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Abstract
In the last few years, the Internet community spent a

of research efforts in investigating several kinds of mech
nisms to provide better services than the traditional best
fort delivery. Simulating the behavior of Internet routers an
hosts with modified QoS behavior is one of the most impo
ant ways to prove their guarantees. Existing models availa
for common simulation tools have not been implemented
such a modular way as to reuse them easily according to
principles of new Internet services.

In this paper, a modular simulation suite of complete Inte
net nodes with a realistic simulation of the Internet protoc
and the underlying layers will be presented. The IP mode
designed in a very detailed way, covering all features of t
protocol, including mechanisms for ICMP and Multicast, u
like other network simulation models. The model conside
hardware restrictions of IP processing computers as well. T
second feature of the simulation suite is the ability to bu
any quality of service behavior. This is supported by eleme
tary QoS models, which can be combined and integrated v
flexibly. The simplicity to design this modular and reusab
models is supported by the modular architecture of the c
sen simulation environment – the OMNeT simulation tool.
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1 Introduction
One of the reasons for using network simulation tools is t
modeling of new networking concepts for validation of func
tionality, efficiency or scalability in global networks, such a
the Internet. Quality of Service (QoS) is such a concept, pa
cularly the Differentiated Services architecture [1] develop
for the Internet in recent years.
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As this architecture is designed of small building bloc
called Per Hop Behaviors (PHB) composed to form Qua
ty of Service behavior, an adequate simulation for the Dif
rentiated Services model requires the feature to quickly bu
models from elementary entities. Additionally, the purpose
this paper is to analyze the behavior of QoS concepts in
Internet in a realistic way. For instance, real hardware has
ly a limited number of CPUs, which can only process a sm
number of packets at any one time.

For implementing the simulation suite, the OMNeT++ s
mulation environment [8] presented in section 2 has been c
sen. It will be shown that this simulation environment is s
table to simulate complex systems like Internet nodes i
realistic way under consideration of the number of CPUs a
the restriction to process more than one packet within o
node. It also allows the design of modular simulation mode
which can be combined and reused in a very flexible way
section 3 we present the simulation model of Internet nod
Besides that, OMNeT allows the composition of models w
any granular hierarchy. Therefore, it is possible to build a
Quality of Service behavior by reusing and concatenating
sic QoS Behavior Elements. This concept will be shown
section 4, before we conclude the paper in the fifth section

Currently, our notion of a realistic simulation suite o
QoS behavior in the Internet is extended by integrating ot
aspects of Internet end systems like traffic generators for c
mon applications (HTTP, FTP, multimedia applications)
transport protocols like TCP into the presented simulat
model. However, for the sake of clarity, this paper conce
trates on the network mechanisms.
-
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2 The OMNeT++ simulation tool
OMNeT is a free object-oriented modular Discrete Event S
mulation (DES) tool available under [8]. DES systems a
especially suitable for the simulation of computer system
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and communication protocols, because processing functio
lities and protocol proceeding can be well modeled in discr
steps.

The OMNeT simulation system consists of C++ class
braries, forming the simulation kernel and the interface to
user environments. A model is compiled and linked with th
se libraries resulting in an executable file. The object-orien
approach allows the flexible extension of the base classes
vided in the simulation kernel.

Simulated models are composed of hierarchically nes
modules. There are two types of modules: First, so-cal
Simple Modules, which form the lowest hierarchy level an
implement the activity of the module. Simple Modules c
be arbitrarily put together toCompound Modules, the second
module type.

From this distinction of module types, a distinction of th
model description is made. The model topology, i.e. the h
archy of modules and the connections between them, is d
ned in NED (Network Environment Description) – a simp
and easy to understand C++ style language. A NED com
ler transforms the NED definition of a module into C++ c
de. The Simple Module’s activities are implemented by C
code. The code implements both the module’s algorithm
well as its communication with other modules via messa
sending.

OMNeT++ has been chosen as the simulation tool for
Internet simulation as it provides a flexible hierarchy whe
concepts and algorithms can be modeled in a modular
reusable fashion. Therefore, only the NED description o
new composed model has to be created – coding in C++ is
necessary. In other tools like ns-2, a lot of coding effort has
be spent on extending the module hierarchy, because se
class definitions have to be implemented. In OMNeT++
computer system like the presented Internet node can co
of a hierarchy of arbitrary granularity. Another advantage
that traffic generators may be included easily at each la
so measurements of single layers can be taken independ
of others. In contrast to other simulation tools, where on
protocol processing is supported in most cases, it is poss
to model packet processing as done in a real computer sys
Since we wanted to get a realistic Internet simulation, we h
modeled packet processing times in our Internet router mo
(cf. section 3). In ns-2 there is no processing time spen
the routing module, which we do not expect to be realis
behavior.

The modular object-oriented concept of OMNeT++ en
bles flexibility in the sense that building blocks can be e
changed and extended. For each building block, i.e. for e
Simple Module, it is possible to choose between process-s
a-
te

-
e
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or protocol-style modeling. Therefore, different parts of com
puting and communication systems can be connected ea
With this idea of flexibility, OMNeT++ allows to model new
networking concepts and include them into a model – as i
done for the presented simulation of Quality of Service m
chanisms (refer sec. 4).
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3 Simulation of the Internet Protocol
The highest level of abstraction in the simulation of IP is t
network itself, which consists ofIP Nodes. IP nodes can re-
present routers or hosts. That organization allows the e
re-combining of different components to a new network.

3.1 IP Node structure and hierarchy

TCPTCP UDPUDP

WWWWWW TelnetTelnet
NFSNFS

Raw IPRaw IP

Transport & Application Layer

Processor
Manager

Processor
Manager

Error-
Handling

Error-
Handling

IP Processing IP Processing 

Output
Queue 1
Output

Queue 1

Eth 0Eth 0 FDDIFDDI PPP 0PPP 0 PPP 1PPP 1

Input QueueInput Queue Output
Queue 3
Output

Queue 3
Output

Queue 2
Output

Queue 2
Output

Queue 4
Output

Queue 4

Rou-
ting

Table

Rou-
ting

Table

Network Interfaces

Physical Layer

Network Module

Audio
Video
Audio
Video

Figure 1 Components of the IP node simulation model

An IP Node in the simulation model is a computer capab
of understanding the Internet Protocol, and is represented
one compound module.

The modules responsible for the simulation of the Intern
Protocol are structured in a very similar way to the proce
sing of IP datagrams in a real operation system, rather t
organized to allow only a protocol processing, such as do
in OPNET and ns-2. The structure of the Linux kernel h
been chosen as model for the simulation of an IP Node. In
vidual changes in the Linux kernel would only result in loc
changes in the simulation model.

The IP Networkmodule is mandatory in an IP Node, a
it represents the network layers of the node. The upper lay
for the transport protocols and other applications are option



ro
ne
o

s
t
s
t

um

a
r

e
in
t
o
o
m
g

o

r
m
e
ai
e

n,
k

is
n
o
rn
il
ila

e
ff
e
in

li

n
tw
l
fa

in-
for

du-
ften

t-
t-

-
ns-
ues
ro-

way
bles
IP

re-
ad-

, if
es

, gi-

ral
et-
hat
a-
e-
t

he

ls
ed

ti-
ach
and
be
up-

and
ion
They are usually present in hosts, but may be absent in
ters. The IP Network module may have one or several con
tions out to other IP Nodes, either over point-to-point links
shared medium simulation entities.

The Processor Managermodule is obligatory. It handle
user and kernel process time scheduling and ensures tha
IP Node can only have one kernel process running at any
cific instance of time. The Processor Manager makes sure
the number of running user processes is limited by the n
ber of processors of the IP Node. It is the Processor’s M
nager responsibility to not allow more than one IP datagr
to be processed by the Kernel simultaneously. The numbe
processors in each system can be configured.

The system kernel and user processes can claim a proc
or the kernel for an atomic operation. During the process
time of that operation, this processor and the kernel can no
used by any other process. However, if the IP Node has m
than one processor, a second user process can claim an
processor for an atomic operation on its own. Once the ato
operation of a process is finished, the kernel or processor
released.

Claiming and releasing a processor or the kernel are d
by sending a message to the Processor Manager and then
ting for an acknowledgement. If the kernel or a processo
free, then the Processor Manager sends an acknowledge
message back to the requesting module. Should the kern
all processors be already in use, the event making the cl
request and all subsequent events are put into a waiting qu
Once the kernel or a processor has been released agai
next event from the queue gets to claim the processor or
nel.

With this mechanism, the simulation prevents a parallel
of the event handling system that would not be realistic i
real system. It ensures that two IP datagrams arriving fr
two network cards are processed subsequently by the ke
rather than simultaneously. This feature is often not ava
ble in other event-based simulation systems. In [4], sim
functionality has been modeled in OPNET, but as OPNET
based on Finite State Machines, this approach has not be
extensible with respect to the number of processors. A di
rent approach in [9] presents a simulation suite with inher
modeling of kernel behavior, but does not allow the easy
tegration of new networking concepts. While the existence
the Processor Manager module is required, its functiona
can be turned off optionally in our model.

The Network Module in an IP Node contains the handli
of the MAC/PPP-layer and the IP layer. Between those
layers, the IP queues are located, which allow the kerne
store packets coming from or going to the network inter
u-
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ces. The IP layer maintains one central input queue going
to the IP Processing module and a separate output queue
each network interface connected to the IP Processing mo
le. This architecture has been chosen, because it can be o
found in real systems.

TheRouting Tablemodule acts like a database for all ne
work interface and routing information. The routing and ne
work information file is loaded at initialization time from a
file for each node.

3.2 IP Processing and protocol Hooks
TheIP Processingmodule contains all components of the In
ternet Protocol. It handles both packets from and to the tra
port layer, as well as datagrams from and to the IP que
above the network interfaces. The submodules of the IP P
cessing compound modules are structured in the such a
that the processing of a datagram in the simulation resem
closely the way the Linux kernel handles the processing of
datagrams.

For instance, the submoduleRoutingdetermines the output
port of a datagram or passes it toLocal Deliver, if it should
be delivered to the upper layers.Local Deliver removes the
IP header and delivers the transport packet as well as the
quired control information (such as source and destination
dress) to the transport layer. TheICMPmodule handles ICMP
messages both resulting from internal errors (for instance
a bit error occurred over the transmission, or the TTL reach
0) and ICMP queries such as ping and timestamp queries
ven to them from the application layer. TheFragmentation
module allows the fragmentation of one diagram into seve
fragments on the basis of the MTU of the assigned output n
work interface. The header of each fragment is equal to t
of the original datagram, save for the fragmentation inform
tion. After the fragmentation, each fragment is forwarded s
quentially to theOutputmodule of the corresponding outpu
port.

Each network interface has its own output module. T
modulesPre Routing, Routing, Local Deliver, IP Sendand
IP Output each contain a hook for extending the protoco
behavior with QoS modules. This will detailed be describ
in section 4.

3.3 Packet Structure
The OMNeT simulation environment offers the encapsula
on of packets into other packets. This mechanism allows e
layer to en- and decapsulate the packets from upper layers
add all the header and trailer information. The length can
adjusted, based on the information packet passed from the
per layer. That way, TCP and UDP packets, IP datagrams
MAC-frames can be represented in exactly the same fash
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as in a real network. However, while the access to the fie
yields the same results as in reality, the bit-wise represent
on of such a packet is not the same.

3.4 Processing of IP Datagrams

IP_MulticastIP_Multicast

Pre_RoutingPre_Routing

Local_DeliverLocal_Deliver

output 0output 0

IP_SendIP_Send

IP_RoutingIP_Routing

IP_FragmentationIP_Fragmentation

output 2output 2output 1output 1

ICMPICMP

Figure 2 Processing of IP datagrams

The dotted connections on the IP Processing diagram d
cribe the path of IP datagrams to and from the transport lay
The fat connections mark the incoming and outgoing IP d
tagrams to and from the network interfaces. Every datagr
passes through theRoutingmodule, which is the core of IP
Processing.

1. IP datagrams which are sent originally from the IP No
are created in IP Send, passed on to Routing, then to
Fragmentation and finally to the Output modules. A
terwards, they are inserted into the output queue of
specific network interface.

2. IP datagrams destined at that IP Node arrive from t
input queue at Pre-Routing, are passed to Routing, th
to Local Deliver, where the IP header is stripped, befo
the packet is passed to the transport layer.

3. IP datagrams which are simply routed through the
Node arrive again at Pre-Routing, passed on to Routi
then to the Fragmentation and Output modules.

3.5 Evaluation of the Processor Manager
The impact of the Processor Manager has been tested in
following scenario by generating packet bursts from seve
end points and measuring the time they take until arrival. T
times of the two cases, one with the Processor Manager e
bles, the other with the Processor Manager disabled, will th
be compared . It is expected that the second run will take lo
ger and gives a more realistic time, as the Processor Mana
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prevents non-realistic parallel processing of multiple pack
in the kernel.

The scenario is set up as follows:

Receiver 0 Receiver 2Receiver 1

Sender 0 Sender 2Sender 1

Router

Figure 3 Scenario of the network

Each of the 3 sender nodes sends a burst of 1000 pac
to the 3 receiver nodes.

The application layer and network produce no latency. L
tency has been induced in the modulesPre Routing, Routing
and theOutput Queues on the IP layer of the router. The de
lay has been set to1µs in each module, amounting to a tota
delay of3µs in the router. Two separate experiments have b
en tested out, one with a bandwidth of 10 Mbit/s and anoth
with a bandwidth of 100 Mbit/s for each link. The end-to-en
delay was in both experiments3µs.

The bottleneck of the scenario is the router. Since the th
sender nodes send their datagrams at the same time, it h
handle multiple incoming datagrams simultaneously. In t
version with the Processor Manager turned off, one datagr
can be processed in Routing while another one can be p
cessed in PreRouting. In the second run, the second datag
is queued until the first has left IP-Processing. Because
network interfaces are usually equipped with their own pr
cessors, the handling of frames from the physical network a
insertion into the IP input queue can happen in parallel.

The result of the experiment are shown in figure 4.

Line speed: 10 Mbit/s 100 Mbit/s

Time Proc. Man. ON: 80.2021 ms 9.0330 ms
Time Proc. Man. OFF: 80.1951 ms 8.0330 ms
Time difference: 0.0070 ms 1.0000 ms
Relative time diff: 0.008 % 11.11 %

Figure 4 Results of simulation with and without considerin
parallelism in IP Processing



c
t
e
b
e
r
b

w
r
in
th

r
s
n
te

nts
-

he
ut-
ets
e-
one
ea-
to-
ior

la-
ery
ey
ti-

The
mo-
the
As expected, the time was in both cases lower for the
se in which the Processor Manager was turned on. While
difference in the case of the 10 Mbit/s link is insignificant, th
difference for the faster line is significant. The result can
explained that in case of a slow link, the router delay matt
little. In the first case, the router was faster to process all a
ving datagrams from the three lines than the line was capa
of transmitting new ones. In the second case, the router
not fast enough to process all incoming packets as they a
ved. As a result, new arriving datagrams had to wait in the
put queue until older ones were completely processed. In
case, the parallel processing of datagrams in the three mo
les PreRouting, Routing and Output Queue allowed a mu
faster forwarding. However, such behavior is unrealistic fo
software IP router, as it cannot process multiple datagram
the same time. So the case with the Processor Manager e
led gives a more realistic simulation result, which marks af
all a difference of 11 %.
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4 Building any Quality of Service behavior
from elementary QoS models

The goal of the simulation model presented in this paper is
offer elementary QoS modules for the Internet protocol sta
which can be combined and linked together to common Q
elements, like traffic shaper, token bucket, classifier, etc. T
suite also offers a variety of queues and scheduling mec
nisms like priority queueing, round robin, etc. In the follow
ng, these QoS elements are called Behavior Elements. In
next section a more detailed classification is given.

The main principle in building this simulation suite was th
possibility to build new QoS behavior quickly from the ex
sting pool of elementary Behavior Elements. This can mos
be done by varying the elementary models and connec
them in a special manner. The following example should m
tivate the architecture of the proposed model:

A token bucket is a widely used model to meter a cert
network flow and to monitor its conformance to Service L
vel Agreements (SLAs). Traditionally a token bucket mete
incoming flows to their conformance. If the negotiated ra
is not exceeded, the packets will be forwarded – otherw
they will be discarded. This method of metering a flow
well known, but in some scenarios (i.e. AF PHB in DiffSe
networks) the packets should not be discarded. They sho
either be marked with a lower priority and enqueued in
alternate queue with a lower priority. Or in another scena
two token buckets should be combined to control the peak
te and the average rate. With existing simulations, new to
bucket models, a marker a priority queueing model, etc. h
to be developed.
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Secondly, it is always a problem to integrate QoS eleme
into the right position within the protocol stack. For instan
ce, it is important whether a token bucket is working on t
IP layer – before the routing has been done – or at the o
put queue of a certain interface. In the first case all pack
forwarded by IP will be considered in the token bucket m
ter, whereas in the latter case, only the packets leaving on
interface will be metered. In a third case only the packets l
ving a host should be considered. It is obvious that in a pro
col like IP, a lot of possible places to integrate QoS behav
can be identified.

As a result of this, a fast development of models for simu
ting new network behavior, as i.e. new QoS behaviors, is v
time-consuming with existing simulation models, since th
have mostly modeled complete architectures [6, 7]. Each
me, new models have to be developed and implemented.
reuse of existing models is not very easy. The presented
dular architecture with its elementary QoS models, and
individual linking of them, would solve such problems an
allow to build immediately any QoS behavior for an Intern
router or host – mostly without implementing new mode
The existing pool of elementary QoS behaviors, and the co
plete implementation of the Internet Protocol, offer on the o
hand a real IP behavior and on the other hand the possib
to build and evaluate rapidly new QoS behavior.

In the next few sections the basic architecture of our
mulation environment will be presented. First the principle
Hooks which are strategic places for including QoS eleme
into protocol stacks, is explained. Subsequently the five d
ferent kinds ofBehavior types and the rules to concatena
them will be introduced.

Figure 5 will illustrate the architecture by the following
example (In appendix A the NED configuration file for th
IP Forward -Hook is listed). Three service classes shou
be distinguished: A Premium class, offering a high priori
service with low delay. The flows of the Premium class w
be metered by a Leaky Bucket and shaped at the output
terface. A second class should offer a better service than B
Effort with a statistical guarantee of bandwidth. This will b
achieved by a weighted fair queueing scheduler. The me
ring will be done by a token bucket. Non conforming packe
will not be discarded, but degraded to the Best Effort servi
which builds the third service class. The classification to t
three service classes is done by a multifield classifier. This
ample is a possible implementation of the well-known ’Tw
bit architecture’, which is described in details in [3]. To kee
the example simple, only the L2-Hooks of interfaceeth0 are
shown.
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Figure 5 Example configuration of basic QoS Behavior El
ments

4.1 Protocol Hooks
When QoS behavior should be introduced into an exist
protocol, one basic problem is the place where the proto
is extended with the new Behavior Elements. Regarding
Internet Protocol, five strategic points can be identified.
the following this points will be calledHooks. They differ in
the set of packets passing the point, i.e. thePost Routing -
Hook represents the set of packets leaving the IP node on
interface - whether they have been forwarded, or created fr
the host:

Pre Routing : All packets arriving on a network interface
will pass this hook before routing is processed

Local In : All packets for the upper layers after routing i
processed.

Forward : All forwarded packets will pass this hook afte
the routing.

Local Out : Hook for all packets from upper layers, befor
routing is processed.
-

g
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m

Post Routing : Last Hook for all packets (forwarded and
from upper layers) leaving on a network interface.

For each network interface, two additional Hooks can
identified: L2 Enqueue xx and L2 Dequeue xx (xx is
the name of the interface). They are located around the ou
queue(s) of each network interface card (NIC), which wou
be the right point to add specific behaviors operating on t
outgoing queues, like priority queueing, shaping, etc. (re
Fig. 2).

In this paper we only focus on the Internet Protocol an
the underlying layer. But we are also building simulation m
dels for the transport protocols UDP/TCP and Internet ap
lications (HTTP-, FTP-, VoiceCall-traffic models). In thes
models, Hooks can be added easily at adequate places to
tegrate QoS behavior.

As described above, a Hook is a place within a protoc
where QoS behavior can be added. The Behavior Eleme
included at such a hook are elementary models offering a c
tain behavior. They will be described in the following.

4.2 Behavior Elements
A Behavior Element (BE) is comparable to a black bo
which offers a specific basicbehavior. A BE consists of one
in-gate,n out-gates and a certain processing behavior insi
At the in-gate packets enter the box and receive a certain m
nipulation inside the module. Dependent on the calculati
within the box, a packet leaves on a certain out-gate. Be
viors can be concatenated after each other. Consequently
treatment a packet receives within a BE decides which wa
will proceed and which quality it receives.

Two kinds of gates of Behavior Elements and Hooks c
be distinguished:packet-gates(abbreviated as�) and non-
packet-gates(◦). The main difference between them is, tha
between two packet-gates IP-packets are exchanged, and
ween non-packet-gates only messages to request packet
exchanged. One main rule is, that only gates from the sa
kind can be connected. The two different types of gates
described more detailed in section 4.3.

There can be five kinds of Behavior Elements distinguish
(ref. Fig. 6):

(conventional) Behaviors (BHVR) are elementary QoS ele-
ments that operates on IP packets. As shown in Fig. 6
BHVR has only one in-gate and up ton out-gates, where
n depends on the particular Behavior Element. BHVR
can be interconnected between one another without f
filling other requirements. Example BHVRs are Toke
Bucket, Marker, Dropper, Classifier, Random Early D
tection (RED) etc.
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Figure 6 Five different classes of behavior elements

Queue (QUEUE): QUEUEs are well known packet queu
es. Packets can only be enqueued and dequeued
the two following kind of behaviors. Several types o
QUEUEs exist, i.e. Fifo, Shaping, etc.

Enqueue Behavior (ENQBHVR) are specialized BHVRs
for enqueueing a packet into a queue. The queue is id
tified by its name and an according Enqueue Beha
or should be used. One special characteristic of an E
queue Behavior is the missing out-gate. Whether t
packet is inserted into the queue, or it has to be dro
ped. ENQBHVRs can be connected to out-gates of an
BHVR-module. The detailed procedure of exchangin
messages and packets between Behavior Elements is
scribed in section 4.3.

Dequeue Behavior (DEQBHVR) can be used to dequeu
a packet from a certain queue. I.e. a FifoDequeue mo-
dule removes the first packet from the named queue a
sends it to its out-gate. DEQBHVR modules can on-
ly be connected to an◦-gate of a L2Dequeue-Hook or
Dequeue-Discipline. After a DEQBHVR all kinds of
BHVRs can be connected to the packet-gate.

Dequeue Discipline (DEQDISC): A Dequeue Discipline
is a strategy to choose the next Dequeue Behavior
serving a queue. Dequeue Disciplines are playing a v
important role in reaching different service classes w
thin a network. Examples for Dequeue Disciplines a
Priority Queueing, Weighted Fair Queueing, Round R
bin, etc.

4.3 Interactions between Behavior Elements
With the just presented BE types a simple mesh of Behav
Elements can be built and connected to several Hooks. Bu
is important to understand how a packet traverses this m
and what other interactions can occur between the Beha
Elements. The following section describes the sequence
events by two example concatenations of Behavior Eleme

Interactions between BHVRs (�-junction): Several Be-
havior Elements with packet-gates can be arranged into
ith
f

n-
i-
n-
e

p-
y
g
de-

nd

or
ry
i-
e
-

or
t it
sh
ior
of
ts.

ne

Token  
Bucket   
Token  

Bucket   
Hook

DropperDropper

MarkerMarker

Out

In

3a

1
2a

2b
3b

1 IP-Packet

3b IP-Packet (marked to discard)

4a

4b

No BHVR follows
→ IP-Packet goes recur-
     sively back to the hook

Figure 7 Interactions on a�-junction between BHVRs

new model to create a new QoS Behavior. At the conne
ons between the�-gates, IP packets are exchanged. Fig.
shows an example. The Hook sends an IP packet to the to
bucket-BHVR. When the module has completed its opera
ons on the packet it will send it further, if a module is conne
ted on the dedicated port. That means in the example, th
SLA-conform packet (casea) will leave on theIn -gate (In-
Profile); otherwise it will leave on theOut -gate to the Drop-
per. If no module is connected to a BHVR on the dedicat
port, or the BHVR has no port, the packet will be sent ba
to the previous module where the packet came from.

One can see, that a packet first traverses a chain of BHV
and then recursively back to the Hook, where the normal p
tocol processing will be continued.

This is the normal procedure, but there are two possible
ceptions. The first is when a packet reaches an ENQBHVR,
which will enqueue it into a QUEUE. The second exception
a Dropper that marks the packet for discarding. In both cas
the modules won’t send back an IP packet to the hook,
either aPacketEnqueuedmessage or aDiscard Packetmes-
sage. The discarding of a packet will be done in the Hoo
because all BHVRs between the Hook and the dropped h
to be informed about the loss of packet. I.e. a token bucket
to put back the tokens of this packet into the bucket, beca
it will not be transmitted.

Interactions at non-packet-gates: On ◦-junctions (bet-
ween DEQDISCs or between DEQDISC and DEQBHVR)
no packets will be exchanged. Dequeue Disciplines will fi
decide which DEQBHVR will be asked to dequeue a packe
from a queue. This mechanism will be triggered from th
Dequeue-Hook sending out aRequest Packet message
to the first dequeue discipline or directly to a DEQBHVR, if
no scheduling algorithm is used.



e

k
e
.

d

s

m

th

-
b
i
r

i

n-
ity
is a

ers
of
the
ing
ke

a-
dels
els
u-
t),
r-

].
ur

,
-

d

n,

o-
C

-

.

.

-
-

et
FIFO
Dequeue

FIFO
Dequeue

Priority
Queueing   

Priority
Queueing   

Hook

2

1
1

request
packet WFQWFQ

n

1

3

2 4

5

6
7

8
9

10

1 IP-Packet

2 Request-Packet-Message 3 No-Packet-Message

Figure 8 Interactions on◦-junctions between DEQDISC
and DEQBHVR

A DEQ DISC decides on which of its out-gates th
Packet Request will proceed. Any combination of
DEQ DISCs can be built, but finally a DEQBHVR has to
be called. In Fig. 8, the Priority Queueing module first as
on the gate with the highest priority. The module connect
to that gate proceeds with its own scheduling mechanism
Fig. 8, the WFQ module asks on gate 1.

Each possible chain of DEQDISCs has to conclude with a
Dequeue Discipline which executes thePacket Request
by dequeueing a packet from the QUEUE. On success an
a BHVR is connected, the packet will be sent out on the�-
gate of the DEQBHVR. This follows the same procedure a
described previously about BHVR-meshes.

When the DEQBHVR receives back the packet, it is sen
recursively back trough the DEQDISCs to the Dequeue-
Hook.

If no packet can be dequeued, the DEQBHVR returns a
No Packet -message to the previous DEQDISC, indicating
that the dequeue-operation failed. The DEQDISC can choo-
se then – according to its algorithm – another◦-gate to request
a packet or it returns theNo Packet -message to its prede-
cessor. On a successful dequeue, the hook starts the trans
sion of the packet on the interface.

As mentioned above, the dequeueing is triggered by
Dequeue-Hook. Normally,Packet Request -messages
will be initiated by the network interface, when it has finis
hed the transmission of the previous packet and is now a
to transmit the next packet. But if the interface has been
le for a while, it would not start a new request. Therefo
the Enqueue-Hook can initiate aPacket Request , when
it just inserted a packet into one of the output queues of the
terface. Such an indication only starts aPacket Request ,
when the NIC is in idle state. This described mechanism
similar to the one in the Linux OS.
s
d
In

5 Conclusion
In this paper, a model for simulating the behavior of the I
ternet Protocol and a suite for simply creating any Qual
of Service mechanism have been presented. The model
partial aspect of the super model for Internet Protocol lay
(TCP, UDP, Applications, etc.) to simulate the behavior
Internet routers and hosts. Special decisions in designing
model, like the consideration of CPUs and parallel process
of packets, have shown this to be an important topic to ma
realistic simulations of protocol behavior in the Internet.

The creation and evaluation of Quality of Service mech
nisms can easily be done by using the elementary QoS mo
and concatenating them in the correct way. Common mod
for queue scheduling (priority queueing, weighted fair que
eing, round robin, etc.), metering (token and leaky bucke
classifying (multi-header-field, DS-codepoint, etc.) and fo
ming of network traffic are provided.

The simulation suite will be available for the public at [10
That should everybody offer the possibility to evaluate o
models and to increase the pool of available models.
if
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