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Abstract 
A network simulation is conducted to determine the bandwidth requirements of military mission rehearsal 
activities while enroute to deployment. A predefined vignette running under OneSAF Testbed Baseline (OTB) 
provides the base data for the simulator. This data consists of Protocol Data Units (PDUs) captured by the OTB 
logger. The PDUs are the messages exchanged by all the entities in the simulation and include the timestamp 
and byte length, used in the simulation to recreate the network traffic. 

 The simulation includes 24 computers onboard 8 military airplanes, 3 computers per plane, representing 3 
combat vehicles connected via a 100Mbps Ethernet LAN. A router interconnects the resources aboard each 
plane to those of other planes and also to a remote ground station via 64, 128, 256 and 1024 Kbps wireless 
communication channels. The results of the simulation are collected, plotted, and conclusions regarding 
bandwidth and latency implications of the Embedded Training exercises are drawn. 

The embedded training computer network simulation is developed using the OMNeT++ public-domain 
modeling tool. OMNeT++ is a general discrete event simulation tool that contains features aimed to facilitate 
computer network modeling. It contains a graphical development environment used to define the topology of 
the network by instantiating and interconnecting different icons that represent the objects of the simulation, like 
computers, communication channels, routers, airplanes, etc. The behavior of each object is specified in C++. 
The final product is an executable standalone program that models the network behavior. It can run as an 
animation or as an express simulation. A wide range of statistics is obtained for analysis. 

 

Introduction 
In 2002, the U.S. Army Simulation, Training and 
Instrumentation Command (STRICOM) and the Computer 
Engineering Department of the School of Electrical 
Engineering and Computer Science at the University of 
Central Florida (UCF) began a joint project to assess the 
“Bandwidth and Latency Implications of Integrated 
Training and Tactical Communication Networks.” The 
main goal of the project is to determine the bandwidth 
requirements for running Objective Force Embedded 
Training (OFET) methods.  
 
OFET methods benefits include the ability to perform tasks 
such as mission planning and rehearsal while enroute to 
deployment. Benefits include the ability to perform "in-

situs" exercises on actual equipment, more direct provision 
of support for the variety of equipment in the field, and a 
greater opportunity to develop new training exercises using 
much shorter lead times than were previously possible with 
stand-alone training systems. 
 
A fully operational OFET platform also presents several 
technology challenges. In particular, management of 
Command, Control, Communications, Computers, 
Intelligence, Surveillance, and Reconnaissance (C4ISR) 
resources is required for successful integration of 
simulation within the actual environment. The purpose of 
this study is to assess communication requirements to 
support Enroute Mission Planning and Rehearsal (EMPR) 
in a Future Combat System (FCS) environment. 
 



The first step towards the development of the network 
simulator was the design of the vignette illustrating a 
mission rehearsal operation enroute to deployment. This 
vignette included a database terrain, friendly and enemy 
forces, strategies, and other details representative of FCS 
operations. The vignette was run using the software 
simulator known as OneSAF Testbed Baseline (OTB). 
 
Entities in OTB communicate to each other by passing 
messages. Messages in OTB are called Protocol Data Units 
(PDUs). PDU formats are part of the Distributed 
Interactive Simulation (DIS) protocol defined in the IEEE 
Standards 1278.1 (1995), 1278.2 (1995), 1278.3 (1996) 
and 1278.1a (1998). After running the OTB simulator, the 
PDUs generated in that session are collected and stored in 
an output file for further processing. Concerning the 
bandwidth project, the three most relevant features of the 
PDUs are the sender ID, the byte length and the timestamp 
of PDU creation because these parameters are the basic 
inputs for modeling communication traffic. The destination 
address is not considered given that OTB broadcasts all the 
messages to all the participating entities. 
 
The developing team wanted a discrete simulation tool 
with the following characteristics: great flexibility from a 
programming point of view, Windows based for 
availability and readiness, Graphical User Interface (GUI) 
capable of showing simulation with animation, easy to 
learn for C++ users, and low cost. After a short survey, the 
team decided to use OMNeT++ a software tool developed 
by András Varga at the Budapest University of 
Technology and Economics (OMNeT++, 2003). 
OMNeT++ is a general discrete event simulation tool that 
contains features to facilitate computer network 
simulations. OMNeT++ runs under different platforms 
including UNIX systems, Linux and Windows. It contains 
a graphical development environment used to instantiate 
the entities of the simulation like computers, 
communication channels, routers, airplanes, etc. and 
connect them according to the desired topology. 
 

Using OMNeT++ 
OMNeT++ is a discrete event simulation environment 
based on C++. It provides means for describing the 
topology of the network, either graphically or by using of 
the NED language (Varga, 2003). In particular, OMNeT++ 
operates on two types of files: NED and CPP. 
 
The first type corresponds to NED files (xxx.ned) that 
describe the topology of the network composed of the 
different nodes involved in the simulation, their input and 
output gates and the connections between them. A NED 

file uses a special language called the NED language to 
describe modules. There are two types of modules: simple 
and compound. Simple modules contain no other modules 
inside them and are used to describe the most basic 
elements of the simulator. In this project, message 
generators, message sinks, communication channels 
(wireless and Ethernet buses) and routers correspond to 
simple modules. Compound modules contain other 
modules inside. For example, a computer onboard an 
airplane is a compound module because it contains a 
message generator and a sink. A plane is also a compound 
module that contains a computer, a router and an Ethernet 
bus. The largest compound module corresponds to the total 
network that contains airplanes, and a wireless bus to link 
the planes. 
 
The second type of files corresponds to CPP files 
(xxx.cpp) that use C++ to describe the functionality of the 
simple modules. Each simple module requires a C++ 
source code that indicates how to process each packet that 
arrives to an input gate, as well as how to send a packet to 
an output gate. Using C++ code we can program the packet 
contents, its destination, its length, and the distribution 
used (exponential, normal, uniform, etc.) to schedule 
packets. The CPP files corresponding to the buses 
(Ethernet or wireless) handle the packet transmission and 
collision detection. Once the source files are ready, the 
simulator is compiled. In this project, Microsoft Visual 
C++ was used to accomplish this task. A special compiler 
supplied with OMNeT++ pre-processes the NED files 
creating cpp files. Next, all the cpp files are compiled 
together with the Tcl/Tk graphic library producing the 
executable file. Tcl/Tk is a graphic library in the public 
domain (Tcl Developer Xchange, 2003) and described in 
several books like (Zimmer, 1998). For C++ programmers, 
a sufficient understanding of the way OMNeT++ works 
along with the capability of developing basic models can 
be quickly achieved because the main concepts come from 
general knowledge about C++, as compared to other 
simulators in which there are several long manuals to read 
and the concepts are specific to that particular simulator. 
 

Model Design 
The model to be simulated is composed of eight airplanes 
carrying three computers and a router each, plus a satellite 
and a ground station. A random message generator with a 
specific distribution can be used to control the rate of 
packet generation. Alternatively, as in our study, each 
component actually reads the messages to be broadcasted 
from an input text file that contains the type, length and 
timestamp of each message as recorded by the OTB’s 
logger when the vignette was run. 
 



Module descriptions 
The GNED editor is used to edit the NED files using a 
graphic interface. Figures 1, 2 and 3 show the OMNeT++ 
representation of the compound modules node, airplane 
and the whole network, respectively. 

 
Figure 1. OMNeT++ view of a node 
containing a sink and a generator 

 
Each node onboard an airplane contains a message 
generator and a message sink. The legend “OTBNet. 
plane[0].node[0]” in Figure 1 indicates that this 
compound module belongs to node # 0 located inside plane 
# 0 which is part of the general network called OTBNet. 
The planes are identified by using consecutive integers 0, 
1, 2, …, 7. Within each plane, the computers are identified 
as nodes 0, 1 and 2. The brackets indicate that the set of 
planes and the computers onboard each plane are 
represented as arrays of simple modules. The arrows 
represent connections to input and output gates. 

 
Figure 2. Airplane modules: embedded 
training stations, bus and router 

 
Figure 2 shows the three nodes, the router and the Ethernet 
bus onboard each airplane. The three nodes and the router 
are connected via an Ethernet bus. Figure 3 shows the 
complete network composed of 8 airplanes, a ground 
station, a satellite and 3 wireless channels. The first 
wireless link connects the routers in all planes to each 
other. A second wireless link communicates the routers in 
the planes to the satellite, and the third one communicates 
the satellite to the ground station. In this way, each router 
is connected to three different links, and the satellite is 
connected to two. 

 
Figure 3. General view of the network 
showing 8 planes, satellite, ground station 
and the 3 wireless channels 

 
Figure 4 contains the NED code of a generator, a sink and 
the satellite. For simple modules the NED code indicates 
the module name, the input parameters and the input and 
output gates. The C++ code of simple modules is written in 
a separate file. Each simple module becomes a C++ class. 

 
Figure 4. NED code of some simple modules 

 
On the other hand, the NED code of a compound module 
includes additional features like the values of parameters 
of internal modules and connections between module 
gates. Compound modules do not need user-written C++ 

simple Generator 
parameters: 
startTime: numeric, 
fromAddr: numeric, 
totalNodes: numeric; 
gates: 
out: out; 
endsimple 
 
simple Sink 
gates: 
in: in; 
endsimple 
 
simple Satellite 
parameters: 
startTime: numeric, 
satelliteID : numeric, 
satServiceTime : numeric, 
totalNodes   : numeric, 
WGSposition : numeric, 
WSPposition : numeric; 
gates: 
in:  inBus1; 
out: outBus1; 
in:  inBus2; 
out: outBus2; 
endsimple 



source code because their behavior is completely defined 
by their simple modules. 
 
Input parameters of the model are used to control the 
conditions under which each simulation runs. These 
parameters can be directly given in the NED files, or they 
can be read from a configuration file at run time. Each 
simulation starts by reading the configuration file 
OMNeT++pp.ini containing initialization values. 
 

Input Data 
The input data to the model comes from the OTB logger. 
After setting up a particular vignette, it is simulated and the 
OTB logger records all of its PDUs into an output file that 
is later converted to text. OTB generates Persistent Object 
PDUs (PO_PDUs), which are a specialization of the 
general category of PDUs. 

 
Figure 5. Example of a PO_PDU  

 
Figure 5 is an example of a short PO_PDU. From among 
all the fields, the most important to our simulation are the 
site identification (1533), the length in bytes (147) and the 

timestamp (:01:33.432) interpreted as 1 minute, 33 seconds 
and 432 milliseconds. The timestamp represents the time 
the entity generated this PDU and put it on the output 
queue. 
 

Simulation Results 
The figures included in this article are labeled “Experiment 
# 3” because they correspond to the third experiment in a 
series of four. The experiment involved PDUs from six 
senders. The remaining 19 computers were listeners. The 
sites sending information were assigned to computers in 
separate airplanes and to the ground station. Two types of 
analyses were performed. The first one is a static analysis 
of the input data with no simulation involved. This analysis 
is subdivided into 2 categories: distribution of PDUs and 
minimum bandwidth requirements. 

Distribution of PDUs 

 
Figure 6. Frequency distribution of PDUs 

 
Figure 6 shows a frequency distribution of all the types of 
PDUs involved in the experiment, as well as the 

<dis204 po_variable PDU>: 
dis_header.version=4 
dis_header.exercise=1 
dis_header.kind=250 
dis_header.family=140 
dis_header.timestamp=:01:33.432 (rel) 
dis_header.sizeof=196 
po_header.po_version=28 
po_header.po_kind=2 
po_header.exercise_id=1 
po_header.database_id=1 
po_header.length=147 
po_header.pdu_count=7905 
do_header.database_sequence_number=0 
do_header.object_id.simulator.site=1082 
do_header.object_id.simulator.host=23825 
do_header.object_id.object=685 
do_header.world_state_id.simulator.site=0 
do_header.world_state_id.simulator.host=0 
do_header.world_state_id.object=0 
do_header.owner.site=1533 
do_header.owner.host=23825 
do_header.sequence_number=1 
do_header.class=11 
do_header.missing_from_world_state=0 
reserved9=0 
variable.total_length=132 
variable.expanded_length=7812 
variable.offset=0 
variable.length=132 
variable.obj_class=8 
variable.data="Mine Pallet US M75 

<dis204 fire PDU>:                 23 
<dis204 po_objects_present PDU>:  682 
<dis204 po_minefield PDU>:         14 
<dis204 minefield PDU>:           117 
<dis204 iff PDU>:                 851 
<dis204 acknowledge PDU>:          36 
<dis204 stop_freeze PDU>:           3 
<dis204 po_line PDU>:             912 
<dis204 po_task_authorization PDU>: 6 
<dis204 po_task_frame PDU>:       382 
<dis204 po_message PDU>:          119 
<dis204 aggregate_state PDU>:     256 
<dis204 po_delete_objects PDU>:   110 
<dis204 po_parametric_input PDU>:1196 
<dis204 laser PDU>:                 3 
<dis204 detonation PDU>:           25 
<dis204 po_fire_parameters PDU>:  713 
<dis204 po_simulator_present PDU>:370 
<dis204 entity_state PDU>:      28569 
<dis204 mines PDU>:               386 
<dis204 po_point PDU>:            659 
<dis204 po_task_state PDU>:     11960 
<dis204 signal PDU>:              237 
<dis204 po_task PDU>:            2274 
<dis204 po_unit PDU>:            1793 
<dis204 transmitter PDU>:        8642 
<dis204 start_resume PDU>:          3 
                   Total PDUs = 60341 
------------------------------------- 
Site Assignment: 
Site 1519 (50230 PDUs): plane=0, node=0 
Site 1526 ( 1056 PDUs): plane=1, node=0 
Site 1529 (  483 PDUs): plane=2, node=0 
Site 1533 (  553 PDUs): plane=3, node=0 
Site 1538 (  637 PDUs): plane=4, node=0 
Site 1532 ( 7382 PDUs): ground station 



assignment of sites to model nodes. The assignment was 
based on the number of PDUs generated by each site, 
giving plane 0 the greatest number of PDUs and ground 
station the next greatest. 

Minimum Bandwidth Requirements 
The PDUs of all the sites were merged into one single 
stream of data and sorted according to their timestamps 
prior to any bandwidth computation. This was done 
because in the DIS protocol all the PDUs are broadcasted 
and any listening site will have to receive the PDUs from 
all the generating sites as one single stream of data. Then, 
without using simulation, a separate program calculated 
the minimum instant bandwidths by dividing the total 
simulation time into small time intervals of 2 seconds each, 
and computing the ratio of volume of data transmitted in 
each interval to the length of the interval. 
 
Figure 7 shows the graph of minimum bandwidth 
requirements at each time interval. PDUs indicate that the 
activity starts at second 1035 and ends at second 2550 for a 
total time of 25 minutes and 15 seconds of simulation time. 

 
Figure 7. Minimum bandwidth requirements 

 
In the static analysis, overheads like retransmissions, 
packet losses, or collisions are not considered. Therefore, 
the resulting bandwidth estimates can be interpreted as an 
absolute lower bound for the actual required bandwidth. 
Because a time gap must exist between packets as 
indicated by the IEEE Standard 802.11 (1997), it was set to 
50 microseconds in this analysis. From the graph in Figure 
7, the static analysis indicates that the maximum required 
bandwidth is near 256 Kbps, but the majority of the time 
the required bandwidth is less than 200 Kbps. 

 
The second analysis performed corresponds to results 
obtained by running the simulator. The analysis is 
subdivided into 4 categories: slack time analysis, travel 
time analysis, queue length analysis and collision analysis. 

Slack Time Analysis 
The slack time for each node generator is defined as the 
difference between the timestamp of each PDU and the 
current simulator time at the moment the PDU is read from 
the input file. If the difference is positive then the 
generator is ahead of the planned schedule, otherwise it is 
behind it. Thus, a negative slack time indicates that the 
channel bandwidth is not enough to transmit the required 
PDUs without delay. 
 
Figure 8 shows the slack time for all the units (routers and 
ground station) when the wireless channels are set to 64 
Kbps 
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Figure 8. Slack times at each transmitting node using 

64 Kbps in the wireless channels 
 
Although Figure 8 gives the impression that no negative 
slacks are produced, a close up near zero in the Y axis 
reveals that many negative spikes do exist, most of them 
generated by the ground station. This is explained by the 
fact that the generators onboard the planes are directly 
connected to high speed Ethernet buses (100 Mbps), while 
the ground station is connected to a low speed wireless 
channel (64 Kbps). 
 
Figure 9 shows a close up of the slack time for the ground 
station at 64 Kbps. An increase in the wireless bandwidth 
decreases the negative spikes, but does not eliminate them 
completely. One contributing factor to the negative spikes 
is the fact that during certain events OTB produces 
sequences of PDUs having exactly the same timestamp. 
For instance, sequences of 8 or more “po_fire_ 
parameters” PDUs having the same timestamp were 



detected. Each PDU requires some positive transmission 
time, and so when the next PDU arrives its timestamp is 
previous to the current time and a negative spike starts to 
build. Further research is being conducted to analyze the 
composition of the PDUs participating in the negative 
spikes and to propose ways to eliminate these spikes. One 
possibility is to group together PDUs of the same type and 
length into one single packet. 

 
Figure 9. Slack time at ground station using a 

bandwidth of 64 Kbps 

Travel Time Analysis 
The travel time is the difference between the sending time 
of a PDU from a node generator and the arrival time to a 
node sink. All the transmission times, propagation times 
and waiting times in router queues are part of the travel 
time. Figure 10 shows the travel time of PDUs measured 
by the sink at node 0, plane 0, using 64 Kbps on the 
wireless links. 

 
Figure 10. Travel times measured at node 0, plane 0 

 
At node 0 the graph clearly shows two traces 
corresponding to two types of PDUs. The PDUs that take 
longer to arrive come from the ground station. These PDUs 

had to wait on the satellite queue as well as on the router 
queue. On the other hand, the PDUs coming from 
computers onboard the other planes had to wait on the 
router queue only. As seen, at 64 Kbps the travel times of 
most PDUs are completely unacceptable. Some PDUs took 
more than 100 seconds since the time they were sent to the 
time they arrived.  
 
Although not shown, the ground station presents a similar 
behavior due to the relatively long queue and transit times 
associated with the satellite. An increase in the bandwidth 
produces a significant reduction in travel times. At 200 
Kbps, the travel times to the ground station are less than 1 
second. Considering that the minimum travel time is about 
0.25 seconds due to the distance from the satellite to Earth, 
latencies less than 1 second are within the same order of 
magnitude from being optimal. At 200 Kbps, a better 
packet scheduling policy could diminish the negative 
spikes, especially if OTB were set to deliver the PDUs in a 
less burst mode, which is also the topic of future research. 

Queue Length Analysis 
There is a message queue at the satellite and at each router. 
Every time a PDU arrives to a router or satellite, the 
number of messages in the system is counted including the 
just arrived PDU, the PDUs in the queue and any one 
being serviced, and the tally is recorder along with the 
arrival time. 
 
The two most important queues to analyze are the queues 
at the router onboard plane 0 and at the satellite. Figure 11 
shows the messages in the router queue, using 64 Kbps in 
the wireless channels. 

 
Figure 11. Messages in router queue at plane 0 

 
As observed, the queue length becomes really 
unacceptable, reaching more than 3000 messages during 
the worst periods. Similarly, the queue at the satellite has a 



peak of more than 2200 messages. On the other hand, 
routers at other planes have acceptable queues. For 
instance, plane 3 (graph not shown) has a queue with a 
maximum of 23 messages. The reason is that the 
corresponding node transmits only 553 PDUs, a number 
easily handled by the router.  
 
Simulation runs using bandwidths of 64, 200, 512 and 
1024 Kbps in the wireless channels showed the effect of a 
bandwidth increase over the queue length in routers and in 
the satellite. The results indicated that just by increasing 
the bandwidth to 200 Kbps, the queue length decreases to 
less than 60 and less than 40 messages at plane 0 and at the 
satellite, respectively, in the highest peaks, which is quite 
significant. 

Collision Analysis 
The satellite and routers keep separate counters of 
collisions on each of the buses they are connected to. The 
satellite and the routers are connected to 2 and 3 links, 
respectively, as explained in the Model Design section. 
Each time a collision is detected, the corresponding 
counter is updated and its value along with the current 
simulation time is recorder for future processing. 
OMNeT++ includes procedures to collect and plot such 
information. The buses were programmed in such a way 
that packets transmitted by a module are not returned to its 
sender, even if they collide. Therefore, active senders are 
not good candidates to monitor collisions. In this analysis, 
the router at plane 7 was chosen to count collisions 
because none of the nodes onboard plane 7 is an active 
sender, making the router a good indicator. 
 
The simulation results at 64 Kbps indicate that the highest 
collision rate occurred in the bus connecting the satellite to 
the planes and was close to 12 collisions per second. More 
than 6000 collisions were detected at 64 Kbps, which 
represents approximately 10 % of the total number of 
PDUs. At 200 Kbps, the router at plane 7 detected a 
maximum of 4 collisions per second. At this bandwidth, 
the total number of collisions was near 4500, or 7% of all 
the PDUs. Collision accumulation in plane 7 at different 
bandwidth rates is given in Figure 12. 
 
The collisions were calculated as the sum of collisions 
detected in the three buses the router is connected to. 
However, the main component comes from the wireless 
link between the airplane and the satellite. The behavior of 
this link depends on the assignment of OTB transmitting 
sites to computer nodes. For example, if the PDUs 
currently assigned to the ground station were assigned to 
computer node 1 onboard plane 0, the Ethernet link 
running at 100 Mbps will produce fewer collisions than a 

wireless link running at 64 Kbps due to the shorter 
transmission times. 
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Figure 12. Collision accumulation at plane 7 at 64, 200, 

512 and 1024 Kbps 
 
Table 1 shows statistics about the total number of 
collisions, percentage of all the PDUs, and average number 
of collisions per second at different bandwidths. 
 

Table 1. Collision accumulation, percentage 
and average number of collisions per second 

at different bandwidths 
64KBps 6300 coll. 10 % 2.5 coll/sec 
200KBps 4400 coll. 7.3 % 1.7 coll/sec 
512KBps 2300 coll. 3.8 % 0.9 coll/sec 
1024KBps 1300 coll. 2.1 % 0.5 coll/sec 

 

Conclusions 
As predicted by the static analysis, a bandwidth of 64 Kbps 
in the wireless links is insufficient to handle embedded 
training traffic under a DIS protocol. Latencies of more 
100 seconds were detected for traffic coming from the 
ground station where the simulated Opposing Force 
resides. A significant improvement was achieved at 200 
Kbps, where latencies less than 1 second were almost 
always the case for messages received at the ground 
station. 
 
At the router in plane 0 and at the satellite, the queue 
lengths changed from 3400 and 2200 (max. peak) to less 
than 60 and less than 40 (max. peak) messages, just by 
increasing the bandwidth from 64 to 200 Kbps. As seen by 
the router at plane 7, collisions decrease and become 
manageable as the bandwidth increases. 
 



Regarding modeling tool used, OMNeT++ is easy to learn 
and versatile to use for modeling computer networks. 
Several network models have been built that are available 
for downloading from the Internet. These models can be 
tailored to the user needs. OMNeT++ offers the possibility 
of running the simulation at several speeds with or without 
animation, including faster-than-real time. The results can 
be displayed and plotted on the screen as the simulation 
progresses, and also can be stored into text files for further 
processing. 
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