
Bandwidth Analysis of a Simulated Computer Network Running OTB

Juan J. Vargas, Ronald F. DeMara, Avelino J. Gonzalez, Michael Georgiopoulos

Department of Electrical and Computer Engineering
University of Central Florida

Orlando, FL 32816-2450
jvargas@ucf.edu, demara@mail.ucf.edu, michaelg@ucf.edu, gonzalez@ucf.edu

Abstract
A network simulation is conducted to determine the bandwidth requirements of military mission rehearsal
activities while enroute to deployment. A predefined vignette running under OneSAF Testbed Baseline (OTB)
provides the base data for the simulator. This data consists of Protocol Data Units (PDUs) captured by the OTB
logger. The PDUs are the messages exchanged by all the entities in the simulation and include the timestamp
and byte length, used in the simulation to recreate the network traffic.

 The simulation includes 24 computers onboard 8 military airplanes, 3 computers per plane, representing 3
combat vehicles connected via a 100Mbps Ethernet LAN. A router interconnects the resources aboard each
plane to those of other planes and also to a remote ground station via 64, 128, 256 and 1024 Kbps wireless
communication channels. The results of the simulation are collected, plotted, and conclusions regarding
bandwidth and latency implications of the Embedded Training exercises are drawn.

The embedded training computer network simulation is developed using the OMNeT++ public-domain
modeling tool. OMNeT++ is a general discrete event simulation tool that contains features aimed to facilitate
computer network modeling. It contains a graphical development environment used to define the topology of
the network by instantiating and interconnecting different icons that represent the objects of the simulation, like
computers, communication channels, routers, airplanes, etc. The behavior of each object is specified in C++.
The final product is an executable standalone program that models the network behavior. It can run as an
animation or as an express simulation. A wide range of statistics is obtained for analysis.

Introduction
In 2002, the U.S. Army Simulation, Training and
Instrumentation Command (STRICOM) and the Computer
Engineering Department of the School of Electrical
Engineering and Computer Science at the University of
Central Florida (UCF) began a joint project to assess the
“Bandwidth and Latency Implications of Integrated
Training and Tactical Communication Networks.” The
main goal of the project is to determine the bandwidth
requirements for running Objective Force Embedded
Training (OFET) methods.

OFET methods benefits include the ability to perform tasks
such as mission planning and rehearsal while enroute to
deployment. Benefits include the ability to perform "in-

situs" exercises on actual equipment, more direct provision
of support for the variety of equipment in the field, and a
greater opportunity to develop new training exercises using
much shorter lead times than were previously possible with
stand-alone training systems.

A fully operational OFET platform also presents several
technology challenges. In particular, management of
Command, Control, Communications, Computers,
Intelligence, Surveillance, and Reconnaissance (C4ISR)
resources is required for successful integration of
simulation within the actual environment. The purpose of
this study is to assess communication requirements to
support Enroute Mission Planning and Rehearsal (EMPR)
in a Future Combat System (FCS) environment.

The first step towards the development of the network
simulator was the design of the vignette illustrating a
mission rehearsal operation enroute to deployment. This
vignette included a database terrain, friendly and enemy
forces, strategies, and other details representative of FCS
operations. The vignette was run using the software
simulator known as OneSAF Testbed Baseline (OTB).

Entities in OTB communicate to each other by passing
messages. Messages in OTB are called Protocol Data Units
(PDUs). PDU formats are part of the Distributed
Interactive Simulation (DIS) protocol defined in the IEEE
Standards 1278.1 (1995), 1278.2 (1995), 1278.3 (1996)
and 1278.1a (1998). After running the OTB simulator, the
PDUs generated in that session are collected and stored in
an output file for further processing. Concerning the
bandwidth project, the three most relevant features of the
PDUs are the sender ID, the byte length and the timestamp
of PDU creation because these parameters are the basic
inputs for modeling communication traffic. The destination
address is not considered given that OTB broadcasts all the
messages to all the participating entities.

The developing team wanted a discrete simulation tool
with the following characteristics: great flexibility from a
programming point of view, Windows based for
availability and readiness, Graphical User Interface (GUI)
capable of showing simulation with animation, easy to
learn for C++ users, and low cost. After a short survey, the
team decided to use OMNeT++ a software tool developed
by András Varga at the Budapest University of
Technology and Economics (OMNeT++, 2003).
OMNeT++ is a general discrete event simulation tool that
contains features to facilitate computer network
simulations. OMNeT++ runs under different platforms
including UNIX systems, Linux and Windows. It contains
a graphical development environment used to instantiate
the entities of the simulation like computers,
communication channels, routers, airplanes, etc. and
connect them according to the desired topology.

Using OMNeT++
OMNeT++ is a discrete event simulation environment
based on C++. It provides means for describing the
topology of the network, either graphically or by using of
the NED language (Varga, 2003). In particular, OMNeT++
operates on two types of files: NED and CPP.

The first type corresponds to NED files (xxx.ned) that
describe the topology of the network composed of the
different nodes involved in the simulation, their input and
output gates and the connections between them. A NED

file uses a special language called the NED language to
describe modules. There are two types of modules: simple
and compound. Simple modules contain no other modules
inside them and are used to describe the most basic
elements of the simulator. In this project, message
generators, message sinks, communication channels
(wireless and Ethernet buses) and routers correspond to
simple modules. Compound modules contain other
modules inside. For example, a computer onboard an
airplane is a compound module because it contains a
message generator and a sink. A plane is also a compound
module that contains a computer, a router and an Ethernet
bus. The largest compound module corresponds to the total
network that contains airplanes, and a wireless bus to link
the planes.

The second type of files corresponds to CPP files
(xxx.cpp) that use C++ to describe the functionality of the
simple modules. Each simple module requires a C++
source code that indicates how to process each packet that
arrives to an input gate, as well as how to send a packet to
an output gate. Using C++ code we can program the packet
contents, its destination, its length, and the distribution
used (exponential, normal, uniform, etc.) to schedule
packets. The CPP files corresponding to the buses
(Ethernet or wireless) handle the packet transmission and
collision detection. Once the source files are ready, the
simulator is compiled. In this project, Microsoft Visual
C++ was used to accomplish this task. A special compiler
supplied with OMNeT++ pre-processes the NED files
creating cpp files. Next, all the cpp files are compiled
together with the Tcl/Tk graphic library producing the
executable file. Tcl/Tk is a graphic library in the public
domain (Tcl Developer Xchange, 2003) and described in
several books like (Zimmer, 1998). For C++ programmers,
a sufficient understanding of the way OMNeT++ works
along with the capability of developing basic models can
be quickly achieved because the main concepts come from
general knowledge about C++, as compared to other
simulators in which there are several long manuals to read
and the concepts are specific to that particular simulator.

Model Design
The model to be simulated is composed of eight airplanes
carrying three computers and a router each, plus a satellite
and a ground station. A random message generator with a
specific distribution can be used to control the rate of
packet generation. Alternatively, as in our study, each
component actually reads the messages to be broadcasted
from an input text file that contains the type, length and
timestamp of each message as recorded by the OTB’s
logger when the vignette was run.

Module descriptions
The GNED editor is used to edit the NED files using a
graphic interface. Figures 1, 2 and 3 show the OMNeT++
representation of the compound modules node, airplane
and the whole network, respectively.

Figure 1. OMNeT++ view of a node
containing a sink and a generator

Each node onboard an airplane contains a message
generator and a message sink. The legend “OTBNet.
plane[0].node[0]” in Figure 1 indicates that this
compound module belongs to node # 0 located inside plane
0 which is part of the general network called OTBNet.
The planes are identified by using consecutive integers 0,
1, 2, …, 7. Within each plane, the computers are identified
as nodes 0, 1 and 2. The brackets indicate that the set of
planes and the computers onboard each plane are
represented as arrays of simple modules. The arrows
represent connections to input and output gates.

Figure 2. Airplane modules: embedded
training stations, bus and router

Figure 2 shows the three nodes, the router and the Ethernet
bus onboard each airplane. The three nodes and the router
are connected via an Ethernet bus. Figure 3 shows the
complete network composed of 8 airplanes, a ground
station, a satellite and 3 wireless channels. The first
wireless link connects the routers in all planes to each
other. A second wireless link communicates the routers in
the planes to the satellite, and the third one communicates
the satellite to the ground station. In this way, each router
is connected to three different links, and the satellite is
connected to two.

Figure 3. General view of the network
showing 8 planes, satellite, ground station
and the 3 wireless channels

Figure 4 contains the NED code of a generator, a sink and
the satellite. For simple modules the NED code indicates
the module name, the input parameters and the input and
output gates. The C++ code of simple modules is written in
a separate file. Each simple module becomes a C++ class.

Figure 4. NED code of some simple modules

On the other hand, the NED code of a compound module
includes additional features like the values of parameters
of internal modules and connections between module
gates. Compound modules do not need user-written C++

simple Generator
parameters:
startTime: numeric,
fromAddr: numeric,
totalNodes: numeric;
gates:
out: out;
endsimple

simple Sink
gates:
in: in;
endsimple

simple Satellite
parameters:
startTime: numeric,
satelliteID : numeric,
satServiceTime : numeric,
totalNodes : numeric,
WGSposition : numeric,
WSPposition : numeric;
gates:
in: inBus1;
out: outBus1;
in: inBus2;
out: outBus2;
endsimple

source code because their behavior is completely defined
by their simple modules.

Input parameters of the model are used to control the
conditions under which each simulation runs. These
parameters can be directly given in the NED files, or they
can be read from a configuration file at run time. Each
simulation starts by reading the configuration file
OMNeT++pp.ini containing initialization values.

Input Data
The input data to the model comes from the OTB logger.
After setting up a particular vignette, it is simulated and the
OTB logger records all of its PDUs into an output file that
is later converted to text. OTB generates Persistent Object
PDUs (PO_PDUs), which are a specialization of the
general category of PDUs.

Figure 5. Example of a PO_PDU

Figure 5 is an example of a short PO_PDU. From among
all the fields, the most important to our simulation are the
site identification (1533), the length in bytes (147) and the

timestamp (:01:33.432) interpreted as 1 minute, 33 seconds
and 432 milliseconds. The timestamp represents the time
the entity generated this PDU and put it on the output
queue.

Simulation Results
The figures included in this article are labeled “Experiment
3” because they correspond to the third experiment in a
series of four. The experiment involved PDUs from six
senders. The remaining 19 computers were listeners. The
sites sending information were assigned to computers in
separate airplanes and to the ground station. Two types of
analyses were performed. The first one is a static analysis
of the input data with no simulation involved. This analysis
is subdivided into 2 categories: distribution of PDUs and
minimum bandwidth requirements.

Distribution of PDUs

Figure 6. Frequency distribution of PDUs

Figure 6 shows a frequency distribution of all the types of
PDUs involved in the experiment, as well as the

<dis204 po_variable PDU>:
dis_header.version=4
dis_header.exercise=1
dis_header.kind=250
dis_header.family=140
dis_header.timestamp=:01:33.432 (rel)
dis_header.sizeof=196
po_header.po_version=28
po_header.po_kind=2
po_header.exercise_id=1
po_header.database_id=1
po_header.length=147
po_header.pdu_count=7905
do_header.database_sequence_number=0
do_header.object_id.simulator.site=1082
do_header.object_id.simulator.host=23825
do_header.object_id.object=685
do_header.world_state_id.simulator.site=0
do_header.world_state_id.simulator.host=0
do_header.world_state_id.object=0
do_header.owner.site=1533
do_header.owner.host=23825
do_header.sequence_number=1
do_header.class=11
do_header.missing_from_world_state=0
reserved9=0
variable.total_length=132
variable.expanded_length=7812
variable.offset=0
variable.length=132
variable.obj_class=8
variable.data="Mine Pallet US M75

<dis204 fire PDU>: 23
<dis204 po_objects_present PDU>: 682
<dis204 po_minefield PDU>: 14
<dis204 minefield PDU>: 117
<dis204 iff PDU>: 851
<dis204 acknowledge PDU>: 36
<dis204 stop_freeze PDU>: 3
<dis204 po_line PDU>: 912
<dis204 po_task_authorization PDU>: 6
<dis204 po_task_frame PDU>: 382
<dis204 po_message PDU>: 119
<dis204 aggregate_state PDU>: 256
<dis204 po_delete_objects PDU>: 110
<dis204 po_parametric_input PDU>:1196
<dis204 laser PDU>: 3
<dis204 detonation PDU>: 25
<dis204 po_fire_parameters PDU>: 713
<dis204 po_simulator_present PDU>:370
<dis204 entity_state PDU>: 28569
<dis204 mines PDU>: 386
<dis204 po_point PDU>: 659
<dis204 po_task_state PDU>: 11960
<dis204 signal PDU>: 237
<dis204 po_task PDU>: 2274
<dis204 po_unit PDU>: 1793
<dis204 transmitter PDU>: 8642
<dis204 start_resume PDU>: 3
 Total PDUs = 60341

Site Assignment:
Site 1519 (50230 PDUs): plane=0, node=0
Site 1526 (1056 PDUs): plane=1, node=0
Site 1529 (483 PDUs): plane=2, node=0
Site 1533 (553 PDUs): plane=3, node=0
Site 1538 (637 PDUs): plane=4, node=0
Site 1532 (7382 PDUs): ground station

assignment of sites to model nodes. The assignment was
based on the number of PDUs generated by each site,
giving plane 0 the greatest number of PDUs and ground
station the next greatest.

Minimum Bandwidth Requirements
The PDUs of all the sites were merged into one single
stream of data and sorted according to their timestamps
prior to any bandwidth computation. This was done
because in the DIS protocol all the PDUs are broadcasted
and any listening site will have to receive the PDUs from
all the generating sites as one single stream of data. Then,
without using simulation, a separate program calculated
the minimum instant bandwidths by dividing the total
simulation time into small time intervals of 2 seconds each,
and computing the ratio of volume of data transmitted in
each interval to the length of the interval.

Figure 7 shows the graph of minimum bandwidth
requirements at each time interval. PDUs indicate that the
activity starts at second 1035 and ends at second 2550 for a
total time of 25 minutes and 15 seconds of simulation time.

Figure 7. Minimum bandwidth requirements

In the static analysis, overheads like retransmissions,
packet losses, or collisions are not considered. Therefore,
the resulting bandwidth estimates can be interpreted as an
absolute lower bound for the actual required bandwidth.
Because a time gap must exist between packets as
indicated by the IEEE Standard 802.11 (1997), it was set to
50 microseconds in this analysis. From the graph in Figure
7, the static analysis indicates that the maximum required
bandwidth is near 256 Kbps, but the majority of the time
the required bandwidth is less than 200 Kbps.

The second analysis performed corresponds to results
obtained by running the simulator. The analysis is
subdivided into 4 categories: slack time analysis, travel
time analysis, queue length analysis and collision analysis.

Slack Time Analysis
The slack time for each node generator is defined as the
difference between the timestamp of each PDU and the
current simulator time at the moment the PDU is read from
the input file. If the difference is positive then the
generator is ahead of the planned schedule, otherwise it is
behind it. Thus, a negative slack time indicates that the
channel bandwidth is not enough to transmit the required
PDUs without delay.

Figure 8 shows the slack time for all the units (routers and
ground station) when the wireless channels are set to 64
Kbps

-20

0

20

40

60

80

100

120

140

160

180

1000 1200 1400 1600 1800 2000 2200 2400 2600

S
la

ck
 T

im
e

to
 N

ex
t P

D
U

 (s
ec

on
ds

)

Simulation Time (seconds)

Experiment # 3 (6 sites)

Slack Time to Send Next Message in OTBNet.plane[0].node[0].gen
Slack Time to Send Next Message in OTBNet.plane[1].node[0].gen
Slack Time to Send Next Message in OTBNet.plane[2].node[0].gen
Slack Time to Send Next Message in OTBNet.plane[3].node[0].gen
Slack Time to Send Next Message in OTBNet.plane[4].node[0].gen

Slack Time to Send Next Message in OTBNet.groundStation.gen

Figure 8. Slack times at each transmitting node using

64 Kbps in the wireless channels

Although Figure 8 gives the impression that no negative
slacks are produced, a close up near zero in the Y axis
reveals that many negative spikes do exist, most of them
generated by the ground station. This is explained by the
fact that the generators onboard the planes are directly
connected to high speed Ethernet buses (100 Mbps), while
the ground station is connected to a low speed wireless
channel (64 Kbps).

Figure 9 shows a close up of the slack time for the ground
station at 64 Kbps. An increase in the wireless bandwidth
decreases the negative spikes, but does not eliminate them
completely. One contributing factor to the negative spikes
is the fact that during certain events OTB produces
sequences of PDUs having exactly the same timestamp.
For instance, sequences of 8 or more “po_fire_
parameters” PDUs having the same timestamp were

detected. Each PDU requires some positive transmission
time, and so when the next PDU arrives its timestamp is
previous to the current time and a negative spike starts to
build. Further research is being conducted to analyze the
composition of the PDUs participating in the negative
spikes and to propose ways to eliminate these spikes. One
possibility is to group together PDUs of the same type and
length into one single packet.

Figure 9. Slack time at ground station using a

bandwidth of 64 Kbps

Travel Time Analysis
The travel time is the difference between the sending time
of a PDU from a node generator and the arrival time to a
node sink. All the transmission times, propagation times
and waiting times in router queues are part of the travel
time. Figure 10 shows the travel time of PDUs measured
by the sink at node 0, plane 0, using 64 Kbps on the
wireless links.

Figure 10. Travel times measured at node 0, plane 0

At node 0 the graph clearly shows two traces
corresponding to two types of PDUs. The PDUs that take
longer to arrive come from the ground station. These PDUs

had to wait on the satellite queue as well as on the router
queue. On the other hand, the PDUs coming from
computers onboard the other planes had to wait on the
router queue only. As seen, at 64 Kbps the travel times of
most PDUs are completely unacceptable. Some PDUs took
more than 100 seconds since the time they were sent to the
time they arrived.

Although not shown, the ground station presents a similar
behavior due to the relatively long queue and transit times
associated with the satellite. An increase in the bandwidth
produces a significant reduction in travel times. At 200
Kbps, the travel times to the ground station are less than 1
second. Considering that the minimum travel time is about
0.25 seconds due to the distance from the satellite to Earth,
latencies less than 1 second are within the same order of
magnitude from being optimal. At 200 Kbps, a better
packet scheduling policy could diminish the negative
spikes, especially if OTB were set to deliver the PDUs in a
less burst mode, which is also the topic of future research.

Queue Length Analysis
There is a message queue at the satellite and at each router.
Every time a PDU arrives to a router or satellite, the
number of messages in the system is counted including the
just arrived PDU, the PDUs in the queue and any one
being serviced, and the tally is recorder along with the
arrival time.

The two most important queues to analyze are the queues
at the router onboard plane 0 and at the satellite. Figure 11
shows the messages in the router queue, using 64 Kbps in
the wireless channels.

Figure 11. Messages in router queue at plane 0

As observed, the queue length becomes really
unacceptable, reaching more than 3000 messages during
the worst periods. Similarly, the queue at the satellite has a

peak of more than 2200 messages. On the other hand,
routers at other planes have acceptable queues. For
instance, plane 3 (graph not shown) has a queue with a
maximum of 23 messages. The reason is that the
corresponding node transmits only 553 PDUs, a number
easily handled by the router.

Simulation runs using bandwidths of 64, 200, 512 and
1024 Kbps in the wireless channels showed the effect of a
bandwidth increase over the queue length in routers and in
the satellite. The results indicated that just by increasing
the bandwidth to 200 Kbps, the queue length decreases to
less than 60 and less than 40 messages at plane 0 and at the
satellite, respectively, in the highest peaks, which is quite
significant.

Collision Analysis
The satellite and routers keep separate counters of
collisions on each of the buses they are connected to. The
satellite and the routers are connected to 2 and 3 links,
respectively, as explained in the Model Design section.
Each time a collision is detected, the corresponding
counter is updated and its value along with the current
simulation time is recorder for future processing.
OMNeT++ includes procedures to collect and plot such
information. The buses were programmed in such a way
that packets transmitted by a module are not returned to its
sender, even if they collide. Therefore, active senders are
not good candidates to monitor collisions. In this analysis,
the router at plane 7 was chosen to count collisions
because none of the nodes onboard plane 7 is an active
sender, making the router a good indicator.

The simulation results at 64 Kbps indicate that the highest
collision rate occurred in the bus connecting the satellite to
the planes and was close to 12 collisions per second. More
than 6000 collisions were detected at 64 Kbps, which
represents approximately 10 % of the total number of
PDUs. At 200 Kbps, the router at plane 7 detected a
maximum of 4 collisions per second. At this bandwidth,
the total number of collisions was near 4500, or 7% of all
the PDUs. Collision accumulation in plane 7 at different
bandwidth rates is given in Figure 12.

The collisions were calculated as the sum of collisions
detected in the three buses the router is connected to.
However, the main component comes from the wireless
link between the airplane and the satellite. The behavior of
this link depends on the assignment of OTB transmitting
sites to computer nodes. For example, if the PDUs
currently assigned to the ground station were assigned to
computer node 1 onboard plane 0, the Ethernet link
running at 100 Mbps will produce fewer collisions than a

wireless link running at 64 Kbps due to the shorter
transmission times.

0

1000

2000

3000

4000

5000

6000

7000

1000 1200 1400 1600 1800 2000 2200 2400 2600

N
um

be
r

of
 C

ol
lis

io
ns

Simulation Time (seconds)

Experiment # 3 (6 sites)

Collision Accumulation in OTBNet.plane[7].router (planes64.vec)
Collision Accumulation in OTBNet.plane[7].router (planes200.vec)
Collision Accumulation in OTBNet.plane[7].router (planes512.vec)

Collision Accumulation in OTBNet.plane[7].router (planes1024.vec)

Figure 12. Collision accumulation at plane 7 at 64, 200,

512 and 1024 Kbps

Table 1 shows statistics about the total number of
collisions, percentage of all the PDUs, and average number
of collisions per second at different bandwidths.

Table 1. Collision accumulation, percentage
and average number of collisions per second

at different bandwidths
64KBps 6300 coll. 10 % 2.5 coll/sec
200KBps 4400 coll. 7.3 % 1.7 coll/sec
512KBps 2300 coll. 3.8 % 0.9 coll/sec
1024KBps 1300 coll. 2.1 % 0.5 coll/sec

Conclusions
As predicted by the static analysis, a bandwidth of 64 Kbps
in the wireless links is insufficient to handle embedded
training traffic under a DIS protocol. Latencies of more
100 seconds were detected for traffic coming from the
ground station where the simulated Opposing Force
resides. A significant improvement was achieved at 200
Kbps, where latencies less than 1 second were almost
always the case for messages received at the ground
station.

At the router in plane 0 and at the satellite, the queue
lengths changed from 3400 and 2200 (max. peak) to less
than 60 and less than 40 (max. peak) messages, just by
increasing the bandwidth from 64 to 200 Kbps. As seen by
the router at plane 7, collisions decrease and become
manageable as the bandwidth increases.

Regarding modeling tool used, OMNeT++ is easy to learn
and versatile to use for modeling computer networks.
Several network models have been built that are available
for downloading from the Internet. These models can be
tailored to the user needs. OMNeT++ offers the possibility
of running the simulation at several speeds with or without
animation, including faster-than-real time. The results can
be displayed and plotted on the screen as the simulation
progresses, and also can be stored into text files for further
processing.

References
IEEE (1995). Std 1278.1. Standard for Distributed
Interactive Simulation — Application Protocols. IEEE
Computer Society Press.

IEEE (1995). Std 1278.2. Standard for Distributed
Interactive Simulation — Communication Services and
Profiles. IEEE Computer Society Press.

IEEE (1996). Std 1278.3. Recommended Practice for
Distributed Interactive Simulation — Exercise
Management and Feedback. IEEE Computer Society
Press.

IEEE (1997). Std 802.11 Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY)
specifications. IEEE Computer Society Press.

IEEE (1998). Std 1278.1a. Standard for Distributed
Interactive Simulation — Application Protocols. IEEE
Computer Society Press.

Tcl Developer Xchange (2003). Retrieved November 15,
2003 from http://www.tcl.tk/.

Varga, A. (2001). OMNeT++ Discrete Event Simulation
System. In Proceedings of the European Simulation
Multiconference (ESM'2001). June 6-9, 2001. Prague,
Czech Republic. User manual retrieved December 1, 2003
from http://www.omnetpp.org/index.php.

Varga, A. (2002). OMNeT++. In the column “Software
Tools for Networking", IEEE Network Interactive. July
2002, Vol. 16 No. 4.

Zimmer, J. (1998). Tcl/Tk for Programmers. IEEE
Computer Society Press.

