives to a corresponding module, it is stored in a
local module list (1). Next, the request message is split (2)
on several requests (sub-requests). When all sub-requests
had been created, then all of them will be inserted in a
sorted list (3). The sort algorithm depends on the class that
manages the corresponding module, at present there are sev-
eral implementations (elevator algorithm, FIFO, etc.). Each
one of these sub-requests will be sent to the corresponding
module (4) to perform a concrete operation. When these
sub-requests arrive to the module that split them, each one
will be stored with the original request (5). When all sub-
requests arrives, then the original request will be sent back
as a response message (6) and all sub-requests will be deleted
to free memory.

If we want to maintain flexibility, we have to develop a
message that will be compatible with all modules that com-
poses SIMCAN. In other words, all modules must under-
stand the same message. If we had several message types,
we must to develop the same number of modules that un-
derstands each one of these messages. Having a standard
message, we will not have this problem.

The proposed message is a General Purpose Standard
Message that is understood by all modules. Basically, this
message contains several attributes and a serialized param-
eter vector. Following parameters are used to:

• type: Message type. (For example: Configuration
Message, File Request Message, Block Request Mes-

A B C

A

B

C

Z

Request_1 Request_2 Request_3

1

2

3

4

6

5

Request List

Sorted List

Figure 2: Split Message Schema

sage, etc.)

• isResponse: This field shows if a message is a request
message or a response message.

• remoteOperation: This field shows if a message con-
tains a remote operation or a local operation.

• destination: Destination node (used in remote opera-
tions). This field contains the destination node’s host-
name.

• connectionId: Connection identifier. This field is used
to identify a corresponding connection with remote
nodes.

• trace: Message trace. This trace shows all modules
which this message has passed through and the corre-
sponding request number in each of these modules.

• nextModuleIndex: Next module index. If a message
has to be routed to a module hosted in an array module
(for example a File System Array) this field shows the
position in this array that contains the corresponding
module.

• params: Parameter array. The parameter vector is
used to send parameters to the corresponding mod-
ule. Thus we can serialize a message and compute
it by the corresponding module. For example, a file
request from any application contains 3 parameters:
File name, offset and request size. A disk operation
will contain 2 parameters; a block list request and an
operation type (read or write). All parameters are seri-
alized in the source module and unmarshall in destiny
module (like RPCs).

3.1 SIMCAN Hierarchy
The major purpose of SIMCAN is to build storage net-

works. As we said before, the higher hierarchy level in SIM-
CAN consists by nodes, networks a communication devices
(like routers or switches).

Basically a storage network consists of several nodes, a
network and one or several switches or routers that connect
nodes themselves using the communication network.

At present there are developed two node types: computing
nodes and storage nodes.

A computing node (figure 3) contains applications that
generate I/O requests. These requests can be local o re-
mote request. A computing node can contain a local I/O
subsystem, or not.

to/from Net

NET Modules

Virtual File System

ApplicationNFS Client

Figure 3: Computing Node Schema

The other node type is the storage node. This kind of
node must contain an I/O subsystem. Generally, this node
serves I/O requests from computing nodes. This node con-
tains server applications, like NFS servers, FTP servers, etc.
Figure 4 shows a storage node schema.

Networking subsystem consists of all modules related to
send messages between nodes and devices (like routers or
switches) that perform it. At present in SIMCAN, we can
use the INET Framework to simulate real networks like Eth-
ernet, using real protocols, like TCP/IP or UDP (figure 5).

to/from Net

NET Modules

Virtual File System

File Systems

Volume Manager

Block Servers

NFS Server FTP Server

Figure 4: Storage Node Schema

INET modules

Application

to/from Net

Figure 5: Node that uses INET Framework

Another way to simulate a network is using basic features
provided of OMNeT++ to simulate networks. This features
includes propagation delay, bit error rate that specifies the
probability that a bit is incorrectly transmitted and channel
bandwidth. Obviously, first option is very much complex
and cost-expensive than second, but is very much accurate.

With the basic Net no protocol is used (TCP, UPD, etc.).
There is no connection established stage, socket connection
or anything else. Thus, a new module has been developed
to provide this support. This module is called NAL (Net
Abstraction Layer). This module acts like a Net Interface,
creating connections (like sockets) and managing all connec-
tions with corresponding applications (figure 6).

The next step on SIMCAN hierarchy is the modules that
compose a node. Next, all developed modules in SIMCAN
are explained.

NAL

Application

to/from Net

Figure 6: Node that uses basic NET simulation

3.1.1 Block Server
Basically, a Block Server serves I/O requests. This module

contains two entities: a disk Cache and a Disk drive (figure
7). The cache module can be removed, thus a Block Server
will act like a disk drive without cache.

Disk

Cache

Figure 7: Block Server Schema

This cache contains file blocks. Thus, all requested blocks
that are stored in cache, will not been requested to disk.
Also this cache is parameterized; we can configure its hit
ratio and latency time.

A cache memory can be configured establishing several
parameters like latency time and hit ratio. At present day,
there are implemented several kinds of cache in SIMCAN,
like file cache and block cache with several algorithms like
LRU (Last Recently Used). Others features implemented in
the cache module are the read-ahead functionality (with a
customizable window size) and the write-back functionality.

The disk drive serves block requests and calculates the
service time of a corresponding I/O operation. A message
with a block list and an operation type (read or write) ar-
rives to disk. It calculates the service time to perform the
requested operation.

At present day there are developed several Disk drives
in SIMCAN; for example, a Seagate ST3320620AS. Also,
DiskSim library have been added to SIMCAN, thus a DiskSim
disk can be used like a Disk module in SIMCAN. A pend-
ing task is to implement a solid disk, thus a comparison
with another strategies with no hardware limitations can be
made.

3.1.2 Volume Manager
Basically this module manages I/O requests. A Volume

Manager is connected to 1..N Block Servers. One of the
main tasks of this module is to redirect incoming requests to
the corresponding Block Server that contains the requested
blocks.

This module contains three entities: a Volume Manager,
a Cache and a Scheduler. Cache and Scheduler can be re-
moved, this way we can configure a Volume Manager with-
out cache and/or without scheduling policies.

It is important to remark the difference between the Vol-
ume Manager Module and Volume manager Entity. First

Volume Manager

Cache

Scheduler

Figure 8: Volume Manager Schema

one is a module that contains several entities (figure 8). Last
one is an entity that contains a Volume Manager logic.

With this configurable and customizable Volume Manager
Module, we can implement several Disk Systems, like general
purpose Disk Drive, RAID 0 (Striping), RAID 1 (Mirroring),
RAID 5 (Striping with Parity), RAID 6 (Independent Data
Disks with Double Parity) , etc [12].

The Volume Manager entity manages I/O requests, specif-
ically block requests. A Volume manager is associated to
one or several Block Servers. The aim of a Volume Manager
is to redirect the corresponding block request to the Block
Server that contains the requested blocks. Each Volume
Manager contains its own scheduling policies, thus, Volume
Managers can implement load balancing algorithms to im-
prove the disks accesses performance.

A scheduler manages requests using a corresponding sched-
uling algorithm. Depending on component that uses a sched-
uler, it will use a corresponding algorithm. For example, a
Volume Manager module could use a scheduler with an El-
evator Algorithm to improve the disks performance; or a
Round-Robin algorithm, or a FIFO algorithm, etc.

Schedulers can use libraries to manage split messages.
Those libraries had been developed to be used in SIMCAN
modules, as we told in section 3.

3.1.3 File System
This module simulates a File Systems behaviour. One of

the main tasks of a File System is file block managing. It is
directly involved in the total service time.

At present there are several techniques and algorithms for
this purpose. An example is the methodology used in Ext2
File System (bitmaps and i-nodes) or the File Allocation
Table (FAT) used in DOS File System.

The way that service time is affected by file block man-
aging is due to the movement of the disk heads between
two consecutive requests. Thus, the more the file blocks
are grouped together, the less distance the disk head has to
cover. As a result, a smaller service time will be obtained.

Because of this, common file distributions tend to appear
as a set of grouped blocks, where those groups are separated
along the disk. Figure 9 shows an example of a typical dis-
tribution of file blocks.

File

1 2 3 4 5 6

. . . 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 . . .

DiskBlock bunch Hole

Figure 9: File blocks distribution along the disk sur-
face

As we told in section 1, there is two ways to implement

a module in SIMCAN. A File System is a good example to
show these two ways. First way is to emulate the File System
behaviour. Thus, the corresponding algorithms must been
written:

• Managing the distribution of the file blocks on the disk.

• Managing free blocks.

• Storing and managing file metadata information.

• Mapping the requested file blocks into the correspond-
ing disk blocks.

The first method is less interesting because it is diffi-
cult and complex to implement. It requires storing a great
amount of metadata. It should be also remade each time
there was a File System change, etc.

Another way to implement a File System is making a
stochastic model corresponding to the File System behaviour
[13].

The factors involved on the allocation distribution for a
certain file are quite a few, but there are three of them with
capital importance:

• Type of File System, because each one has its own
strategies to manage free blocks and file distribution.

• The amount of free blocks remaining on the disk, be-
cause as the number of free blocks increase, the block
group sizes increase as well.

• The file size, because as the file size increases, the num-
ber of block groups increase as well and also their size.

The purpose of make a stochastic study is to obtain the
file block distribution for a given File System. Usually this is
obtained by implementing the File System behaviour. This
is a very complex and difficult approach. In contrast, a
stochastic model let us obtain a file distribution using sta-
tistical methods and distributions. This approach has the
following advantages:

• It is easier to implement than the File System be-
haviour.

• This method does not require a great amount of stored
metadata.

• It does not need to be re-implemented for each kind of
File System.

The stochastic model is focused on the way the file blocks
are grouped. So file block distribution can be modelled a as
a set of block groups (that we call block bunches) separated
by a number of blocks that do not correspond to this file
(we call this a hole). Therefore, we will have files with only
one bunch (we call them contiguous files), and others that
are composed by several block bunches separated by a hole
(we call them non-contiguous files) as we can see in figure 9.

This block distribution model let us estimate the service
time by obtaining which are the head movements.

3.1.4 Virtual File System
This module simulates a Virtual File System behaviour.

Thus, given a corresponding interface, this module redirects
I/O requests to the corresponding File System. Also, this
Virtual File System is able to manage mounted partitions
across the net. So, this module can send remote I/O re-
quests to remote nodes that contain the requested blocks.
Figure 10 shows a Virtual File System schema. This mod-
ule contains two entities: a cache and a Virtual File System
that implements the Virtual File System logic. Cache mod-
ule can be removed, thus all requests will be sent to the
corresponding module.

Virtual File
System

Cache

Figure 10: Virtual File System Schema

The Virtual File System entity manages file requests and
redirects them to the corresponding File System. This mod-
ule reads a configuration file that contains information about
the interface and corresponding partitions on existing File
Systems. Also, a Virtual File System can manage remote
File System requests.

3.1.5 Applications
In SIMCAN, all entities that represent an application can

be divided in two types: client and servers. A client ap-
plication generates requests and server applications receive
requests to process them and sent back a response to the
corresponding client application. An example of a client
application can be a Trace Player Application. This appli-
cation read a file that contains a trace with operations and
performs them in SIMCAN. Thus, the behaviour of real ap-
plications in a real system can be reproduced in SIMCAN.
An example of server application can be a NFS Server.

One of the major goals of this work is the possibility to
reproduce real system behaviours in SIMCAN. To perform
it, the behaviour of real applications must be reproduced in
a simulated environment. As we told before, Trace Player
Application performs this task. Thus, this application can
reproduce the execution of several real applications, due to
it depends only of its execution trace. This trace is created
while a real application is executed in a real system. All per-
formed operations belonging to a corresponding application
are handled and written to a file. This file will be the trace
that later an application module in SIMCAN will reproduce
in a simulated environment.

3.2 Environment Configuration
To define an environment (Network) two files are needed:

a file that contains the network topology (called network def-
inition file ’.ned’) and a file that contains the configuration
of all modules that composes that network (called config file
’.ini’).

First of all, a network topology must be defined as the
higher level (in network definition file). Basically it con-
sists of nodes, connection devices (like routers or switches),
channels and connections between them.

Once a network topology is defined, all modules that com-
pose that network must be configured. Each module has its
own parameters. Those parameters must be specified in the
config file. The way to set those parameters follow the syn-
tax parameter = value.

When the simulation starts, a set of text files with the
simulation results are generated. Each module generates its
own results file. Also, a global output file is generated.

The generated data in the output files is configurable. The
most important data are queues lengths, response times,
waiting time, transmission times, bandwidth, etc. Another
additional data is the complete message trace, log and de-
bug messages. In a config file we can define the data that
will appear in the result files (output files).

The generated output is treated later with AWK-scripts to
generate graphics. In a near future, a graphical application
to show those results and generate graphics automatically
will be developed. Thus, any user is able to study a com-
plete message trace to validate the simulation and generate
graphics to observe as global network results as local module
results.

4. PERFORMANCE EVALUATION
In order to check the accuracy of the proposed Frame-

work, a comparative between a real system and a simulated
environment (created using SIMCAN) that represents that
system has to be performed.

First step to perform a comparative, between the real sys-
tem and simulated system, is running the same benchmarks
on both systems. Once all benchmarks have been executed,
results obtained in the real system and simulated results
must be compared. Thus, we can study some features of the
simulated environment behaviour, like accuracy, tendency,
etc.

Figure 11 shows the schema of the system where the bench-
marks will be executed. The same system has been simu-
lated using the SIMCAN Framework. This system is com-
posed by two nodes and a switch that connects them.

Figure 11: Test environment schema.

The basic features of each node are:

• Intel Pentium 4 CPU 3.20GHz with hyper-threading.

• Cache size of 1024 KB

• Extended 2 File System

• Seagate Disk (300 GB)

The used network to connect nodes with switch is a Gi-
gabyte network.

The performed benchmarks consist on read and write files
using the NFS protocol. All benchmarks test will be exe-
cuted on computing node. Storage node contains the I/O
subsystem where the files will be created/read/written. Com-
puting node contains a remote mounted directory (using

NFS) on storage node File System, thus, all I/O operations
will be executed on that directory. The list of executed test
is listed below:

• Sequential read of a file of 64 KB.

• Sequential read of a file of 5 MB.

• Sequential read of a file of 100 MB.

• Sequential write of a file of 64 KB.

• Sequential write of a file of 5 MB.

• Sequential write of a file of 100 MB.

Each test has been executed using several block sizes (2
KB, 4 KB, 8 KB, 16 KB, 32 KB and 64 KB). These block
sizes corresponds with the size that the benchmark uses to
read data from files and write data to file. To perform all
those test we have used the IOR benchmark [14]. In order to
obtain reliable test results, each test configuration has been
executed 100 times. A configuration test is given by three
parameters:

• File operation: read or write.

• File size: 64 KB, 5 MB or 100 MB

• Block size: 2 KB, 4 KB, 8 KB, 16 KB, 32 KB or 64
KB.

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

2KB 4KB 8KB 16KB 32KB 64KB

Block Size

T
im

e
(s

)

Block Model Branch Model Real

Figure 12: Sequential File Read (64 KB)

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

2KB 4KB 8KB 16KB 32KB 64KB

Block Size

T
im

e
(s

)

Block Model Branch Model Real

Figure 13: Sequential File Read (5 MB)

All test launched on the simulated environment has been
executed using 2 disk models (block model and branch model).
These two models calculate exactly the blocks correspond-
ing to a concrete I/O request, and they are based on the
Seagate Disk Drive used in the real system. Block model
make requests to disk in groups of a configurable number
of disk blocks (set to 8 in those tests). This model makes

that if a request consists of 64 disk blocks, 8 requests will
be sent to disk. Branch model makes a request to disk per
branch. A branch is a set of contiguous blocks stored on
disk. Thus, there is less number of accesses to disk, and la-
tency times are reduced. Testing these two kinds of models,
we can check which one is the most accurate. The simulated
environment also implements a cache system on the client
side that includes a read-ahead policy (using a window size
of 32 KB) and a write-back policy.

0,0

2,0

4,0

6,0

8,0

10,0

12,0

14,0

2KB 4KB 8KB 16KB 32KB 64KB

Block Size

T
im

e
(s

)

Block Model Branch Model Real

Figure 14: Sequential File Read (100 MB)

0

0,005

0,01

0,015

0,02

0,025

0,03

0,035

2KB 4KB 8KB 16KB 32KB 64KB

Block Size

T
im

e
(s

)

Block Model Branch Model Real

Figure 15: Sequential File Write (64 KB)

Figure 12, figure 13 and figure 14 show the results of a
sequential read of files of 64 KB, 5 MB and 100 MB re-
spectively. In those charts we can see that simulated results
follow the same tendency that the results obtained in the
real system. In all cases, simulated test spent more time
that the test executed on the real system. With files of 64
KB, the two simulated models are almost equals, but branch
model is the most accurate. The rest of the charts show a
more noticeable difference between these two models. The
cause of this is because with small file sizes, disk accesses
are practically the same. When we use greater files, we can
observe that branch model optimize disk access, reducing
latency and get more close to real results.

0

0,1

0,2

0,3

0,4

0,5

0,6

2KB 4KB 8KB 16KB 32KB 64KB

Block Size

T
im

e
(s

)

Block Model Branch Model Real

Figure 16: Sequential File Write (5 MB)

Figure 15, figure 16 and figure 17 show the results of a
sequential write of files of 64 KB, 5 MB and 100 MB re-
spectively. In these charts we can see that simulated results
follow the same tendency that the results obtained in the
real system. In all cases, simulated test spent more time
that the test running on real system, as occurs with file
read tests. In all cases, the two simulated models are very
close. This occurs because the write operations have a great
bandwidth. In this case, disk cache has an important influ-
ence. Due to this bandwidth, write operations have almost
the same behaviour.

0

2

4

6

8

10

12

2KB 4KB 8KB 16KB 32KB 64KB

Block Size

T
im

e
(s

)

Block Model Branch Model Real

Figure 17: Sequential File Write (100 MB)

5. CONCLUSIONS AND FUTURE WORK
In this paper we have presented a Framework to make sim-

ulated storage networks environments. A first comparative
with a real system have been made, performing a compar-
ative with the obtained results of executing a benchmarks
on the real system and the results obtained of executing the
same benchmarks on its corresponding simulated environ-
ment.

The study of the comparative between the two commented
systems shows that the simulated environment is accurate.
The most important feature is that the obtained results in
the simulation environment follow the same tendency that
the results obtained in the real system. Changing bench-
mark parameters, like operation type, file sizes and block
sizes, all results follows the same tendency that the real sys-
tem.

Future works will simulate more sophisticated environ-
ments, with RAID systems and several computing nodes
executing several applications. The final goal is to validate
our proposed Framework with real distributed complex sys-
tems.

6. ACKNOWLEDGEMENTS
This work has been supported by the Spanish Ministry of

Education and Science under TIN2007-63092 contract.

7. REFERENCES
[1] András Varga. The OMNeT++ Discrete Event

Simulation System. In Proceedings of the European
Simulation Multiconference (ESM’2001), Prague,
Czech Republic, June 2001.

[2] Rajive Bagrodia, Richard Meyer, Mineo Takai,
Yu an Chen, Xiang Zeng, Jay Martin, and Ha Yoon
Song. PARSEC: A Parallel Simulation Environment
for Complex Systems. Computer Magazine, 31, Issue
10:77–85, October 1998.

[3] Herb Schwetman. Using CSIM to model complex
systems. In Proceedings of the 20th conference on
Winter simulation, pages 246–253, San Diego,
California, United States, 1988.

[4] Sandeep Bajaj, Lee Breslau, Deborah Estrin, Kevin
Fall, Sally Floyd, Padma Haldar, Mark Handley,
Ahmed Helmy, John Heidemann, Polly Huang, Satish
Kumar, Steven McCanne, Reza Rejaie, Puneet
Sharma, Kannan Varadhan, Ya Xu, Haobo Yu, and
Daniel Zappala. Improving Simulation for Network
Research. Technical Report 99-702b, University of
Southern California, March 1999.
http://www.isi.edu/ johnh/PAPERS/Bajaj99a.html.

[5] Vipul Gupta and Eugen Schenfeld. NetSim: A tool for
modeling the performance of circuit switched
multicomputer networks. In Computer Performance
Evaluation Modelling Techniques and Tools, volume
794/1994, pages 180–192, 1994.

[6] Andras Varga. INET framework, 2007.
http://ctieware.eng.monash.edu.au/twiki/bin/view
/Simulation/INETFramework.

[7] John S. Bucy, Gregory R. Ganger, and Contributors.
The DiskSim simulation environment version 3.0
reference manual. Dept. Electrical and Computer
Engineering, Carnegie Mellon University, Pittsburgh,
PA 15213, June 2003.

[8] P. Berenbrink, A. Brinkmann, and C. Scheideler.
SIMLAB: A Simulation Environment for Storage Area
Networks. In Proceedings of the 9th Euromicro
Workshop on Parallel and Distributed Processing,
pages 227–234, Mantova, Italy, February 2001.

[9] Xavier Molero, Federico Silla, Vicente Santonja, and
José Duato. Modeling and Simulation of Storage Area
Networks. In MASCOTS ’00:Proceedings of the 8th
International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication
Systems, pages 307–314, Washington, DC, USA, 2000.

[10] R. Card, T. Y. Ts’o, and S. Tweedie. Design and
Implementation of the second extended File System.
In Proceedings of the 1994 Amsterdam Linux
Conference, 1994, Amsterdam. The Netherlands, 1994.

[11] Reiser File System Home Page, 2007.
http://www.namesys.com.

[12] David A. Patterson, Garth Gibson, and Randy H.
Katz. A case for redundant arrays of inexpensive disks
(RAID). In Proceedings of the 1988 ACM SIGMOD
international conference on Management of data,
pages 109 – 116, Chicago, Illinois, United States, 1988.

[13] Alberto Núnez, Javier Fernández, Jose D. Garćıa,
Laura Prada, and Jesús Carretero. New Techniques
for Modeling File Data Distribution on Storage Nodes.
In 41st Annual Simulation Symposium (Accepted),
Ottawa, Canada, April 2008.

[14] William Loewe, Tyce McLarty, and Christopher
Morrone. IOR HPH Benchmark, 2003.
http://sourceforge.net/projects/ior-sio/.

