
Opportunistic Networking in OMNeT++

Ólafur Ragnar Helgason
Laboratory for Communication Networks

KTH, Royal Inst. of Technology
10044, Stockholm, Sweden

olafur.helgason@ee.kth.se

Kristján Valur Jónsson
Network Systems and Services Laboratory

Reykjavik University
103, Reykjavik, Iceland
kristjanvj04@ru.is

ABSTRACT
We describe mechanisms for simulating opportunistic and
delay-tolerant networks in the OMNeT++ discrete event
simulator. The mechanisms allow for simulating open sys-
tems of wireless mobile nodes where mobility- or contact
traces are used to drive the simulations. This way mobil-
ity generation is separated from the core OMNeT++ proto-
col simulations which facilitates importing synthetic or real
data from external mobility generators, real mobility track-
ing data or real contact traces. The paper describes the de-
sign and implementation of our mechanisms for OMNeT++
and gives an example of how we have used these to simu-
late opportunistic wireless content distribution in an urban
environment.

Categories and Subject Descriptors
I.6.8 [Simulation and Modeling]: Types of Simulation—
Discrete event

General Terms
Simulation, performance

Keywords
Simulation, Mobility, Opportunistic Networking, DTN, OM-
NeT++

1. INTRODUCTION
Performing experimentation on mobile wireless networks

is a difficult task. It is non-trivial to capture meaningful
measurement results because of the number of external fac-
tors influencing the measurements. Further, reproducing
the environment between individual experiments is almost
always impossible because of interference, fading, mobility
patterns, randomness in the MAC layer contention, weather
etc. Moreover, performing experimentation with a large
number of mobile nodes is expensive and difficult to manage.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OMNeT++ 2008 March 3, 2008, Marseille, France
Copyright 2008 ACM 978-963-9799-20-2 ...$5.00.

These are some of the main reasons for why researchers and
developers turn to simulation in evaluating protocols and
mechanisms for wireless mobile networks.

OMNeT++ [1] is a public-source simulation platform that
has primarily been used for simulating communication net-
works. Some of the main benefits of OMNeT++ are its
modular design, clear structure and strong GUI support.
The Mobility framework [2] for OMNeT++ provides ex-
tensions to the core simulator for supporting mobile wire-
less network simulations. However, the Mobility Framework
lacks support for some of the features that are characteris-
tic for the class of Opportunistic- and Delay-Tolerant Net-
works [3]. These are highly heterogeneous networks of mo-
bile nodes, which are characterized by sporadic node con-
tacts, where end-to-end connectivity cannot be assumed.
Commonly, these sparse ad-hoc networks therefore use some
form of mobility assisted forwarding (also known as store-
carry-forwarding) to deliver messages.

In this paper we describe our design and implementation
of mechanisms for OMNeT++ for simulating opportunistic
networks of wireless mobile nodes. We propose simulations
which are driven by tracefiles, and our mechanisms allow for
simulation of open systems where mobile nodes can dynam-
ically arrive and depart from a simulation scenario. Our de-
sign supports two separate approaches for simulating oppor-
tunistic networking, a mobility driven and a contact driven
approach. With the mobility driven approach, mobility pat-
terns of the nodes are specified in a mobility tracefile and
during a simulation, node contacts arise when two or more
nodes are within communication range. With the contact
driven approach, the time of node contacts and their dura-
tions are specified in a contact tracefile. This approach does
therefore not directly simulate the mobility of nodes but con-
tact events, which are a consequence of node mobility, are
used to drive the simulation.

A common design for these approaches is that we sep-
arate mobility generation of nodes from the core protocol
simulations. There are various benefits associated with this.
First, it facilitates importing both synthetic and real mobil-
ity or contact traces. In particular, it allows for importing
traces from external mobility or contact generators and mo-
bility patterns from GPS tracking methods or real contact
traces. Second, it allows mobility patterns to be generated
in more flexible high-level programming environments while
the protocol simulator focuses on efficiency and short exe-
cution time. Also, by having a single mobility module that
handles traces, instead of a special module for each type of
mobility, simulator core code can be simplified. Third, with

mobility traces it becomes easier to re-execute the same mo-
bility scenario on different protocol parameters and it facil-
itates running same mobility scenarios on different simula-
tors. Properties of the mobility process can also be analyzed
more easily offline. Finally, a standardized trace file format
for the mobile network simulation community would increase
the inter-operability between different tools for generating
mobility patterns and performing simulations.

Currently the Mobility Framework is mainly targeted at
simulating closed systems of wireless mobile nodes. In Op-
portunistic networks, the intermittent connectivity of nodes
arises because of node mobility and delivering messages is
a non-trivial task because nodes carrying them may leave
the area under consideration. Simulating networks of this
kind needs, in many cases, to be done with an open system
approach. The modules we have implemented for our mech-
anisms make use of some of the functionality provided by the
OMNeT++ Mobility Framework and can therefore be seen
as an extension to it. As an application of our work we de-
scribe how we have used our modules to simulate a wireless
content distribution system that utilizes both opportunistic
contacts between mobile nodes and wireless Access Points
to distribute content to mobile nodes [4].

Our contributions to the OMNeT++ community are three-
fold:

• We present XML formats for node mobility and con-
tact traces. The structure of the XML files is specified
by XML-schemas.

• We provide OMNeT++ modules for dynamically cre-
ating and destroying nodes during a simulation run
and for implementing our mobility- and contact-driven
approaches.

• We have implemented a set of tools for generating node
mobility patterns and for converting output from ex-
ternal mobility generators to our XML trace format.

Our code will be made available to other users of OM-
NeT++ free of charge.

The rest of this paper is organized as follows. In section 2
we describe the design of our mechansims and discuss some
implementation issues. Section 3 describes how we have used
our mechanisms to simulate an opportunistic wireless con-
tent distribution system. Section 4 discusses related work
and in section 5 we conclude.

2. DESIGN AND IMPLEMENTATION
Our design allows highly dynamic mobile simulation sce-

narios to be created, where nodes can enter and exit the
scenario during the course of a simulation run. The key
components of our mechanism are the NodeFactory, Trace-
Mobility and ContactNotifier modules. The NodeFac-

tory dynamically manages nodes in the simulation, using
scripted events in a tracefile, which specifies the create and
destroy times of individual nodes, as well as waypoint up-
dates and contact events. We use the same structure for
generated nodes as is commonly done in modules employ-
ing the MF. A node is a compound module of OMNeT++
modules, one of which is a navigator module, derived from
the BasicMobility class of MF. The TraceMobility module
may be used, along with other BasicMobility-derived mod-
ules, when using the mobility driven approach. For a contact

Figure 1: Simulation scenario with a NodeFactory ob-
ject, mobile hosts and a single wireless gateway.

Figure 2: An example mobile node with a generic
mobility module

driven simulation, a ContactNotifier module assumes the
role of the navigator and manages peer contact-establish and
break events as specified in a contact tracefile.

Figure 1 shows an OMNeT++ simulation scenario with
a single global factory object of type NodeFactory. The
scenario contains a single stationary gateway node and sev-
eral dynamically created mobile hosts. The ChannelCon-

trol from MF is required when working with BasicMobil-

ity-derived modules. Figure 2 shows a typical mobile node
object. A generic mobility block, named navigator in this
case, can take on the role of any BasicMobility-derived
object at creation time, including that of TraceMobility.
The Blackboard is utilized for notifying submodules within
the node of location updates. The other modules making
up the node are a wireless interface card, a protocol mod-
ule and controller, all of which are specific to the depicted
application. This example is further discussed in [5].

2.1 Tracefile Format
Two distinct types of tracefiles are supported: Mobility

traces define creation time and position for each dynamically

created node in the scenario. Additionally, destroy events
and waypoint updates may be associated with each created
node. Contact traces define a set of contact establishment
and break events for a population of nodes.

Both the mobility and contact tracefiles are in XML for-
mat, which imposes strict syntax and semantics on the file
structure and allows parsing with open-source software li-
braries and tools. The structure of the tracefiles is defined
by XML schemas, allowing tracefiles to be validated using
commonly available schema validators.

Mobility trace
A mobility trace includes a series of node create, destroy and
waypoint events, providing an arbitrarily fine-grained con-
trol over the lifetime and mobility of a population of nodes.
A mobility trace can be created by mobility generators (e.g.
[6]) or constructed from measurements, e.g. tracking the
movement of a population of nodes equipped with GPS lo-
cators.
Create events specify the arrival of a node with a given

id into the scenario at a given time and location. A node
type designation enables nodes of various types and capa-
bilities to be instantiated. A simulation could e.g. include
pedestrians, vehicles and access points, all differing in ca-
pabilities and resources. A mobility model designation can
optionally be included. The default is TraceMobility, but
any BasicMobility-derived mobility modules can be speci-
fied here, allowing mobility models to be mixed in the same
simulation. A optional name can be used to specify a string
for display in a GUI environment or output traces. Sim-
ilarily, an icon can be specified for easier visualization of
different node roles or classes. Nodes are created at rest,
and a waypoint command is required for a TraceMobility

enabled node to start its journey. The parameters in effect
for nodes with other mobility models, e.g. random waypoint
(RWP), take effect at create time and must be specified in
the initialization file for the scenario.
Waypoint events specify a waypoint change, i.e. the next

destination on a nodes journey. The waypoint event spec-
ifies a node id and activation time. A node moves with a
fixed speed on the leg between the current and destination
waypoints. Note that pauses can be implemented by letting
the journey between two successive waypoints be shorter in
duration than the difference in their activation times. Way-
point events are only required when nodes change direction
or velocity. Relatively compact tracefiles are thus feasible,
even with a large number of generated nodes.
Destroy events specify the departure of a node with a

given id from the scenario at a given time. The node is
destroyed regardless of any remaining waypoint events.

Figure 3 shows an example of a simple mobility trace-
file. A single node of type SimpleNode is created at t = 0.0
at (x, y) = (0.0, 0.0) and starts moving towards (x, y) =
(10.0, 10.0) at t = 10.0 s with v = 2.0 m/s. It then remains
stationary at the final destination until it is destroyed at
t = 60.0 s.

Contact trace
A contact trace contains peer contact establishment and
break events for a population of nodes. Such a trace provides
one further level of abstraction for a protocol simulator, in
that it does not associate any location (nor mobility) with
the nodes. Traces of this kind have recently been generated

<mobility-trace>
<create>
<time>0.0</time>
<nodeid>1</nodeid>
<type>SimpleNode</type>
<name>mobile node 1</name>
<icon>device/palm_s</icon>
<mobilityModel>TraceMobility</mobilityModel>
<location>
<xpos>0.0</xpos>
<ypos>0.0</ypos>

</location>
</create>
<destroy>
<time>60.0</time>
<nodeid>1</nodeid>

</destroy>
<waypoint>
<nodeid>1</nodeid>
<time>10.0</time>
<destination>
<xpos>10.0</xpos>
<ypos>10.0</ypos>

</destination>
<speed>2.0</speed>

</waypoint>
</mobility-trace>

Figure 3: A simple mobility tracefile.

in opportunistic networking experiments, e.g. [7, 8, 9]. We
point out that contact traces cannot be used concurrently
with any mobility model, since contact information cannot,
in general, be assumed to have any associated location data.

A contact trace consists of sequences of contact and break
events:
Contact events signify a discovery event by a node, spec-

ified by a nodeid, of a peer with id peerid at a given time.
Break events signify a broken or lost contact between a

node, specified by a nodeid, and a peer with id peerid at a
given time.
Create and destroy events can optionally be employed

to instantiate and remove nodes from the simulation. If
omitted, the nodes are simply created when first encountered
in the trace file.

Figure 4 shows a simple example of a contact trace. Two
nodes, Node 1 and Node 2, are created at startup. Node 1
discovers its peer Node 2 at t = 5.0 s. The contact is broken
at t = 10.0 s.

2.2 NodeFactory
The NodeFactory module dynamically creates and de-

stroys nodes during the course of a simulation. A tracefile,
as described in Section 2.1, is parsed at the initiation of
the simulation, and an event created on the simulator event
queue for each create and destroy event. The waypoint and
contact events are also read at initialization and stored in
an associated container, implemented as a STL map of lists,
keyed by node id. No such events are however scheduled
by the factory; the created nodes are initialized with this
information upon creation and each node is then locally re-
sponsible for scheduling its own mobility/contact events.

When a scheduled create event is executed during a sim-
ulation run, a node of the specified type is instantiated us-
ing the appropriate OMNeT++ methods for dynamic node
creation. If the node uses TraceMobility as its mobility

<contact-trace>
<create>
<time>0.0</time>
<nodeid>1</nodeid>
<type>SimpleNode</type>

</create>
<create>
<time>0.0</time>
<nodeid>2</nodeid>
<type>SimpleNode</type>

</create>
<contact>
<time>5.0</time>
<nodeid>1</nodeid>
<peerid>2</peerid>

</contact>
<break>
<time>10.0</time>
<nodeid>1</nodeid>
<peerid>2</peerid>

</break>
</contact-trace>

Figure 4: A simple contact tracefile.

module, it is initialized with the previously parsed waypoint
update information. Similarly, a node employing a Contact-

Notifier module is initialized with the associated contact
and break events at startup. Each node is henceforth au-
tonomous in the sense that it is locally responsible for man-
aging its own mobility or contacts. When a destroy event
occurs during a simulation run, the event handling routine
of the NodeFactory is called. It invokes the appropriate
OMNeT++ node deletion methods. Note that the Node-

Factory can be utilized to instantiate and destroy any type
of node, regardless of its mobility model, when a mobility
trace model is employed. A trace consisting solely of create
and destroy events could thus be used to manage a popula-
tion of nodes using e.g. a RWP mobility module or any of
the existing ones derived from the BasicMobility class of
the MF. The NodeFactory is implemented as a OMNeT++
simple module, and resides at the scenario level as shown in
Figure 1.

Dynamically creating and destroying nodes on demand
admittedly adds somewhat to the overhead of the simula-
tion, since dynamic memory allocation can be a computa-
tionally expensive operation. However, this approach is in
our opinion superior to the current practice in simulation of
dynamic scenarios, where all nodes are created at startup
and ”flown” into the active region on demand and not de-
stroyed until the simulation commences. This places great
demands on the simulator, both in terms of memory and
computing power, and significantly limits simulation scenar-
ios with a large number of nodes. Another related perfor-
mance issues with our current implementation is that the full
simulation tracefile is read and parsed at startup. For large-
scale simulations the tracefile can become somewhat big and
thus the stored create, destroy and waypoint/contact events
can add unduely to the memory requirements. We intend to
solve this issue in our future work such that large simulation
trace files are read in chunks as the simulation progresses.

2.3 TraceMobility Module
The TraceMobility module manages the mobility of a

node according to a tracefile as described in Section 2.1.

It is based on, and extends, the MF by deriving from the
BasicMobility base class. A TraceMobility module can
thus be used to enable trace controlled motion in any sim-
ulations which currently use the MF. When the NodeFac-

tory creates a new node with a TraceMobility module, it
passes the newly created node its corresponding list of way-
point events. The TraceMobility module manages its hosts
mobility autonomously thereafter. A periodic event sched-
uled locally by the module triggers location updates, and
the mobile node thus moves in a number of small steps to
its next waypoint. After each step, the position of the node
is updated and subscriber modules are notified through the
Blackboard module of the MF. The granularity of the mo-
tion is controlled by the length of the update period, which
is a configurable simulation parameter.

2.4 ContactNotifier Module
The ContactNotifier manages the contact events of a

node when performing contact-driven simulations. The events
are specified in a tracefile, as described in Section 2.1.

There is no actual mobility of nodes at the simulation
level when employing the contact-driven approach. The
contact trace simply lists the contact events, which may
be a consequence of node mobility. Therefore, nodes in a
contact-driven simulation do not have a mobility module,
but instead employ the ContactNotifier to publish contact
events to subscribing modules of the the node through the
Blackboard. Although not a mobility module as such, the
ContactNotifier serves a comparable purpose of notifying
submodules of status change, and is indeed derived from the
BasicMobility class of the MF. ContactNotifier can thus
be viewed as replacing the TraceMobility module in the
navigator role when using the contact driven approach to
opportunistic networking simulation.

2.5 MobiTrace Toolbox
We have created a set of tools for mobility generation and

for converting the output of external mobility generators
to our XML mobility trace format. The MobiTrace tool-
box consists of a set of scripts, implemented in the Python
scripting language. Our design of trace-driven simulation
allows separation of mobility generation from the protocol
simulator, thus allowing node mobility to be scripted in a
more flexible, high-level languages or imported from exter-
nal generators. We will now briefly describe some of our
tools.

UrbanMobility
The UrbanMobility tool generates mobility patterns of nodes
(pedestrians, vehicles etc.) in an urban area. It takes as in-
put a map, routing probabilities and a set of generators. The
map specifies a grid of streets and intersections in the form
of a graph of nodes and vertices, along with the node po-
sitions. Node generators can be attached to positions on
the map where each generator is essentially an arrival pro-
cess of nodes, with inter-arrival time and node speed given
by some probability distributions. The routing probabilities
specify node behavior at intersections, i.e. with which prob-
ability each street at the intersection is next selected by the
node. We note that intersections can also have exits where
nodes can leave the area (for underground transportation,
area boundary etc.). The UrbanMobility tool generates a
mobility trace of the format described in Section 2.1.

rwpy
rwpy is a simple implementation of the Random Waypoint
mobility model (RWP), which generates mobility traces for
a fixed number n of nodes, given a running time tr. This ap-
plication is essentially a proof-of-concept, as RWP mobility
can easily be implemented in a MF-derived mobility module.
A scripting approach to this simple mobility model is thus
not strictly necessary. Like UrbanMobility, rwpy generates
a XML tracefile of create, destroy and waypoint events, as
described in Section 2.1.

u2tr
u2tr converts UDel [6] mobility traces to the tracefile for-
mat specified in Section 2.1. The UDel models include both
simulation of mobility and propagation in an urban area.
Currently we only support the mobility part of UDel mod-
els but we plan to include support for propagation modeling
at a later time. The u2tr converter supports UDel’s node
types, given equivalently named compound node models in
the OMNeT++ simulation.

mobgen
mobgen is a utility for converting a mobility specification
in a flat text file to the XML format of Section 2.1. This
utility has proven useful to create simpler scenarios and is
thus described here in some detail. One event is specified
per line in the input file, whose format is as follows:

{command} {time} {node} [...]

command is create, destroy or waypoint. time is in seconds
from the beginning of the scenario. node is an integer uniquely
identifying the node.

create {time} {node} {x y} [type]

create specifies creation of a mobile node at a specified
time and (x,y) coordinates. Type is an optional parame-
ter, specifying the type of node to be created. This string
must correspond to an BasicMobility-derived module in
the simulation.

destroy {time} {node}

destroy specifies the destruction of a node. A negative or
zero time means that the node will be destroyed node after
the last leg of its journey is travelled and its final pause is
done. A destroy event with a specified time will destroy
the node at that exact time, regardless of any remaining
waypoint events.

waypoint {time} {node} {x y z} {velocity} [pause]

waypoint specifies the (x,y) coordinates of next waypoint,
its velocity and, optionally, a pause time at the destina-
tion. Normally distributed variations of velocity and pause
times are supported. An activation time less than zero
means that the time of travel is deduced from the distance
to the next waypoint and the specified velocity. If however
the next consecutive event specifies a time, the velocity is
deduced from the distance and travel time.

3. OPPORTUNISTIC WIRELESS CONTENT
DISTRIBUTION

This section gives an example of how we have used the
UrbanMobility generation tool and the trace mobility mech-
anism for simulating Opportunistic Wireless Content Distri-
bution in an urban area[10].

In the Wireless Content Distribution system that we sim-
ulate, pedestrians in an urban area carrying a wireless com-
munication device can exchange content while in commu-
nication range with another mobile node or a fixed access
point[4]. We use the simulations to verify and investigate
the impact of assumptions that we make for analytical stud-
ies of the system[11], to explore cases which are analytically
non-tractable and to study transient behavior. The simula-
tion part we describe here studies how well content spreads
in an urban area where pedestrians are coming and going.
In particular, we are interested in how content spreading is
influenced by the arrival process of the nodes into the given
area, the effect of the contact setup time, speed distribution
of the nodes, communication range etc.

Simulation Setup
For simulating content distribution in an urban area we have
modelled a part of the stermalm area in central Stockholm,
shown in figure 5. The area is approximately 350 × 380m2

and consists of 28 street segments whose lengths vary be-
tween 20 m and 200 m. To generate the pedestrian traffic,
UrbanMobility takes as input the topology description of
the area in the form of a connected graph. Then we attach
Poisson arrival processes to streets that are entry points into
the area and specify routing probabilities for the intersec-
tions. There are 12 intersections that connect this area to
the outside world and we assume that the arrival rates to the
entry points are λi = λ, i = 1, ..., 12. The intersection rout-
ing probabilities are configured as follows: Upon arriving at
an intersection, nodes continue to move on the same street
(if possible) with probability 0.5 or turn to other adjoining
streets with equal probabilities.

In the simulations we set the node transmission range to
∆ = 20m and the contact setup time is tsetup = 20s. Nodes
choose their speed from a Uniform(1.00,1.86) distribution
and thus the mean pedestrian speed is 1.43 m/s which has re-
cently been measured as the average walking speed of pedes-
trians in Stockholm[12]. The position update period of the
TraceMobility module is set to 0.1s.

Many of the measure we are interested in are steady-state
averages of the stochastic process under inspection. When
the stationary distribution of the system is known, the simu-
lation model can be initialized according to it and the system
starts in steady state. In our case, the stationary distribu-
tion is however not known, and we employ Welch’s graphical
procedure[13] to estimate the length of the initial transient.

Content Spread - Virtual Storage
How fast and how well content spreads in our system are
two of its fundamental properties. Ideally we want content
to spread as fast as possible to all those who are interested in
obtaining it. To assess these two system properties we have
simulated the spreading of an alarm signal. An alarm signal
is a short message that is of interest to all nodes of the system
and all nodes will help in spreading it by redistributing it to
its peers.

(a) (b)

Figure 5: A part of a downtown Stockholm 5(a) and the corresponding network of street segments 5(b) used
in our simulations.

λ (s−1) λtot (s−1) 1/λtot (s) ρ (m−1)
0.01 0.12 8.33 0.009
0.02 0.24 4.17 0.017
0.03 0.36 2.78 0.026
0.04 0.48 2.08 0.034
0.05 0.60 1.67 0.043

Table 1: Relationship between per-entry arrival rate
λ, total arrival rate λtot, inter-arrival times 1/λtot and
node density ρ.

In simulating the alarm scenario we first run the simulator
for a warm-up period of length l time until the steady state
has been reached and the total arrival- and departure rates
for the area have converged. For convenience we say that
the simulator is started at time t = −l and steady state has
been reached at time t = 0. At t = 0 a single stationary
node (Access Point) at the entry 1 intersection (black in
figure 5(b)) releases the alarm. Nodes will start obtaining
the alarm, either from directly from the access point or from
peers that already have the alarm. We assume that the
alarm message is small and its transfer time after a contact
has been set up is negligible compared to tsetup. A node
will thus obtain the alarm whenever it makes contact with
a peer or Access Point that has the alarm and this contact
is of duration T > tsetup.

We have simulated for five different per-entry arrival rates.
There are 12 entries into the area so the total arrival rate
into the area is λtot = 12λ. Table 1 shows the relationship
between the per-entry arrival rate λ, total arrival rate λtot,
inter-arrival times 1/λtot and node density ρ. The node
density ρ in nodes/meter is calculated as ρ = λtot ·D/

∑
i li

where D is the average time a node spends in the area and
li is the length of street i, i = 1, ...28.

For each arrival rate we have conducted 100 simulation
runs and in each run we collect the time-series in 1 s intervals

of the fraction of nodes carrying the alarm. In figure 6(a) we
have plotted the average time-series for each of the arrival
rates. The results confirm that the spreading of the alarm
is strongly dependent on the density of the nodes in the are.
For λ = 0.05s−1 approximately 70% of the nodes in the
area are carrying the content in steady state and it takes
approximately 800s to reach the steady state average. For
λ = 0.01s−1 the average fraction of nodes carrying the alarm
is much lower, or just below 20%, and it takes at least 2000s
to reach this steady state average.

It is interesting to study what happens if we turn off the
access point node that initially provides the alarm message.
In figure 6(a) we turn off the access point when the alarm
distribution has reached its steady state. For all the ar-
rival rates we consider steady state has been reached at at
t = 2000s. We note that when the arrival rate is low the
alarm message disappears from the area because the density
of nodes in the area is not high enough to facilitate the ad
hoc spreading. This becomes evident at an arrival rate of
λ = 0.01. At higher arrival rates, we see however that the
spreading is not dependent on the access point support and
the content becomes residential in the area as long as there
are new nodes to which it can be passed. In other words,
the spreading process exhibits a virtual storage effect: the
content resides in the area even though there is no infras-
tructure support and nodes are coming and going.

To further strengthen our assertion of a virtual storage
effect, we have studied a scenario with one single mobile
node bringing an alarm into the area. It enters at t = 0
(after the mobility has reached steady state) and then we
study the evolution of the availability of this message. In
particular we are interested in determining if and when the
alarm dies out from the area.

For each arrival rate under consideration, we have per-
formed 100 simulation runs and in figure 6(b) we have plot-
ted the fraction of runs where the alarm remains in the area
as a function of time.

0 1000 2000 3000 4000 5000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

λ = 0.05
λ = 0.04
λ = 0.03
λ = 0.02
λ = 0.01

(a)

0 1000 2000 3000 4000 5000 6000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

time

λ = 0.05
λ = 0.04
λ = 0.03
λ = 0.02
λ = 0.01

(b)

Figure 6: 6(a): Fraction of nodes that have the content as a function of time. The access point is switched
off at t = 2000 s. Dotted lines indicate 95% confidence intervals. 6(b): Fraction of runs where the alarm is
resident in the area, plotted as a function of time. A single mobile node with the episode enters at t = 0.

For λ = 0.05, we see that in roughly 20% of the runs, the
alarm disappears within 500 s. Interestingly for λ = 0.05, in
all runs where the episode remains in the system after 1000 s,
it will also be there when the simulation ends. This further
strengthens our position that there is a virtual storage effect
in the area: if the episode manages to spread initially to a
critical number of other nodes, then it will be resident in the
area. We see the same behavior for λ = 0.04 and λ = 0.03,
although fewer runs achieve this effect (68% when λ = 0.04
and 54% for λ = 0.03). For λ = 0.02, the effect starts
fading and the virtual storage effect is not visible anymore
for λ = 0.01.

As a conclusion we have seen from our simulations that
content will spread and remain in the area even if only a sin-
gle node brings the content at these arrival rates of nodes.
This indicates that content distribution between peer nodes
is highly successful in this type of urban areas with pedes-
trian nodes.

4. RELATED WORK
Our work described in this paper is an extension to the

Mobility Framework (MF) [2] library for OMNeT++ [1].
MF supports a variety of mobility models, including
BonnMotionMobility which uses BonnMotion [14] gener-
ated mobility traces. BonnMotion is a mobility simulator,
able to create mobility data from random waypoint, Gauss-
Markow, Manhattan Grid and Reference Point Group Mo-
bility model. However, the BonnMotion implementation in
MF supports only simple destination update events. In con-
trast, we describe a solution for dynamic creation of a prede-
fined number of nodes, in which a node can enter and depart
the scenario, in addition to having a richer set of features,
like multiple node classes.

ns-2 [15] is perhaps the best known simulator currently
used in the field of communication networks. Traced mo-
bility in ns-2 is supported through flat text files using set

and setdest commands. GloMoSim [16] is a simulator for
wired and wireless networks and uses the parallel discrete-
event simulation language Parsec. A trace file of mobil-
ity events is supported, similar to the format supported by
ns-2. This format is similar to the simple text file format
proposed for our mobgen tool in Section 2.5. Both ns-2 and
GloMoSim mobility traces can thus be supported in our sys-
tem by conversion scripts. The vast majority of currently
available mobility generation tools support those simulators,
so this simple measure undoubtedly adds to the value of our
system. ONE: Opportunistic Network Environment [17] is
a Java-based simulation framework, intended for simulating
opportunistic networks. It can generate node movement us-
ing a variety of mobility models, as well as importing traces
from external mobility generators.

The UDel Models [6] are a suite of tools for simulating
mobility and propagation in an urban environment. The
mobility simulator is based on information from labor statis-
tics, urban planning and traffic engineering communities and
it has rich features for simulating pedestrian dynamics, ar-
rival times at work, diurnal variations, vehicle traffic etc.
Our u2tr tool can convert UDel mobility traces to the XML
trace mobility format. We also plan to implement mech-
anisms for supporting the UDel propagation models in an
OMNeT++ simulation.

Generic Mobility Simulation Framework (GMSF) [18] can
generate ns-2 compatible mobility traces using a GIS-based
model or a variety of mobility models. In addition, a generic
XML format, similar to the one here proposed, can be ex-
ported.

There have been developed many tools for generating [19]
[21] or analyzing [20] mobility for various other network sim-
ulators than OMNeT++, particluarly for ns-2, GloMoSim
and QualNet. Our MobiTrace toolbox contains scripts for
converting ns-2 tracefiles to our proposed XML format and
these traces can therefore be used in OMNeT++ as well.

The Crawdad [22] project collects data for various wire-
less networking experiments. It contains data from some
interesting recent experiments in Delay-tolerant networking
where contact traces of people and vehicles are collected and
used to evaluate routing algorithms for DTN. The goal of
our contact-driven simulation approach is to utilize contact
traces like these [7, 8, 9] to simulate protocols and mecha-
nisms for opportunistic and delay-tolerant networks.

5. CONCLUSIONS AND FUTURE WORK
In this paper we have described the design and imple-

mentation of our mechanisms for simulating Opportunistic
Networks in the OMNeT++ discrete event simulator. We
advocate simulations driven by traces where mobility is sep-
arated from the core protocol simulations in OMNeT++.
This approach facilitates importing synthetic or real data
from external mobility generators, real mobility tracking
data or real contact traces. We have described our design
and implementation of mechanisms for conducting simula-
tions driven by mobility or contact traces.

Our extensions to OMNeT++ and the Mobility frame-
work consist of the specification of mobility- and contact
traces, a module for dynamically creating and destroying
nodes during the course of a simulation, modules that im-
plement node mobility or node contacts from tracefiles and
a toolbox of scripts for mobility generation and conversion
of output from external mobility generators.

We have showed how our mechanisms can be used to simu-
late opportunistic content distribution in an urban environ-
ment. We use tools from our MobiTrace toolbox to model
a real urban area and to generate pedestrian traffic in this
area. Then we import the mobility traces and run simula-
tions in OMNeT++ to evaluate the protocol behavior and
the feasibility of the system.

This paper describes work in progress and enhancements
and revisions are thus due to continue onwards. Future work
involves extending our mechanism to not only capture node
dynamics and mobility, but also propagation, fading and
other properties of wireless communication. We also plan to
increase compatibility with other simulators and mobility
generators than those already implemented.

6. REFERENCES
[1] A. Varga, “The OMNeT++ Discrete Event Simulation

System,” in Proc. of European Simulation
Multiconference (ESM2001), June 2001.

[2] W. Drytkiewicz, S. Sroka, V. Handziski, A. Köpke,
and H. Karl, “A Mobility Framework for OMNeT++,”
in Proc. of 3rd International OMNeT++ Workshop,
Jan. 2003.

[3] “Delay Tolerant Networking Research Group.”
http://www.dtnrg.org.

[4] G. Karlsson, V. Lenders, and M. May, “Delay-tolerant
Broadcasting,” IEEE Transactions on Broadcasting,
vol. 53, pp. 369 – 381, Mar. 2007.

[5] K. V. Jónsson, Ó. R. Helgason, and G. Karlsson, “A
Gateway for Wireless Broadcasting,” in Proc.
CoNEXT 2007, Student Workshop, (New York, NY,
U.S.A.), December 10 2007.

[6] S. Bohacek, V. Sridhara, G. Singh, and A. Ilic, “The
UDel Models - MANET Mobility and Path Loss in an
Urban/Suburban Environment,” tech. rep., University
of Delaware, 2004.

[7] A. Chaintreau, P. Hui, J. Crowcroft, C. Diot, R. Gass,
and J. Scott, “Impact of Human Mobility on the
Design of Opportunistic Forwarding Algorithms,” in
Proc. IEEE Infocom, (Barcelona, Spain), 2006.

[8] J. Burgess, B. Gallagher, D. Jensen, and B. N. Levine,
“MaxProp: Routing for Vehicle-Based
Disruption-Tolerant Networks,” in Proc. IEEE
INFOCOM, April 2006.

[9] A.-K. Pietilainen and C. Diot, “Experimenting with
Real-life Opportunistic Communications using
Windows Mobile Devices,” in Proc. CoNEXT 2007,
Student Workshop, (New York, NY, U.S.A.),
December 10 2007.

[10] M. May, G. Karlsson, Ó. R. Helgason, and V. Lenders,
“A System Architecture for Delay-Tolerant Content
Distribution (invited paper),” in Proc. IEEE
WRECOM, Oct. 2007.

[11] Ó. R. Helgason and G. Karlsson, “On the Effect of
Cooperation in Wireless Content Distribution,” in
Proc. IEEE/IFIP WONS, Jan. 2008.

[12] R. Wiseman, “The pace of life.”
www.britishcouncil.org/paceoflife.pdf, 23.10.2007.

[13] A. M. Law and W. D. Kelton, Simulation Modeling
and Analysis. Reading, MA: McGraw-Hill, 3rd edt.,
2000.

[14] “BonnMotion.”
http://www.cs.uni-bonn.de/IV/BonnMotion.

[15] “The NS-2 Network Simulator.”
http://www.isi.edu/nsnam/ns.

[16] “GloMoSim.”
http://pcl.cs.ucla.edu/projects/glomosim.

[17] “The ONE: Opportunistic Network Environment
simulator.”
http://www.netlab.tkk.fi/tutkimus/dtn/theone.

[18] “Generic Mobility Simulation Framework.”
http://polar9.ethz.ch/gmsf.

[19] F. Bai, N. Sadagopan, and A. Helmy, “The
IMPORTANT Framework for Analyzing the Impact of
Mobility on Performance of Routing for Ad Hoc
Networks,” AdHoc Networks Journal - Elsevier
Science, vol. 1, pp. 383 – 403, Nov. 2003.

[20] “ANsim.” http://www.ansim.info.

[21] “CanuMobiSim.”
http://canu.informatik.uni-stuttgart.de/mobisim.

[22] J. Yeo, D. Kotz, and T. Henderson, “CRAWDAD: a
community resource for archiving wireless data at
Dartmouth,” SIGCOMM Comput. Commun. Rev.,
vol. 36, no. 2, pp. 21–22, 2006.

