A Simulation Suite for Internet Nodes
with the Ability to Integrate Arbitrary Quality of Service Behavior

Klaus Wehrle, Jochen Reber, Verena Kahmann

University of Karlsruhe — Institute of Telematics
Zirkel 2, D-76128 Karlsruhe, Germany
eMail: { Wehrlg Rebe, Kahmann} @telematik.informatik.uni-karlsruhe.de

Keywords: Internet Protocol, Quality of Service, CPU- As this architecture is designed of small building blocks
and Packet-Scheduling, Parallelism in protocol processing called Per Hop Behaviors (PHB) composed to form Quali-
ty of Service behavior, an adequate simulation for the Diffe-
rentiated Services model requires the feature to quickly build
Abstract models from elementary entities. Additionally, the purpose of
In the last few years, the Internet community spent a lothis paper is to analyze the behavior of QoS concepts in the
of research efforts in investigating several kinds of mechainternet in a realistic way. For instance, real hardware has on-
nisms to provide better services than the traditional best efty a limited number of CPUs, which can only process a small
fort delivery. Simulating the behavior of Internet routers andnumber of packets at any one time.
hosts with modified QoS behavior is one of the mostimport- o jmplementing the simulation suite, the OMNeT++ si-
antways to prove their guarantees. Existing models availablgy|ation environment[8] presented in secfipn 2 has been cho-
for common simulation tools have not been implemented insen_ it will be shown that this simulation environment is sui-
such a modular way as to reuse them easily according to thgple to simulate complex systems like Internet nodes in a
principles of new Internet services. realistic way under consideration of the number of CPUs and
In this paper, a modular simulation suite of complete Inter-the restriction to process more than one packet within one
net nodes with a realistic simulation of the Internet protocolnode. It also allows the design of modular simulation models,
and the underlying layers will be presented. The IP model isvhich can be combined and reused in a very flexible way. In
designed in a very detailed way, covering all features of theectior] 3 we present the simulation model of Internet nodes.
protocol, including mechanisms for ICMP and Multicast, un- Besides that, OMNeT allows the composition of models with
like other network simulation models. The model considersany granular hierarchy. Therefore, it is possible to build any
hardware restrictions of IP processing computers as well. Theuality of Service behavior by reusing and concatenating ba-
second feature of the simulation suite is the ability to buildsic QoS Behavior Elements. This concept will be shown in
any quality of service behavior. This is supported by elemensectior{ 4, before we conclude the paper in the fifth section.
tary QoS models, which can be combined and integrated very Cyrrently, our notion of a realistic simulation suite of
flexibly. The simplicity to design this modular and reusable QoS behavior in the Internet is extended by integrating other
models is supported by the modular architecture of the chogspects of Internet end systems like traffic generators for com-
sen simulation environment — the OMNeT simulation tool. mon app”cations (HTTP’ FTP, multimedia app“cations) or
transport protocols like TCP into the presented simulation
1 Introduction model. However, for the sakg of clarity, this paper concen-
trates on the network mechanisms.
One of the reasons for using network simulation tools is the
modeling of new networking concepts for validation of func- . .
tionality, efficiency or scalability in global networks, such as 2 The OMNeT++ simulation tool
the Internet. Quality of Service (QoS) is such a concept, partiOMNeT is a free object-oriented modular Discrete Event Si-
cularly the Differentiated Services architecture [1] developednulation (DES) tool available underi[8]. DES systems are
for the Internet in recent years. especially suitable for the simulation of computer systems

V. Wayne Ingalls

V. Wayne Ingalls

V. Wayne Ingalls

mailto:Wehrle@telematik.informatik.uni-karlsruhe.de
mailto:Reber@telematik.informatik.uni-karlsruhe.de
mailto:Kahmann@telematik.informatik.uni-karlsruhe.de

and communication protocols, because processing functionar protocol-style modeling. Therefore, different parts of com-

lities and protocol proceeding can be well modeled in discretguting and communication systems can be connected easily.

steps. With this idea of flexibility, OMNeT++ allows to model new
The OMNeT simulation system consists of C++ class li-networking concepts and include them into a model — as it is

braries, forming the simulation kernel and the interface to th&lone for the presented simulation of Quality of Service me-

user environments. A model is compiled and linked with the-chanisms (refer sefc} 4).

se libraries resulting in an executable file. The object-oriented

approach allows the flexible extension of the base classes pr@ Simulation of the Internet Protocol

vide_d in the simulation kernel. _ _ The highest level of abstraction in the simulation of IP is the
Simulated models are composed of hierarchically nestedletwork itself, which consists dP Nodes IP nodes can re-
modules. There are two types of modules: First, so-callegyresent routers or hosts. That organization allows the easy

Simple Moduleswhich form the lowest hierarchy level and re-combining of different components to a new network.
implement the activity of the module. Simple Modules can

be arbitrarily put together tompound Moduleshe second 31 |p Node structure and hierarchy
module type.

From this distinction of module types, a distinction of the
model description is made. The model topology, i.e. the hier
archy of modules and the connections between them, is def
ned in NED (Network Environment Description) — a simple
and easy to understand C++ style language. A NED compi
ler transforms the NED definition of a module into C++ co-
de. The Simple Module’s activities are implemented by C++
code. The code implements both the module’s algorithm a
well as its communication with other modules via message
sending.

OMNeT++ has been chosen as the simulation tool for the
Internet simulation as it provides a flexible hierarchy where
concepts and algorithms can be modeled in a modular an
reusable fashion. Therefore, only the NED description of &
new composed model has to be created — coding in C++ is n(ﬁ ﬁ Network Interfaces ﬁ ﬁ
necessary. In other tools like ns-2, a lot of coding effort has tg
be spent on extending the module hierarchy, because seve J l T J J
class definitions have to be implemented. In OMNeT++, a_ yora e : _
computer system like the presented Internet node can consigtgureé 1 Components of the IP node simulation model
of a hierarchy of arbitrary granularity. Another advantage is
that traffic generators may be included easily at each layer, An IP Node in the simulation model is a computer capable
so measurements of single layers can be taken independenty understanding the Internet Protocol, and is represented by
of others. In contrast to other simulation tools, where onlyone compound module.
protocol processing is supported in most cases, it is possible The modules responsible for the simulation of the Internet
to model packet processing as done in a real computer systefrotocol are structured in a very similar way to the proces-
Since we wanted to get a realistic Internet simulation, we haveing of IP datagrams in a real operation system, rather than
modeled packet processing times in our Internet router modejrganized to allow only a protocol processing, such as done
(cf. sectior[B). In ns-2 there is no processing time spent inn OPNET and ns-2. The structure of the Linux kernel has
the routing module, which we do not expect to be realisticheen chosen as model for the simulation of an IP Node. Indi-
behavior. vidual changes in the Linux kernel would only result in local

The modular object-oriented concept of OMNeT++ ena-changes in the simulation model.
bles flexibility in the sense that building blocks can be ex- TheIP Networkmodule is mandatory in an IP Node, as
changed and extended. For each building block, i.e. for eacit represents the network layers of the node. The upper layers
Simple Module, it is possible to choose between process-stylfor the transport protocols and other applications are optional.

Transport & Application Layer

Network Module

They are usually present in hosts, but may be absent in rowges. The IP layer maintains one central input queue going in-

ters. The IP Network module may have one or several connede the IP Processing module and a separate output queue for
tions out to other IP Nodes, either over point-to-point links oreach network interface connected to the IP Processing modu-
shared medium simulation entities. le. This architecture has been chosen, because it can be often

The Processor Managemodule is obligatory. It handles found in real systems.
user and kernel process time scheduling and ensures that onel he Routing Tablenodule acts like a database for all net-
IP Node can On|y have one kernel process running at any Spé\lork interface and rOUting information. The rOUting and net-
cific instance of time. The Processor Manager makes sure tha{Ork information file is loaded at initialization time from a
the number of running user processes is limited by the numifile for each node.
ber of processors of the IP Node. It is the Processor's Ma-)
nager responsibility to not allow more than one IP datagrans-2 P Processing and protocol Hooks

to be processed by the Kernel simultaneously. The number gfh€lP Processingnodule contains all components of the In-
processors in each system can be configured. ternet Protocol. It handles both packets from and to the trans-

t layer, as well as datagrams from and to the IP queues

ove the network interfaces. The submodules of the IP Pro-
essing compound modules are structured in the such a way
at the processing of a datagram in the simulation resembles
5 C}sely the way the Linux kernel handles the processing of IP
gatagrams.

The system kernel and user processes can claim a processp
or the kernel for an atomic operation. During the processin
time of that operation, this processor and the kernel can not b
used by any other process. However, if the IP Node has mo
than one processor, a second user process can claim anot
processor for an atomic operation on its own. Once the atomi

operation of a process is finished, the kernel or processor gets For instance, the submodlﬂh?utlngdeter.mlne's.the output
released port of a datagram or passes itltocal Deliver, if it should

Claimi d releasi the k | d be delivered to the upper layetsocal Deliverremoves the
b awg_mg andre ea3|tngﬂ? plgocessor Ol\r/l € kerne datrr? ON® header and delivers the transport packet as well as the re-
y sending a message to Ine Frocessor Manager and then W&Uired control information (such as source and destination ad-
ting for an acknowledgement. If the kernel or a processor i

¢ then the P M g " lod %ress) to the transport layer. TH&MP module handles ICMP
ree, enb ek troct:ﬁssor ar:gger sznls asnhaclgtt)k\]/v ek gerr|1 Essages both resulting from internal errors (for instance, if
message back to the requesting module. shou € KeMEe BMhit error occurred over the transmission, or the TTL reaches

all processors be already in use, the event making_ t_he clainb and ICMP queries such as ping and timestamp queries, gi-
request and all subsequent events are put into a waiting quen.%rl to them from the application layer. TReagmentation

Once the kernel or a processor has peen released again, Bdule allows the fragmentation of one diagram into several
hext event from the queue gets to claim the processor or keffagments on the basis of the MTU of the assigned output net-
nel. work interface. The header of each fragment is equal to that

With this mechanism, the simulation prevents a parallelismyf the original datagram, save for the fragmentation informa-
of the event handling system that would not be realistic in gjon. After the fragmentation, each fragment is forwarded se-

real system. It ensures that two IP datagrams arriving frongentially to theOutputmodule of the corresponding output
two network cards are processed subsequently by the kerngjgt.

rather than simultaneously. This feature is often not availa- gach network interface has its own output module. The
ble in other event-based simulation systems._In [4], similaiodulesPre Routing, Routing, Local Deliver, IP Sewd
functionality has been modeled in OPNET, but as OPNET igp outputeach contain a hook for extending the protocols

based on Finite State Machines, this approach has not been gghavior with QoS modules. This will detailed be described
extensible with respect to the number of processors. A diffejn sectiof 4.

rent approach ir_[9] presents a simulation suite with inherent
modeling of kernel behavior, but does not allow the easy in3.3 Packet Structure

tegration of new networking concepts. While the existence ofrhe OMNeT simulation environment offers the encapsulati-
the Processor Manager module is required, its functionalityyn of packets into other packets. This mechanism allows each
can be turned off optionally in our model. layer to en- and decapsulate the packets from upper layers and
The Network Module in an IP Node contains the handlingadd all the header and trailer information. The length can be
of the MAC/PPP-layer and the IP layer. Between those twadjusted, based on the information packet passed from the up-
layers, the IP queues are located, which allow the kernel tper layer. That way, TCP and UDP packets, IP datagrams and
store packets coming from or going to the network interfa-MAC-frames can be represented in exactly the same fashion

as in a real network. However, while the access to the fieldprevents non-realistic parallel processing of multiple packets
yields the same results as in reality, the bit-wise representatin the kernel.
on of such a packet is not the same. The scenario is set up as follows:

3.4 Processing of IP Datagrams

A |
-

; =
Receiver 0 Receiver 1 Receiver 2
* * t Figure 3 Scenario of the network

Each of the 3 sender nodes sends a burst of 1000 packets
to the 3 receiver nodes.

]]) The application layer and network produce no latency. La-
The dotted connections on the IP Processing diagram de?éncy has been induced in the moduRe Routing, Routing
cribe the path of IP datagrams to and from the transport layeg, g theOutput Queus on the IP layer of the router. The de-
The fat connections mark the incc_)ming and outgoing IP daTay has been set thus in each module, amounting to a total
tagrams to and from the network interfaces. Every datagrarejay of3.s in the router. Two separate experiments have be-
passes through thoutingmodule, which is the core of IP oy tested out, one with a bandwidth of 10 Mbit/s and another
Processing. with a bandwidth of 100 Mbit/s for each link. The end-to-end
1. IP datagrams which are sent originally from the IP Noded€lay was in both experimenigs. .
are created in IP Send, passed on to Routing, then to the The bottleneck of the scenario is the router. Since the three
Fragmentation and finally to the Output modules. Af- Sénder nodes send their datagrams at the same time, it has to
terwards, they are inserted into the output queue of th&@ndle multiple incoming datagrams simultaneously. In the
specific network interface. version with the Processor Manager turned off, one datagram
can be processed in Routing while another one can be pro-
2. IP datagrams destined at that IP Node arrive from theessed in PreRouting. In the second run, the second datagram
input queue at Pre-Routing, are passed to Routing, the queued until the first has left IP-Processing. Because the
to Local Deliver, where the IP header is stripped, beforenetwork interfaces are usually equipped with their own pro-
the packet is passed to the transport layer. cessors, the handling of frames from the physical network and
ansertion into the IP input queue can happen in parallel.

The result of the experiment are shown in figure 4.

Figure 2 Processing of IP datagrams

3. IP datagrams which are simply routed through the |
Node arrive again at Pre-Routing, passed on to Routing,
then to the Fragmentation and Output modules.

Line speed: 10 Mbit/s 100 Mbit/s

3.5 Evaluation of the Processor Manager
The impact of the Processor Manager has been tested in therime Proc. Man. ON: | 80.2021 ms| 9.0330 ms
following scenario by generating packet bursts from several Time Proc. Man. OFF] 80.1951 ms! 8.0330 ms
end points and measuring the time they take until arrival. The Time difference: 0.0070 ms | 1.0000 ms
times of the two cases, one with the Processor Manager enarelative time diff: 0.008 % 11.11 %

bles, the other with the Processor Manager disabled, will the
be compared . It is expected that the second run will take lon-
ger and gives a more realistic time, as the Processor Manager

igure 4 Results of simulation with and without considering
parallelism in IP Processing

As expected, the time was in both cases lower for the ca- Secondly, itis always a problem to integrate QoS elements
se in which the Processor Manager was turned on. While thito the right position within the protocol stack. For instan-
difference in the case of the 10 Mbit/s link is insignificant, thece, it is important whether a token bucket is working on the
difference for the faster line is significant. The result can bdP layer — before the routing has been done — or at the out-
explained that in case of a slow link, the router delay matterput queue of a certain interface. In the first case all packets
little. In the first case, the router was faster to process all arriforwarded by IP will be considered in the token bucket me-
ving datagrams from the three lines than the line was capabler, whereas in the latter case, only the packets leaving on one
of transmitting new ones. In the second case, the router wasterface will be metered. In a third case only the packets lea-
not fast enough to process all incoming packets as they arrising a host should be considered. It is obvious that in a proto-
ved. As a result, new arriving datagrams had to wait in the in<ol like IP, a lot of possible places to integrate QoS behavior
put queue until older ones were completely processed. In thaian be identified.
case, the parallel processing of datagrams in the three modu- i i
les PreRouting, Routing and Output Queue allowed a much As a result of this, a fast development of models for simula-

faster forwarding. However, such behavior is unrealistic for at!ng new network behavior, as i.e. new QoS behaviors, is very

software IP router, as it cannot process multiple datagrams fne-consuming with existing 5|mulat_|on m‘odels, since theY
the same time. So the case with the Processor Manager endlfV€ mostly modeled complete architectutes [6, 7]. Each ti-

led gives a more realistic simulation result, which marks afte/me: NEW mgd_els have to F’e developed and implemented. The
all a difference of 11 %. reuse of existing models is not very easy. The presented mo-

dular architecture with its elementary QoS models, and the

_— . . . individual linking of them, would solve such problems and

4 Building any Quality of Service behavior allow to build immediately any QoS behavior for an Internet
from elementary QoS models router or host — mostly without implementing new models.

The goal of the simulation model presented in this paper is td he existing pool of elementary QoS behaviors, and the com-
offer elementary QoS modules for the Internet protocol stackplete implementation of the Internet Protocol, offer on the one
which can be combined and linked together to common Qo$and a real IP behavior and on the other hand the possibility
elements, like traffic shaper, token bucket, classifier, etc. Théo build and evaluate rapidly new QoS behavior.

suite al_so offer§ a variety of queues a_nd scheduling mec_ha- In the next few sections the basic architecture of our si-
nisms like priority queueing, round robin, etc. In the followi-

. mulation environment will be presented. First the principle of
ng, thesg QoS elements are caIIe(.j.Ber_]aVI.or Elements. In trﬁooks which are strategic places for including QoS elements
next section a more detailed classification is given.

o - . . . into protocol stacks, is explained. Subsequently the five dif-
The main principle in bU|Id|ngth|sS|mulat|onsunewastheI P IS explal ubsequenty ve d

.) i) .~ ferent kinds oBehavior types and the rules to concatenate
possibility to build new QoS behavior quickly from the exi- them will be introduced.

sting pool of elementary Behavior Elements. This can mostly
be done by varying the elementary models and connecting Figure[$ will illustrate the architecture by the following
them in a special manner. The following example should moexample (In appendix A the NED configuration file for the
tivate the architecture of the proposed model: IP _Forward -Hook is listed). Three service classes should
A token bucket is a widely used model to meter a certairbe distinguished: A Premium class, offering a high priority
network flow and to monitor its conformance to Service Le-service with low delay. The flows of the Premium class will
vel Agreements (SLAs). Traditionally a token bucket metersbe metered by a Leaky Bucket and shaped at the output in-
incoming flows to their conformance. If the negotiated rateterface. A second class should offer a better service than Best
is not exceeded, the packets will be forwarded — otherwis&ffort with a statistical guarantee of bandwidth. This will be
they will be discarded. This method of metering a flow isachieved by a weighted fair queueing scheduler. The mete-
well known, but in some scenarios (i.e. AF PHB in DiffServ ring will be done by a token bucket. Non conforming packets
networks) the packets should not be discarded. They shouMill not be discarded, but degraded to the Best Effort service,
either be marked with a lower priority and enqueued in anwhich builds the third service class. The classification to the
alternate queue with a lower priority. Or in another scenariothree service classes is done by a multifield classifier. This ex-
two token buckets should be combined to control the peak raample is a possible implementation of the well-known 'Two
te and the average rate. With existing simulations, new tokebit architecture’, which is described in detailslin [3]. To keep
bucket models, a marker a priority queueing model, etc. havéhe example simple, only the L2-Hooks of interfatb0 are
to be developed. shown.

Post _Routing : Last Hook for all packets (forwarded and
from upper layers) leaving on a network interface.

For each network interface, two additional Hooks can be
identified: L2 _Enqueue xx and L2 _Dequeue xx (xx is
the name of the interface). They are located around the output
queue(s) of each network interface card (NIC), which would
be the right point to add specific behaviors operating on the
outgoing queues, like priority queueing, shaping, etc. (refer

Fig.[2).
In this paper we only focus on the Internet Protocol and
Shaping the underlying layer. But we are also building simulation mo-
" QUEUE | ™. dels for the transport protocols UDP/TCP and Internet app-
lications (HTTP-, FTP-, VoiceCall-traffic models). In these
, E:(:':Sue {QEL'TE a1 models, Hooks can be added easily at adequate places to in-
| Codepoint Vo tegrate QoS behavior.
- FIFO ,‘ FIFO | / As described above, a Hook is a place within a protocol
Enqueve Queve2) 4, where QoS behavior can be added. The Behavior Elements
W included at such a hook are elementary models offering a cer-
Dequeue / tain behavior. They will be described in the following.
o]
Priority ' FIFO HBHV'EH%! 4.2 Behavior Elements
Queueing V,‘:’;'?gtﬁd Dequevel - A Behavior Element (BE) is comparable to a black box,
D;;':eoue which offers a specific basleehavior A BE consists of one

in-gate,n out-gates and a certain processing behavior inside.
At the in-gate packets enter the box and receive a certain ma-
Figure 5 Example configuration of basic QoS Behavior Ele- nipulation inside the module. Dependent on the calculation
ments within the box, a packet leaves on a certain out-gate. Beha-
viors can be concatenated after each other. Consequently, the
treatment a packet receives within a BE decides which way it
4.1 Protocol Hooks will proceed and which quality it receives.
When QoS behavior should be introduced into an existing Ty kinds of gates of Behavior Elements and Hooks can
protocol, one basic problem is the place where the protocghe distinguishedpacket-gategabbreviated a&l) and non-
is extended with the new Behavior Elements. Regarding th%acket-gate:{o). The main difference between them is, that
Internet Protocol, five strategic points can be identified. Inpatween two packet-gates IP-packets are exchanged, and bet-
the following this points will be calletooks They differin \yeen non-packet-gates only messages to request packets are
the set of packets passing the point, i.e.Rest _Routing - exchanged. One main rule is, that only gates from the same

Hook represents the set of packets leaving the IP node on a%nq can be connected. The two different types of gates are
interface - whether they have been forwarded, or created frorgescribed more detailed in sectionl4.3.

the host:

There can be five kinds of Behavior Elements distinguished
Pre _Routing : All packets arriving on a network interface (ref. Fig.[§):

will pass this hook before routing is processed) .
(conventional) Behaviors (BHVR) are elementary QoS ele-

Local _In : All packets for the upper layers after routing is ments that operates on IP packets. As shown inFig. 6, a
processed. BHVR has only one in-gate and upnmut-gates, where

n depends on the particular Behavior Element. BHVRS

can be interconnected between one another without ful-

filling other requirements. Example BHVRs are Token

Local _Out: Hook for all packets from upper layers, before Bucket, Marker, Dropper, Classifier, Random Early De-
routing is processed. tection (RED) etc.

Forward : All forwarded packets will pass this hook after
the routing.

% BHVR %%ENQ_BHVR QUEUE|

Interfaces between two

Behavior Elements:
DEQ_DISC® ©DEQ BHVR D [with packet Hook

Q without packet

Figure 6 Five different classes of behavior elements

. IP-Packet No BHVR follows
. _ - IP-Packet goes recur-
Queue (QUEUE): QUEUEs are well known packet queu ’ IP-Packet (marked to discard) sively back to the hook

es. Packets can only be enqueued and dequeued with : _ :
the two following kind of behaviors. Several types of Figure 7 Interactions on al-junction between BHVRs
QUEUEs exist, i.e. Fifo, Shaping, etc.

Enqueue Behavior (ENQBHVR) are specialized BHVRs . .
q (ENQ) P few model to create a new QoS Behavior. At the connecti-

for enqueueing a packet into a queue. The queue is ide

tified gy its ngmepand an accgrding Enqt?eue BehayioNs between thél-gates, IP packets are exchanged. Flg. 7
or should be used. One special characteristic of an E Shows an example. The Hook sends an IP packet_to the tok_en
queue Behavior is the missing out-gate. Whether th ucket-BHVR. Wh_en_the module has _completed Its operati-
packet is inserted into the queue, or it has to be drop®"S O" the packet it will send it further, if a module is connec-
ped. ENQBHVRs can be connected to out-gates of anyted on the dedicated port. Thgt means in the example, that a
BHVR-module. The detailed procedure of exchangingSLA'Conform packet (casa) will leave on thein -gate (In-

messages and packets between Behavior Elements is derofile); otherwise it will leave on theut -gate to the Drop-
scribed in sectiof 413 per. If no module is connected to a BHVR on the dedicated

port, or the BHVR has no port, the packet will be sent back
Dequeue Behavior (DEQBHVR) can be used to dequeue to the previous module where the packet came from.

a packet from a certain queue. l.e. a Fdequeue mo- One can see, that a packet first traverses a chain of BHVRs

dule removes the first packet from the named queue angnd then recursively back to the Hook, where the normal pro-
sends it to its out-gate. DE@HVR modules can on- tocol processing will be continued.

ly be connected to an-gate of a L2Dequeue-Hook or
Dequeue-Discipline. After a DEBHVR all kinds of
BHVRs can be connected to the packet-gate.

This is the normal procedure, but there are two possible ex-
ceptions. The first is when a packet reaches an BY{YR,
which will enqueue it into a QUEUE. The second exception is
Dequeue Discipline (DEQDISC): A Dequeue Discipline @ Dropper that marks the packet for discarding. In both cases,
is a strategy to choose the next Dequeue Behavior fof® modules won't send back an IP packet to the hook, but
serving a queue. Dequeue Disciplines are playing a vergither aPacketEnqueuednessage or Biscard Packetmes-
important role in reaching different service classes wi-Sage. The discarding of a packet will be done in the Hook,
thin a network. Examples for Dequeue Disciplines arebecause all BHVRs between the Hook and the dropped have
Priority Queueing, Weighted Fair Queueing, Round Ro-t0 be informed about the loss of packet. |.e. a token bucket has
bin, etc. to put back the tokens of this packet into the bucket, because
it will not be transmitted.

4.3 Interactions between Behavior Elements

With the just presented BE types a simple mesh of Behavior

Elements can be built and connected to several Hooks. But jhteractions at non-packet-gates: On o-junctions (bet-

is important to understand how a packet traverses this mesfleen DEQDISCs or between DEQISC and DEQBHVR)
and what other interactions can occur between the Behavigio packets will be exchanged. Dequeue Disciplines will first
Elements. The following section describes the sequence @fecide which DEQBHVR will be asked to dequeue a packet
events by two example concatenations of Behavior Element$r:om a gueue. This mechanism will be triggered from the

Dequeue-Hook sending outRequest _Packet message
Interactions between BHVRs (J-junction): Several Be- to the first dequeue discipline or directly to a DEBMVR, if
havior Elements with packet-gates can be arranged into ongo scheduling algorithm is used.

5 Conclusion

In this paper, a model for simulating the behavior of the In-
Hook ternet Protocol and a suite for simply creating any Quality
.‘ of Service mechanism have been presented. The model is a
Queueing 2 partial aspect of the super model for Internet Protocol layers
(TCP, UDP, Applications, etc.) to simulate the behavior of
Internet routers and hosts. Special decisions in designing the
[1P-Packet model, like the consideration of CPUs and parallel processing
@ Request - Packet -Message A\ No- Packet - Message of packets, have shown this to be an important topic to make
realistic simulations of protocol behavior in the Internet.

The creation and evaluation of Quality of Service mecha-
nisms can easily be done by using the elementary QoS models
and concatenating them in the correct way. Common models
for queue scheduling (priority queueing, weighted fair queu-

A DEQ.DISC decides on which of its out-gates the €ing, round robin, etc.), metering (token and leaky bucket),
Packet _Request will proceed. Any combination of classifying (multi-header-field, DS-codepoint, etc.) and for-
DEQ.DISCs can be built, but finally a DE@HVR has to ~ ming of network traffic are provided.
be called. In Fig[p’ the Priority Queueing module first asks The simulation suite will be available for the publiclat][10].
on the gate with the highest priority. The module connected hat should everybody offer the possibility to evaluate our
to that gate proceeds with its own scheduling mechanism. Iodels and to increase the pool of available models.

Fig.[§, the WFQ module asks on gate 1.

request

Figure 8 Interactions ono-junctions between DE@ISC
and DEQBHVR

_ _ _ References
Each pOS_SIb_le_Cham (_)f DEQISCs has to conclude with a [1] Steven Blake, David Black, Mark Carlson, Elwyn Davies,
Dequeue Discipline which executes thacket _Request Zheng Wang, and Walter Weiss. An Architecture for Diffe-

by dequeueing a packet from the QUEUE. On success and if rentiated Services. RFC 2475, December 1998,

a BHVR is connected, the packet will be sent out onfhé 2] Roland Bless and Klaus Wehrls. Evaluation of Differentiated
gate of the DEQBHVR. This follows the same procedure as Services using an Implementation under Linux. RArocee-
described previously about BHVR-meshes. dings of the 7th IFIP Workshop on Quiality of Service, London,

When the DEQBHVR receives back the packet, it is sent June 1999IEEE, 1999. N
recursively back trough the DEQISCs to the Dequeue- [3] Van Jacobson, Kathleen Nichols, and Lixia Zhang. A Two-
Hook. bit Differentiated Services Architecture for the Internet. RFC
2638, July 1999.

If no packet can be dequeued, the DBRIVR returns a [4] L. K. Lavu and Ravi Malghan. Quality-of-service ip simulati-

No_Packet -message to the previous DHQISC, indicating on. http://bacon.gmu.edu/qosip, 1997.
that the dequeue-operation failed. The DEGSC can choo- (5] s Lin and N. McKeown. A simulation study of IP switching.
se then — according to its algorithm — anotheyate to request ACM Computer Communication Revie@7(4):15-24, Octo-
a packet or it returns tho_Packet -message to its prede- ber 1997. ACM SIGCOMM'97, Sept. 1997.
cessor. On a successful dequeue, the hook starts the transmifs] S. Murphy. Diffserv additions to ns2.
sion of the packet on the interface. http://www.teltec.dcu.ietmurphys/ns-work/diffserv/ind

As mentioned above, the dequeueing is triggered by the ~ €x-html, July _2000' _
Dequeue-Hook. Normally,Packet _Request -messages [7] F. Shallwani et al. Diffserv. model for ns2.
will be initiated by the network interface, when it has finis- hitp:/fwww7.nortel.com/CTLIns-release6.zip, 2000.

hed the transmission of the previous packet and is now abld8] Andrs Varga. OMNeT++ — Discrete Event Simulation System.
to transmit the next packet. But if the interface has been id- Nttp://www.hit.ome.hu/phd/vargaa/omnetpp.htm, 2000.

le for a while, it would not start a new request. Therefore [9] S.Y. Wang and H. T. Kung. A simple methodology for con-
the Enqueue-Hook can initiateRacket _Request , when structing extensiblg and high-fidelity TCP/IP network simu-
it just inserted a packet into one of the output queues of the in- 1210rs.InProceedings of the IEEE INFOCQMew York,
terface. Such an indication only start®acket _Request , March 1999.

when the NIC is in idle state. This described mechanism i¢10] Klaus Wehrle, Verena Kahmann, and Ulrich Kaage. Internet
similar to the one in the Linux OS Simulation Suite. http://www.uni-karlsruhe.dedmnet, 2001.

http://www.telematik.informatik.uni-karlsruhe.de/forschung/diffserv/ki% ds/lit/iwqos99.pdf
http://www.telematik.informatik.uni-karlsruhe.de/forschung/diffserv/ki% ds/lit/iwqos99.pdf

	START PAGE
	CONTENTS
	ACROBAT HELP
	PROCEEDINGS LIST
	A Simulation Suite for Internet Nodes with the Ability to Integrate Arbitrary Quality of Service Behavior
	Keywords:
	Abstract
	Introduction
	The OMNeT++ simulation tool
	Simulation of the Internet Protocol
	IP Node structure and hierarchy
	IP Processing and protocol Hooks
	Packet Structure
	Processing of IP Datagrams
	Evaluation of the Processor Manager

	Building any Quality of Service behavior from elementary QoS models
	Protocol Hooks
	Behavior Elements
	Interactions between Behavior Elements

	Conclusion
	References

