
Master’s Thesis

PEREZ Julio
September 2005

MQTT Performance Analysis
with OMNeT++

IBM Zurich Research Laboratory, Switzerland

Technical Supervisors :
Dr. Sean Rooney
Dr. Paolo Scotton

Academic Supervisor :
Dr. Pietro Michiardi

This thesis is NOT confidential.

Networking
Institut Eurécom

Abstract

Publish/subscribe systems increasingly enjoy popularity because of their
simplicity, efficiency and scalability. The Message Queue Telemetry Trans-
port protocol (MQTT) is a scalable publish/subscribe protocol developed by
IBM and targeted at networks consisting of small footprint devices such as
sensors and control devices.

Up until now, no performance analysis of the MQTT protocol has been
carried out, although especially for small footprint devices with restricted
processing power and power supply, it is important to know how the protocol
behaves in different environments.

This thesis addresses the investigation of MQTT’s performance under
various error conditions of the communication channels and over different
protocol stacks. To perform the simulations the discrete event simulator
OMNeT++ was used. Various network setups have been tested and measures
such as end-to-end delay and power consumption have been estimated and
compared. To accomplish this task, OMNeT++ had first to be extended by
additional modules and models to allow for simulating MQTT’s performance
over TCP and wireless channels.

Résumé

Les protocoles publish/subscribe gagnent de plus en plus en popularité à
cause de leur simplicité, efficacité et possibilité de passage à l’échelle. Le pro-
tocole Message Queue Telemetry Transport (MQTT), développé par IBM,
est un protocole publish/subscribe pour les réseaux consistués de petits dis-
positifs comme, par exemple, des capteurs ou des dispositifs de contrôle.

Malgré le fait qu’il soit important de connâıtre l’efficacité du protocole
sous différentes conditions, surtout si on considère des dispositifs avec des res-
sources limitées, la performance de MQTT n’a pas été testée jusqu’à présent.

Dans cette thèse, nous proposons une étude des performances de MQTT
sous différents taux d’erreur de transmission et avec différentes piles de pro-
tocoles. Les résultats ont été obtenus avec l’outil de simulation OMNeT++.
Nous avons adopté comme critères de performance le temps de transmission
de bout-en-bout et la consommation d’énergie. Ces valeurs ont été mesurées
ou estimées pour différents types de réseaux. Afin d’obtenir ces résultats,
nous avons dû développer et mettre au point de nouveaux modules pour
OMNeT++, notamment un module TCP et un module simulant un réseau
sans fil.

iv

Acknowledgments

Special thanks go to all the people at the IBM Zurich Research Laboratory
who strongly supported and advised me during the last 6 months, including
Sean Rooney, Paolo Scotton, Daniel Bauer, Luis Garcés-Erice and Bernard
Metzler.

I also would like to thank the Eurécom Institute for making this thesis
possible and giving me the opportunity to make this special experience.

v

vi

Contents

1 Introduction 1

2 WebSphere Message Queue Telemetry Transport Protocol 3
2.1 Introduction . 3
2.2 Protocol Specification . 4

2.2.1 MQTT Message Format 4
2.2.2 MQTT Command Messages 9

3 The Discrete Event Simulation System OMNeT++ 19
3.1 Introduction . 19
3.2 Modeling Concept . 19
3.3 Basic Parts of an OMNeT++ Model 21
3.4 Interesting Features . 21
3.5 Comparison with Other Simulators 22

4 Protocols and Models Implemented for OMNeT++ 25
4.1 MQTT Implementation . 25
4.2 Integration of a TCP Stack 27

4.2.1 Integration of the NetBSD TCP Stack 27
4.2.2 Validation with Real TCP 29

4.3 Wireless Channel Model . 31

5 MQTT Performance Analysis 33
5.1 Parameters and Performance Measures 33

5.1.1 MQTT Parameters . 34
5.1.2 TCP Parameters and Options 35
5.1.3 Data Link Layer Settings 36
5.1.4 Physical Layer Settings 36
5.1.5 Performance Measures 37

5.2 Wired Network . 39
5.2.1 Preliminary Observations with a Small Ethernet Network 39

vii

viii CONTENTS

5.2.2 Several Publishers and Subscribers 46
5.3 Wireless Network . 54

5.3.1 Introduction . 54
5.3.2 Adapted Gilbert-Elliot Model 54
5.3.3 Small IEEE 802.11 Network 56
5.3.4 Several Publishers and Subscribers 59

6 Conclusion and Future Work 73

List of Figures

2.1 MQTT Connection Establishment 10

2.2 MQTT Publication with QoS 0 12

2.3 MQTT Publication with QoS 1 13

2.4 MQTT Publication with QoS 2 14

2.5 MQTT Subscription to Topics 15

2.6 MQTT Unsubscription from Topics 16

3.1 OMNeT++ Module Hierarchy 20

3.2 OMNeT++ Screenshot . 24

4.1 MQTT Implementation Design 26

4.2 Lab setup to validate the TCP implementation integrated into
OMNeT++. 29

4.3 TCP validation with 10 messages per second and 10B MQTT
payload. 30

4.4 TCP validation with 50 messages per second and 10B MQTT
payload. 30

4.5 Gilbert-Elliot Channel Model 32

5.1 Overhead caused by higher QoS levels. 40

5.2 Impact of the error distribution on the end-to-end delay for a
BER of 10−4, 30B payload and QoS 0. 42

5.3 Mean end-to-end delay evolution for different QoS and 30B
payload. 43

5.4 Computed TCP RTO with and without timestamp option for
65B of payload and BER = 10−4. 46

5.5 Mean end-to-end delay for pBB = 0.1. 47

5.6 Mean end-to-end delay for pBB = 0.8. 48

5.7 Mean end-to-end delay distribution for pBB = 0.8, 10−4 and
200B payload. Comparison between different kinds of sub-
scribers. 49

ix

x LIST OF FIGURES

5.8 Gilbert Channel Model . 55
5.9 Difference between the Gilbert and the Gilbert-Elliot channel

models. 55
5.10 B-Efficiency for 60ms mean bad state sojourn time and en-

abled RTS/CTS. 59
5.11 Mean end-to-end delay evolution for QoS 0 and 1. RTS/CTS

enabled. 62
5.12 Mean end-to-end delay evolution for QoS 2. RTS/CTS enabled. 62
5.13 End-to-end delay distribution with QoS 0. 200 and 1000B. . . 63
5.14 End-to-end delay distribution with QoS 2. 200 and 1000B. . . 64
5.15 Mean end-to-end delay evolution for QoS 0 and 1 with 1024B

MSS. RTS/CTS enabled. 65
5.16 Mean end-to-end delay evolution for QoS 2 with 1024B MSS.

RTS/CTS enabled. 65

List of Tables

2.1 Fixed Header Format . 5

2.2 Command Message Types . 6

2.3 QoS Levels . 6

2.4 Variable Header Fields . 7

2.5 CONNECT Flags . 8

5.1 Simulation Parameters . 38

5.2 Small Ethernet network: Efficiency for different QoS. 40

5.3 Small Ethernet network: Influence of the payload size on the
efficiency. 41

5.4 Impact of the MSS on the mean and the standard deviation of
the end-to-end delay [ms] for 65B payload and a bursty channel. 45

5.5 Mean and standard deviation of the end-to-end delay [ms] for
pBB = 0.8. 48

5.6 Efficiency for 50B payload and pBB = 0.1. 50

5.7 Efficiency for 200B payload and pBB = 0.1. 50

5.8 Efficiency for 50B payload, pBB = 0.8 and BER = 10−4. . . . 51

5.9 Efficiency for 200B payload, pBB = 0.8 and BER = 10−4. . . 51

5.10 B-Efficiency comparison of different subscribers, pBB = 0.1. . 53

5.11 B-Efficiency comparison of different subscribers, pBB = 0.8,
BER = 10−4. 53

5.12 End-to-end delay with and without RTS/CTS with 200B pay-
load. 57

5.13 B-Efficiency with and without RTS/CTS in a small wireless
network. 58

5.14 Efficiency for 200B payload. 66

5.15 Efficiency for 1000B payload. 66

5.16 Efficiency for 1000B payload with 1024B TCP MSS. 67

5.17 Mean end-to-end delay [ms] with and without RTS/CTS with
200B and 1000B payload. 68

xi

xii LIST OF TABLES

5.18 Mean and standard deviation of the end-to-end delay [ms] with
and without RTS/CTS with 1000B payload and 1024B MSS. . 69

5.19 Efficiency without RTS/CTS and 200B payload. 71
5.20 Efficiency without RTS/CTS and 1000B payload. 71
5.21 Efficiency without RTS/CTS, 1000B payload and 1024B MSS. 71

Chapter 1

Introduction

Direct device-to-device or machine-to-machine communication within com-
puter networks is increasingly enjoying great popularity. Probably the most
popular technology implementing this communication paradigm is the Ra-
dio Frequency Identification (RFID) used in e.g. supply chain management.
Further examples are the use of wireless sensor networks for environmental
monitoring, maintenance systems for early recognition of component replace-
ment requirements as well as real-time process-control systems for industrial
automation.

The demand for real-time status information and notification requires
integration of these networks into general enterprise computer networks. A
main issue for machine-to-machine communication is the completely different
information flow compared to conventional computer networks. Instead of
large flows from central servers to clients possibly at the edge of the network,
the main data flow for sensor network systems is from many devices at the
edge of the network towards a few central servers.

Publish/subscribe systems implement this machine-to-machine commu-
nication. Senders label each message with the name of a topic, rather than
addressing it to specific recipients. The messaging system then sends the mes-
sage to all eligible systems that have asked to receive messages on that topic.
This form of asynchronous messaging is a far more scalable architecture than
point-to-point alternatives such as message queueing, since message senders
need only concern themselves with creating the original message, and can
leave the task of servicing recipients to the messaging infrastructure. It is a
very loosely coupled architecture, in which senders often do not even know
who the subscribers are. Moreover, publish/subscribe networks are highly
dynamic, as generally any node can leave and rejoin as many times as it
wants.

1

2 CHAPTER 1. INTRODUCTION

The rest of this document is organized as follows:

Chapter 2 In this chapter the MQTT protocol is described, including the
message types and formats and the QoS levels.

Chapter 3 OMNeT++, the simulation system used to perform the actual
analysis of MQTT, is shortly discussed.

Chapter 4 To actually simulate MQTT over TCP, both protocols had
to be implemented for OMNeT++. This process is described in chapter 4.
Also an additional OMNeT++ model implemented is discussed, namely the
Gilbert-Elliot wireless channel model.

Chapter 5 This chapter is dedicated to the simulations performed, the
results gathered and their interpretation.

Chapter 6 Finally, the thesis concludes with a short summary on OM-
NeT++ and MQTT and proposals for future work.

Chapter 2

WebSphere Message Queue
Telemetry Transport Protocol

In this chapter the WebSphere Message Queue Telemetry Transport protocol
(MQTT) will be described in detail. After a short introduction the message
formats and the message commands will be given followed by a discussion of
the quality of service message flows.

2.1 Introduction

Currently many oil and gas pipeline distribution and metering systems use
traditional SCADA (Supervisory Control And Data Acquisition) systems to
collect data and prepare information for use by isolated applications. Some
even record information on chart recorders and meter tickets to be read and
manually input into billing systems to facilitate data transfer.

First deployed over 20 years ago, the SCADA architecture has changed
very little over time. A SCADA system is typically based on a poll/response
model, continually interrogating devices and acquiring information for report
logs. A SCADA system is a large capital investment and as such, replace-
ment of a legacy system in order to take advantage of new technologies and to
achieve increased efficiency can be a costly venture. This exercise can involve
significant costs particularly when this requires effort to develop custom ap-
plications. The benefits of efficiently delivering data directly from sensors,
flow computers or the legacy SCADA system are obvious.

Minimizing the time and costs of data acquisition while maximizing its
utilization across multiple applications will ultimately improve business per-
formance. What this really means is delivering data efficiently from field
devices as diverse as flow meters and pressure sensors in the process con-

3

4 CHAPTER 2. WEBSPHERE MQTT PROTOCOL

trol environment, to applications across many other industries such as batch
counters and check weighers on a factory production line. This can then be
disseminated directly into back-office applications.

Arcom in association with IBM, have worked to develop a new method
for end-to-end enterprise data delivery, which offers wider distribution of
operational data and allows legacy SCADA systems to be enhanced at a
minimal cost. The lightweight TCP/IP based protocol MQTT was developed
to deliver data directly from remote devices and data producers into the
publish and subscribe ‘integration broker’. A remote device can thereby
consist of e.g. a conventional Linux PC running the MQTT protocol. In a
RFID environment, the RFID reader device could take up the role of a remote
device delivering data to the backend system. Though, on-going research
focuses on integrating MQTT into small sensor devices such as Crossbow’s
Mote systems and it is on such devices that we will focus in this thesis.

From the broker, information can be distributed on a ‘one-to-many’ basis
and delivered directly to multiple applications. This solution supplies event
driven, real time data to any application within the enterprise such as SAP
based ERP, billing, scheduling or even directly to the energy trading floors.
MQTT is designed to minimize the required communication bandwidth by
using a protocol with very low overhead, and providing three levels of delivery
assurance or ‘quality of service’ (QoS). The QoS for each data message can
be selected by the system programmer on the basis of its importance to the
enterprise applications or because of bandwidth constraints. The low data
overhead ensures it has very little impact on existing local area networks and
is also cost effective over dial up, radio or communication satellite channels
(the trend for telecommunication operators which offer GPRS and satellite
based data services is to bill user traffic on a per byte basis). Essentially,
by implementing the MQTT protocol along with the publish/subscribe data
model, you can make full use of existing SCADA based reporting systems,
while increasing flexibility through TCP/IP connectivity.

2.2 Protocol Specification

2.2.1 MQTT Message Format

The message header for each MQTT command message contains a fixed
header. Some messages also require a variable header and a payload.

2.2. PROTOCOL SPECIFICATION 5

2.2.1.1 Fixed Header

The fixed header is contained in each MQTT command message. Table 2.1
shows the fixed header format. The possible message types are listed in table
2.2.

Table 2.1: Fixed Header Format

7 6 5 4 3 2 1 0
Byte 1 Message Type DUP Flag QoS Level RETAIN
Byte 2 Remaining Length

The DUP flag is only used with QoS level greater than zero (and therefore
an acknowledgment is required, see 2.2.2.2) and is set by the client or the
broker when a PUBLISH message is resent.

The QoS field indicates the level of assurance for delivery of a MQTT
message. The possible QoS values are shown in table 2.3.

The RETAIN flag, when set, indicates that the broker sends the message
as an initial message to new subscribers to this topic. Thereby, a new client
connecting to the broker can quickly establish the current number of topics.
This is useful where publishers send messages on a “report by exception”
basis, and it might be some time before a new subscriber receives data on
a particular topic. After sending a SUBSCRIBE message to one or more
topics, a subscriber receives a SUBACK message, followed by messages for
each newly subscribed topic for which the publishers set the retain flag.
The retained messages are published from the broker to the subscriber with
the retain flag set and with the same QoS with which they were originally
published, and are therefore subject to the usual QoS delivery assurances.
The retain flag is set in the messages to the subscribers to distinguish them
from “live” data so that they are handled appropriately by the subscriber.
However it should be noted that overuse of this flag can inhibit scalability,
as a new subscriber may receive a huge number of retained messages.

The second byte of the fixed header contains the remaining length field.
It represents the number of bytes remaining within the current message,
including data in the variable header and the payload (see following sections).

6 CHAPTER 2. WEBSPHERE MQTT PROTOCOL

Table 2.2: Command Message Types

Mnemonic Enumeration Description
Reserved 0 Reserved
CONNECT 1 Client request to Connect to Broker
CONNACK 2 Connect Acknowledgment
PUBLISH 3 Publish message
PUBACK 4 Publish Acknowledgment
PUBREC 5 Publish Received
PUBREL 6 Publish Release
PUBCOMP 7 Publish Complete
SUBSCRIBE 8 Client Subscribe request
SUBACK 9 Subscribe Acknowledgment
UNSUBSCRIBE 10 Client Unsubscribe request
UNSUBACK 11 Unsubscribe Acknowledgment
PINGREQ 12 Ping Request
PINGRESP 13 Ping Response
DISCONNECT 14 Client is Disconnecting
Reserved 15 Reserved

Table 2.3: QoS Levels

QoS Value Bit 2 Bit 1 Description
0 0 0 At Most Once Sent only once.

Receiver will get zero or one copies.
1 0 1 At Least Once Acknowledged delivery.

Receiver gets at least one copy.
2 1 0 Exactly Once Assured delivery.

Receiver gets exactly one copy.
3 1 1 Reserved

2.2. PROTOCOL SPECIFICATION 7

2.2.1.2 Variable Header

The message header for some types of WebSphere MQTT command mes-
sages contains a variable header. It resides between the fixed header and the
payload. The format of the variable header fields are described in table 2.4
and are listed in the order in which they must appear in the header. For
some fields a more detailed explanation is given in the following paragraphs.

Table 2.4: Variable Header Fields

Field Present In Description
Protocol Name CONNECT UTF-encoded string representing the protocol

name “MQIsdp” 1.
Protocol Version CONNECT 8-bit unsigned value representing the revision

level of the protocol used by the client (cur-
rently version 3).

CONNECT Flags CONNECT Clean start, Will Flag, Will QoS, and Will
Retain, see page 7.

Keep Alive Timer CONNECT Defines the maximum time interval in seconds
between messages received from a client. See
also page 8.

CONNECT CONNACK Defines a one byte return code.
Return Code 0: Connection accepted

1-3: Connection refused
Topic Name PUBLISH UTF-encoded string which identifies the in-

formation channel to which payload data is
published.

Message Identifier Several 16-bit unsigned integer (not used when QoS is
zero). See page 9.

CONNECT Flags Since the CONNECT message is the first information
exchanged between a MQTT client and the MQTT broker, it seems sensible
to have some special fields within this message to carry extra information.
Some of them have already been described in table 2.4. In the next table the
remaining fields within the CONNECT variable header are shown.

The purpose of the Clean Start flag is to return the client to a known,
“clean” state with the broker. If the flag is set, the broker discards any
outstanding messages, deletes all subscriptions for the client, and resets the

1Originally called “ArgoOTWP” in version 1, the protocol name was changed to
“MQIpdp” in version 2 before being set to “MQIsdp” (MQSeries Integrator SCADA De-
vice Protocol) in the final release 3.

8 CHAPTER 2. WEBSPHERE MQTT PROTOCOL

Message ID to 1. The client proceeds without the risk of any data from
previous connections interfering with the current connection.

The remaining flags are all related to the so called Will message which
may be contained in the payload of the CONNECT message. If the Will flag
is set, the Will message is published on behalf of the client by the broker when
either an I/O error is encountered by the broker during communication with
the client, or the client fails to communicate within the Keep Alive Timer
schedule. Therefore, the Will message is sent in the event that the client
is disconnected unexpectedly and is published to the Will Topic. Sending
a Will message is not triggered by the broker receiving a DISCONNECT
message from the client.

If the Will flag is set, the Will QoS and Will Retain fields must be present
in the CONNECT flag’s byte, and the Will Topic and Will Message fields
must be present in the payload. The Will QoS specifies at which service
level a potential Will message should be published by the broker whereas the
Will Retain flag indicates whether or not the broker should retain the Will
message after having it published.

Table 2.5: CONNECT Flags

7 6 5 4 3 2 1 0

Flag Reserved Reserved
Will Will Will Clean

Reserved
Retain QoS Flag Start

Keep Alive Timer The Keep Alive Timer, measured in seconds, defines
the maximum time interval between messages received from a client. It
enables the broker to detect that the network connection to a client has
dropped, without having to wait for the long TCP timeout. The client has a
responsibility to send a message within each keep alive time period. In the
absence of a data-related message during the time period, the client sends
a PINGREQ message, which the broker acknowledges with a PINGRESP
message.

If the broker does not receive a message from the client within one and
a half times the keep alive time period (the client is allowed “grace” of half
a time period), it disconnects the client as if the client had sent a DISCON-
NECT message. This action does not impact any of the client’s subscriptions.
See the DISCONNECT notification in section 2.2.2.5 for more details.

The Keep Alive Timer is a 16-bit value that represents the number of
seconds for the time period. The actual value is application-specific, but

2.2. PROTOCOL SPECIFICATION 9

a typical value is a few minutes. The maximum value is approximately 18
hours. A value of zero (0) means the client is never disconnected.

Message Identifier The message identifier is present in the variable hea-
der of the following WebSphere MQTT messages: PUBLISH, PUBACK,
PUBREC, PUBREL, PUBCOMP, SUBSCRIBE, SUBACK, UNSUBSCRI-
BE and UNSUBACK. This field is only present in messages where the QoS
bit in the fixed header indicates QoS level 1 or 2. See section 2.2.2.2 for more
information.

The message ID is a 16-bit unsigned integer. It typically increases by
exactly one from one message to the next, but is not required to do so. This
assumes that there are never more than 65535 messages “in flight” between
one particular client-broker pair at any time. The message ID 0 is reserved
as an invalid message ID.

2.2.1.3 Payload

As stated previously, some MQTT command messages carry additional in-
formation in the payload part. The payload contained in the CONNECT
command consists of either one or three UTF-8 encoded strings. The first
string uniquely identifies the client to the broker. The second string is the
Will topic, and the third string is the Will message. The second and third
strings are present only if the Will flag is set in the CONNECT flag’s byte.

In a SUBSCRIBE command message the payload contains a list of topic
names to which the client wants to subscribe, and the QoS level. These
strings are UTF-encoded.

Furthermore, there is the SUBACK message containing a list of granted
QoS levels in the payload. These are the QoS levels at which the adminis-
trators for the broker have permitted the client to subscribe to a particular
topic. Granted QoS levels are listed in the same order as the topic names in
the corresponding SUBSCRIBE message.

With regard to the PUBLISH message, the payload part contains appli-
cation-specific data only. No assumptions are made about the nature or
content of the data.

2.2.2 MQTT Command Messages

In the preceding sections the general structure of MQTT messages was ex-
plained. This section explains in more detail the purpose of each MQTT
command message and which fields have to be taken care of. Please refer to
[1] for the exact structure of each command message.

10 CHAPTER 2. WEBSPHERE MQTT PROTOCOL

Figure 2.1: MQTT Connection Establishment

2.2.2.1 Connecting to the Broker

Assuming that a client has already established a TCP connection to the
broker, the next step is to establish a MQTT connection to the broker. The
two messages targeted at establishing a protocol level session are the so called
CONNECT and CONNACK messages.

The CONNECT message is sent by the client to the broker to inform
the latter that the client wants to set up a MQTT session. As explained
in page 7 this initial message contains the CONNECT flags and the Keep
Alive Timer value in the variable header. Since the broker has to be able to
distinguish the clients from one another, the CONNECT message must also
contain a client identifier that is unique across all connected and connecting
clients. This ID is present in the payload of the message, where also the Will
topic and message are put if necessary (see page 7).

The response of the broker to the CONNECT request by a client is a
CONNACK message whose only purpose is to inform the client if the con-
nection attempt was successful. From table 2.4 we can see that only return
code 0 indicates a successful MQTT connection attempt. Return codes 1 to
3 indicate that the connection was refused by the broker because of an unac-
ceptable protocol version (currently only version 3 is acceptable), an illegal
client identifier that was not specified or exceeds the maximum length of 23
characters or because the broker is unavailable for any reason.

If the client does not receive a CONNACK message from the broker within

2.2. PROTOCOL SPECIFICATION 11

a client-specified timeout period, the client closes the TCP/IP socket con-
nection and restarts first a TCP connection followed by the MQTT session
establishment.

2.2.2.2 Publishing to Topics

A PUBLISH message is sent by a client to a broker for distribution to inter-
ested subscribers. Each PUBLISH message is associated with a topic name,
which is part of the variable header. This is a hierarchical name space that
defines a taxonomy of information sources for which subscribers can register
an interest. A message that is published to a specific topic name is delivered
to connected clients subscribed to that topic. The actual data published
to the topic name is contained in the payload section of the message. The
content and format of the data is application-specific. Please note that PUB-
LISH messages can be sent either from a publisher to the broker, or from the
broker to a subscriber.

Depending on the QoS level at which a PUBLISH message is sent, the
message ID and duplicate flag fields are used. For QoS 0, no message ID
is included in the message and the message is never resent (best effort).
For QoS greater than zero a unique message ID has to be included in the
PUBLISH message and the duplicate flag is set when a retransmission is
triggered because no response was received. The awaited response depends
again on the QoS and is explained in the next paragraphs.

Quality of Service Flows PUBLISH messages are delivered according to
the QoS level specified in the corresponding field. Depending on this value,
sender and receiver take different actions.

QoS 0 With QoS 0 the message is delivered according to the best efforts
of the underlying TCP/IP network. A response is not expected and no
retry semantics are defined in the protocol. The message arrives at the
broker/subscriber either once or not at all. Upon reception of a PUBLISH
message by the broker, it forwards the message to all interested subscribers.

12 CHAPTER 2. WEBSPHERE MQTT PROTOCOL

Figure 2.2: MQTT Publication with QoS 0

QoS 1 The reception of a PUBLISH message with QoS 1 by the broker
or subscriber is acknowledged by a PUBACK message (PUBlish ACKnowl-
edgment) containing the same message ID as the PUBLISH message that is
acknowledged. When the acknowledgment message is not received after a
specified period of time, the sender resends the message with the DUP bit
set in the message header. The message arrives at the receiver at least once.
The broker, upon reception of a QoS 1 PUBLISH message, logs the message
to persistent storage, makes it available to any interested parties, and returns
a PUBACK message to the sender. In the case where it receives a duplicate
message from the client, the broker republishes the message to all interested
subscribers, and sends another PUBACK message to the publisher. A sub-
scriber receiving a duplicate PUBLISH message makes it available to the
application and sends back a PUBACK to the broker.

Once the sender of the PUBLISH message (either a publisher or the bro-
ker) receives the PUBACK message, it discards the corresponding PUBLISH
message that was stored persistently.

It is important to note that a PUBLISH message is sent at QoS 1 from the
broker to the subscriber only if the minimum out of the QoS of the original
PUBLISH message sent by the publisher and the granted QoS by the broker
to the subscriber for that topic is equal to 1. See also section 2.2.2.3 for more
details.

2.2. PROTOCOL SPECIFICATION 13

Figure 2.3: MQTT Publication with QoS 1

QoS 2 Additional protocol flows above QoS level 1 ensure that duplicate
messages are not delivered to the receiving application. This is the highest
level of delivery, for use when duplicate messages are not acceptable. There
is an increase in network traffic, but it is usually acceptable because of the
importance of the message content.

Between a publisher and the broker, the protocol flow is as follows (and
analogously between a broker and an interested subscriber). Upon reception
of a PUBLISH message with QoS 2, the message is stored persistently by
the broker and acknowledged with a so called PUBREC message (PUBlish
RECeived). It contains the message ID of the original PUBLISH message.
When it receives a PUBREC message, the publisher, as a next step, sends a
PUBREL message (PUBlish RELease) to the broker with the same message
ID as the PUBREC message (and the original PUBLISH message). Finally,
upon reception of the PUBREL message, the broker sends back a PUBCOMP
(PUBlish COMPlete) to the publisher, again with the same message ID as
the PUBREL that is acknowledged. It is only after receiving the PUBREL
message that the broker makes the original PUBLISH message available to
interested subscribers.

When the client receives a PUBCOMP message, it discards the original
PUBLISH message because it has been delivered, exactly once, to the broker.
If a failure is detected, or after a defined timeout period, each part of the
protocol flow is retried with the DUP bit set.

Again, one has to keep in mind that the PUBLISH message is delivered
at QoS 2 to the subscribers only and only if the corresponding granted QoS
is 2 and the PUBLISH message was also sent out by the publisher at QoS 2.
Only in this case the additional protocol flows ensure that the message is

14 CHAPTER 2. WEBSPHERE MQTT PROTOCOL

Figure 2.4: MQTT Publication with QoS 2

delivered to the application at the subscriber once only.

2.2.2.3 Subscribing to Topics

After having successfully established a MQTT connection to the broker, a
client wishing to receive information on certain topics has to tell the broker
about this interest. The basic data that a MQTT subscriber has to deliver
to the broker is a list of topic names which interest the client. Furthermore,
the QoS level at which the client wants to receive published messages can be
specified. Hence, a MQTT SUBSCRIBE command message contains a list
of topic names/QoS pairs.

As any other message, SUBSCRIBEs can get lost. Therefore, in MQTT
the SUBSCRIBE message uses QoS 1 to ensure that the message is received
by the broker, i.e. upon receiving a subscription request from a client, the
broker sends back a SUBACK message. The latter contains a list of granted
QoS levels. These are the levels at which the administrators for the broker
permit the client to subscribe to specific topic names. In the current version
of the protocol, the broker always grants the QoS level requested by the
subscriber. The order of granted QoS levels in the SUBACK message matches
the order of the topic names in the corresponding SUBSCRIBE message.
However, the granted QoS don’t necessarily mean that the subscriber will get
PUBLISH messages at these QoS levels. In fact, the client receives PUBLISH
messages at less than or equal to these granted QoS levels, depending on the

2.2. PROTOCOL SPECIFICATION 15

Figure 2.5: MQTT Subscription to Topics

QoS levels of the original messages from the publisher. As an example, let
us assume that a publisher sends PUBLISH messages at QoS 2 to the broker
and that a subscriber is subscribed to the topic at a granted QoS of 1. Then,
the broker will send PUBLISH messages at QoS 1 to the subscriber. If on the
other hand you have a subscription at granted QoS 2, the messages will be
published at QoS 2 from the broker to the subscriber. Thus, the message is
always published to the subscriber at QoS equal to the minimum of the QoS
of the original PUBLISH message sent to the broker and the QoS granted by
the broker to the subscriber for the topic matching the one of the PUBLISH.
Figure 2.5 illustrates the first example mentioned above. It is worth noting
that in the example the broker publishes the message with QoS 1, but the
original PUBLISH message is left unchanged and therefore the QoS field is
set to 2.

Since the SUBSCRIBE message uses QoS 1, it must contain a message ID
to match an arriving SUBACK to the correct SUBSCRIBE message. Also,
if after a client-specified time no SUBACK is received, a duplicate of the
SUBSCRIBE is sent to the broker with the duplicate flag set.

2.2.2.4 Unsubscribing from Topics

Once a subscriber is subscribed to certain topics, it is also allowed to un-
subscribe from some of the topics if the client is not interested anymore in
receiving information to those topics. This is done by using the UNSUB-

16 CHAPTER 2. WEBSPHERE MQTT PROTOCOL

Figure 2.6: MQTT Unsubscription from Topics

SCRIBE/UNSUBACK command messages. The client sends an UNSUB-
SCRIBE message to the broker containing a list of topic names from which
it wishes to unsubscribe. The broker responds with an UNSUBACK message
to confirm that it received the unsubscription request. After having sent the
UNSUBACK, the subscriber will not receive anymore PUBLISH messages to
the topics specified in the corresponding UNSUBSCRIBE message.

Obviously, the UNSUBSCIBE is sent at QoS 1 and therefore a message
ID is used to match UNSUBACKs to UNSUBSCRIBEs. As in the case
of a subscription, timeouts are used and once expired, an UNSUBSCRIBE
message is resent with the duplicate flag set.

2.2.2.5 Disconnecting

The DISCONNECT message is sent from the client to the broker to indicate
that it is about to close its TCP/IP connection. This allows for a clean dis-
connection, rather than just dropping the line. Sending the DISCONNECT
message does not affect existing subscriptions. They are persistent until ei-
ther explicitly unsubscribed, or if there is a clean start. The broker retains
QoS 1 and QoS 2 messages for topics to which the disconnected client is
subscribed to until the client reconnects. QoS 0 messages are not retained,
since they are delivered on a best efforts basis. Note that the DISCONNECT
message is not acked.

2.2. PROTOCOL SPECIFICATION 17

2.2.2.6 Ping Request

The PINGREQ message is an “are you alive” message that is sent from or
received by a connected client. A PINGRESP message is the response to a
PINGREQ message and means “yes I am alive”. Keep Alive messages flow
in either direction, sent either by a connected client or the broker.

As explained in page 8, each client is responsable for sending at least
one message within each keep alive period in order to assure the broker
that the network connection has not dropped. If there is no data-related
message during the time period, MQTT PINGREQ messages have to be
sent to prevent the broker from DISCONNECTing the client because of a
keep alive timeout. The response to a PINGREQ is a PINGRESP message
which, alike the PINGREQ contains nothing but the fixed header.

18 CHAPTER 2. WEBSPHERE MQTT PROTOCOL

Chapter 3

The Discrete Event Simulation
System OMNeT++

For simulations performed in this project, the OMNeT++ simulator was
used. This chapter serves as a short presentation of the main features of
OMNeT++.

3.1 Introduction

OMNeT++ [2] is a discrete event simulator based on C++, is highly modu-
lar, well structured and scalable. It provides a basic infrastructure wherein
modules exchange messages. The name OMNeT++ stands for Objective
Modular Network Testbed in C++. It has an open-source distribution pol-
icy and can be used free of charge by academic research institutions. It runs
on Windows and Unix platforms, including Linux, and offers a command
line interface as well as a powerful graphical user interface. The simulator
can be used, for instance, to model communication and queueing networks,
multiprocessors and other distributed hardware systems as well as to validate
hardware architectures.

3.2 Modeling Concept

An OMNeT++ model consists of hierarchically nested modules, which com-
municate by passing messages to each other. OMNeT++ models are often
referred to as networks. The top level module is the system module. The sys-
tem module contains submodules, which can also contain submodules them-
selves. The depth of module nesting is not limited; this allows the user to
reflect the logical structure of the actual system in the model structure.

19

20 CHAPTER 3. OMNET++

Figure 3.1: OMNeT++ Module Hierarchy

The model structure is described with OMNeT’s NED language. Mod-
ules that contain submodules are termed compound modules, as opposed to
simple modules which are at the lowest level of the module hierarchy. Sim-
ple modules contain the algorithms in the model. The user implements the
simple modules in C++, using the OMNeT++ simulation class library.

Modules communicate by exchanging messages. In an actual simulation,
messages can represent frames or packets in a computer network, jobs or
customers in a queueing network or other types of mobile entities. The local
simulation time of a module advances when the module receives a message.
The message can arrive from another module or from the same module (self-
messages are used to implement timers).

Gates are the input and output interfaces of modules; OMNeT++ sup-
ports only simplex (one-directional) connections, so there are input and out-
put gates. Messages are sent out through output gates and arrive through
input gates.

Due to the hierarchical structure of the model, messages typically travel
through a series of connections, to start and arrive in simple modules. Such
serieses of connections that go from simple module to simple module are
called routes. Compound modules act as “cardboard boxes” in the model,
transparently relaying messages between their inside and the outside world.
Connections can be assigned three parameters, which facilitate the modeling
of communication networks, but can be useful in other models too: propa-
gation delay, bit error rate and data rate, all three being optional. One can
specify link parameters individually for each connection, or define link types
and use them throughout the whole model.

The simple modules of a model contain algorithms as C++ functions. The
full flexibility and power of the programming language can be used, supported

3.3. BASIC PARTS OF AN OMNET++ MODEL 21

by the OMNeT++ simulation class library. The simulation programmer can
choose between event-driven and process-style description, and can freely
use object-oriented concepts (inheritance, polymorphism etc.) and design
patterns to extend the functionality of the simulator.

3.3 Basic Parts of an OMNeT++ Model

An OMNeT++ model physically consists of the following parts:

- NED language topology description(s)

- Message definitions

- Simple modules implementations and other C++ code

To build an executable simulation program, you first need to translate
the NED files and the message files into C++, using the NED compiler
(nedtool) and the message compiler (opp msgc). NED files can also be loaded
dynamically, in which case they don’t need to be compiled beforehand. After
this step, the process is the same as building any C/C++ program from
source.

3.4 Interesting Features

As it was shown in [3] and [4], the cycle length of a random number gener-
ator (RNG) is fundamental, especially when RNGs are used for simulation
purposes. OMNeT++ releases prior to 3.0 used a linear congruential gener-
ator (LCG) with a cycle length of 231 − 2. This RNG is still available but is
only suitable for small-scale simulation studies. Newer OMNeT++ releases
use by default the Mersenne Twister RNG (MT) by M. Matsumoto and T.
Nishimura ([5]). MT has a period of 219937− 1, and 623-dimensional equidis-
tribution property is assured. MT is also very fast: as fast or faster than
ANSI C’s rand(). In addition, OMNeT++ allows to plug in own RNGs as
well.

In many simulations, only the steady state performance (i.e. the performance
after the system has reached a stable state) is of interest. The initial part
of the simulation is called the transient period. After the model has entered
steady state, simulation must proceed until enough statistical data has been
collected to compute results with the required accuracy.

Detection of the end of the transient period and a certain result accuracy
is supported by OMNeT++. The transient detection and result accuracy

22 CHAPTER 3. OMNET++

objects will do the specific algorithms on the data fed into the result object
and tell if the transient period is over or the result accuracy has been reached.
The transient detection algorithm uses a sliding window approach with two
windows, and checks the difference of the averages of the two windows to see
if the transient period is over. The accuracy detection algorithm divides the
standard deviation by the square of the number of samples and checks if this
is within the accuracy range specified by the user. These algorithms were
used for the experiments described in chapter 5.

3.5 Comparison with Other Simulators

Available Models Non-commercial simulation tools cannot compete with
some commercial ones (especially OPNET) which have a large selection of
ready-made protocol models. OMNeT++ is no exception, it clearly lacks
models, also compared with non-commercial tools such as ns-2 (but it has to
be considered that OMNeT++ is a rather new tool, it was originally released
in 1999). On the other hand OMNeT++ provides a larger variety of models
(that allows the user to simulate more than just communication networks)
as compared to ns, which mainly provides TCP/IP centered models.

Model Management The OMNeT++ simulation kernel is a class library,
i.e. models in OMNeT++ are independent of the simulation kernel. The user
writes his components (simple modules) like using any other class library, and
generates the executable by compiling and linking them against the simula-
tion library. This means that there is no need to modify the OMNeT++
sources (this enforces reusability). ns-2 tends to be monolithic: to add new
models to it, one needs to download the full source and modify it a bit, copy
files to specific locations, add constants in other files etc.

Reliability As a matter of fact, models provided with simulation tools are
often not validated. This also applies to OMNeT++. A good example is the
TCP implementation in the INET framework for OMNeT++ (more on that
later on). This is a general problem of non-commercial tools: anybody can
contribute, but nobody gives any garanty. Moreover, some models are still
under development and therefore represent simplified versions of what they
are intended to model.

Network Topology Definition Network simulation tools naturally share
the property that a model (network) consists of “nodes” (blocks, entities,

3.5. COMPARISON WITH OTHER SIMULATORS 23

modules, etc.) connected by “links” (channels, connections, etc.). Many com-
mercial simulators have graphical editors to define the network; however, this
is only a good solution if there is an alternative form of topology description
(e.g. text file) which allows one to generate the topology by program. On
the other hand, most non-commercial simulation tools do not provide ex-
plicit support for topology description: one must program a “driver entity”
which will boot the model by creating the necessary nodes and interconnect-
ing them (e.g. in ns-2 the OTcl scripting language is used). Finally, a large
part of the tools that do support explicit topology description support only
flat topologies. OMNeT++ probably uses the most flexible method: it has
a human-readable textual topology description format (the NED language)
which is easy to create with any text-processing tool (perl, awk, etc.), and
the same format is used by the graphical editor. It is also possible to create
a “driver entity” to build a network at run-time by program. Moreover, OM-
NeT++ also supports submodule nesting without limitations on the depth
of nesting.

Configuration of Simulation Runs Parameters of a simulation exper-
iment are written in the omnetpp.ini, this strongly enforces the concept of
separating the model from experiments. Models and experiments are usually
seriously interwoven in ns-2: parameters are usually embedded in the Tcl
script and thus are difficult to edit.

Debugging C++-based simulation tools rarely offer much more than the
printf()-style debugging process; often the simulation kernel is also capable
of dumping selected debug information on the standard output. OMNeT++
goes a different way by linking the GUI library with the debugging/tracing
capability into the simulation executable. This architecture enables the GUI
to be very powerful: every user-created object is visible (and modifiable)
in the GUI via inspector windows and the user has tight control over the
execution. To the author’s best knowledge, the tracing feature OMNeT++
provides is unique among the C++-based simulation tools. In addition,
this property makes OMNeT++ an excellent tool for demonstrational or
educational purposes.

Performance Performance is a particularly interesting issue with OM-
NeT++ since the GUI debugging/tracing support involves some extra over-
head in the simulation library. Simulating large networks (e.g. MQTT net-
works with hundreds of clients) results in unacceptable performance. But
this is also a big problem with other popular simulators such as ns-2.

24 CHAPTER 3. OMNET++

Figure 3.2: OMNeT++ Screenshot

Chapter 4

Protocols and Models
Implemented for OMNeT++

This chapter contains a description of the protocols and models which had
to be implemented for OMNeT++ in order to allow for using the simulator
for performance tests of MQTT over TCP and wireless links. First, the
MQTT implementation is described, followed by the process of extending
OMNeT++ with a TCP stack. Finally, the implementation of an adequate
model to simulate wireless channels is described.

4.1 MQTT Implementation

The fact that OMNeT++ is highly modular and well structured is a big
advantage when it comes to implementing new protocols to be used in the
simulator. The process of implementing MQTT for OMNeT++ was quite
straightforward and convenient especially thanks to the NED language.

The implementation process can be summarized as developing two differ-
ent compound modules: one representing a MQTT client and another one
taking the role of a broker. Furthermore, the implementation of the MQTT
client compound module can be subdivided into developing a MQTT pub-
lisher and a MQTT subscriber. Additionally, with the help of OMNeT’s
message description compiler, all the necessary message types were devel-
oped.

The MQTT client compound module is a conventional TCP/IP host ex-
tended with a simple module representing the MQTT layer on top of TCP
and a MQTT application. The MQTT layer module contains the logic to
perform the MQTT protocol with the broker. That is, it contains the func-
tionality to connect to the broker, to publish or subscribe to topics depending

25

26 CHAPTER 4. EXTENDING OMNET++

Figure 4.1: MQTT Implementation Design

on the application on top, and of course also to execute the ping process or
to disconnect from the broker. Moreover, it has to be able to communicate
with the application that may represent a publisher or a subscriber. To al-
low for this communication, an additional message type had to be introduced
which would allow the MQTT layer to distinguish between MQTT messages
received from the broker and messages received from the application.

On top of the MQTT protocol layer sits the MQTT application, which can
be a publisher or a subscriber. The publishing application sends PUBLISHes
to the MQTT layer via the special message type mentioned before. The
subscriber application on the other hand contains the logic to tell the MQTT
layer to which topics it wants to subscribe and at which QoS level. Moreover
it is able to accept PUBLISH messages delivered by the MQTT protocol
layer. In general, the two types of application modules do not differ much,
hence to simplify matters they could also me merged to build one simple
module representing a publisher, a subscriber or both.

The second compound module needed to make up a MQTT network is
the broker. Again, this is a conventional TCP/IP host, but extended with
a simple module implementing the broker functionality. Besides containing
the logic to “talk” MQTT as the clients do, it needs the ability to match
publications to subscriptions. This was implemented by adding an additional
simple helper module which is instantiated for each client connecting to the
broker. Thus, the broker associates such a helper module to each client, and
this module is responsible for maintaining session information such as e.g.
to which topics a client is subscribed to, when the last message was received
from the client to be able to calculate the ping timeout expiration etc.

With the help of the NED language, we then define a MQTT network as
a network consisting of a compound broker module, and several compound
MQTT client modules, each being connected to the broker either explicitly
when using a wired network, or implicitly in the case of a wireless network,
where the clients just have to be in transmission range of the broker.

4.2. INTEGRATION OF A TCP STACK 27

4.2 Integration of a TCP Stack

OMNeT++ as is does not come with any modules to simulate TCP/IP net-
works. This is provided by the INET framework. The INET framework is an
open-source communication networks simulation package for the OMNeT++
simulation environment. It contains models for several Internet protocols:
beyond TCP and IP there is UDP, Ethernet, PPP and others.

However, it has been shown in [6] that not only there are features missing
in the TCP/IP models provided with the INET framework, but also the im-
plementation has been proved not to work correctly. Simple tests carried out
at the beginning of this project have reinforced the observations made in [6]
and have shown that the implementation behaves abnormal when higher link
error rates are introduced. Since we are particularly interested in MQTT’s
performance over TCP and lossy links (as we will be communicating over
wireless links) it was impossible to use the TCP implementation shipped
with the INET framework to perform the simulations.

There are basically two approaches as how to address this deficiency of
the TCP implementation. On one hand, it is possible to take INET’s TCP
implementation and to try to fix possible errors found. However, this has
two major disadvantages. First, it is probable to lead again to errors and
malfunctioning due to newly introduced bugs or to errors not identified.
Secondly, it is not an easy task to look through the code and compare it with
a real implementation, especially not if the simulator’s TCP stack was not
based on a particular operating system (OS). After all, TCP is not a simple
protocol.

On the other hand, it seems more reasonable to take an existing, vali-
dated TCP implementation and to make it fit into OMNeT’s environment.
Thereby, you reduce the chances to introduce new errors since you reuse code
and avoid reimplementing a protocol based on a erroneous implementation.
By reusing code, you base the implementation on another that has been
proven to work correctly.

Clearly, the second approach seems to be the more reliable and simpler
one. Hence, in the following the process of integrating an existing TCP
implementation into OMNeT++ is shortly described.

4.2.1 Integration of the NetBSD TCP Stack

NetBSD [7] is a free and highly portable open source OS available for many
platforms. Several protocol suites supported by this OS were inherited from
BSD and subsequently enhanced and improved. A big advantage of NetBSD’s
TCP implementation is its proper structure that makes it easier to integrate

28 CHAPTER 4. EXTENDING OMNET++

into OMNeT++.
To integrate the NetBSD TCP implementation into OMNeT++, the sim-

plest and probably most efficient solution is to pack all the TCP function-
ality into one OMNeT++ module. This is presumably also the most safe
approach, as the whole code is maintained together in one single module
(which of course does not interdict to spread the code over several files).

To make the TCP stack available to the application, appropriate TCP
sockets were implemented that let the application interact with the TCP
stack via OMNeT++ messages. Moreover, appropriate in- and output gates
were added to the simple module definition to not only allow for communi-
cation between the implemented TCP sockets and the TCP stack, but also
to enable data passing between TCP and the IP layer beneath. The latter
corresponds to the module provided by the INET framework.

4.2.1.1 Blocking Calls

It has already been identified in [8] that implementing blocking calls in OM-
NeT++ is not easily feasible. Since OMNeT++ is not a multithreaded envi-
ronment, every function call that would let a process sleep or wait for a while
would stop the simulation. This is due to the fact that the handleMessage()
procedure, which every (non-coroutine based) OMNeT++ module imple-
ments and that is called whenever a message (event) arrives, has to finish
in order to return control back to the OMNeT++ simulation kernel. This
makes it nearly impossible to avoid changing applications in order to allow
for blocking calls. Since in real life usually blocking socket calls are used, it
is crucial to introduce somehow this functionality into our TCP stack.

The basic idea to simulate blocking calls is to have the TCP layer send
back a message to the application to inform it of how much space there
is in the socket buffer. Before sending any data through the socket, the
application checks that TCP will have enough space to take the data. If
this is the case, the data is just sent through the socket. However, if TCP
would block because there is not enough free buffer space, the application
stores the message to send in a FIFO queue until the TCP layer tells it to
wake up. When the wake up signal arrives, the first message within the
queue is dequeued and sent out. Whenever the queue is not empty and the
application triggers a “send message event”, instead of directly checking if
the socket would block, it verifies if there are any backlogged messages in
the queue. In this case the new message has to be enqueued at the tail. In
the other case of an empty queue, the application checks if there is enough
buffer space for the message.

Clearly, this is an unusual and cumbersome way to simulate blocking

4.2. INTEGRATION OF A TCP STACK 29

Figure 4.2: Lab setup to validate the TCP implementation integrated into
OMNeT++.

calls, as it is the application that has to care about the blocking mechanism.
But to the best of our knowledge there is no simpler way to introduce the
blocking calls functionality into OMNeT++.

4.2.2 Validation with Real TCP

To validate up to a certain level that the newly integrated TCP stack works
correctly, some tests were performed to compare it with a real TCP environ-
ment. The test scenario is depicted in figure 4.2.

To perform the tests, the SX/13a data link simulator was used, which
simulates terrestrial and satellite data links for testing internetworking equip-
ment and applications under repeatable and controllable conditions. It allows
for bi-directional testing with programmable delays, random bit errors and
burst errors.

The data link simulator used has two RS-422-A interfaces. By using a
RS-232 to RS-422-A converter, two IBM Thinkpads were connected to it (see
figure). One Thinkpad took the role of a MQTT broker, the other machine
was used to run a publisher and a subscriber application. To communicate
over the serial links, the Point-to-Point protocol (PPP) was used with a data
rate of 115Kb/s. The tests were run with a negligible fix propagation delay of
0.1ms and random errors. Several payload sizes and data rates were tested to
have some more confidence in the implementation. Figures 4.3 and 4.4 show
some of the performed validations for the mean end-to-end delay measured
in the laboratory setup and with OMNeT++, respectively. The shapes of
the graphs are pretty similar. Clearly, the results do not match completely,
but this is also comprehensible. It has to be noted that factors such as
processing delays at different layers, socket read and write operations etc. are

30 CHAPTER 4. EXTENDING OMNET++

not considered in the simulator. Moreover, in real life there are many factors
that can slighty vary over time but which are constant in the simulation.

0 1 10 50 100
40

60

80

100

120

140

BER [x 10−6]

M
ea

n
E

nd
−t

o−
E

nd
 D

el
ay

 [m
s]

QoS 0

0 1 10 50 100
60

80

100

120

140

160

BER [x 10−6]

M
ea

n
E

nd
−t

o−
E

nd
 D

el
ay

 [m
s]

QoS 1

0 1 10 50 100
150

200

250

300

350

BER [x 10−6]

M
ea

n
E

nd
−t

o−
E

nd
 D

el
ay

 [m
s]

QoS 2

Lab
Simulation

Lab
Simulation

Lab
Simulation

Figure 4.3: Comparison of the measured mean end-to-end delay of the lab
setup and the OMNeT++ simulations. 10 messages per second with 10B
MQTT payload.

0 1 10 50 100
101

102

103

BER [x 10−6]

M
ea

n
E

nd
−t

o−
E

nd
 D

el
ay

 [m
s]

QoS 0

0 1 10 50 100
101

102

103

BER [x 10−6]

M
ea

n
E

nd
−t

o−
E

nd
 D

el
ay

 [m
s]

QoS 1

0 1 10 50 100
102

103

104

BER [x 10−6]

M
ea

n
E

nd
−t

o−
E

nd
 D

el
ay

 [m
s]

QoS 2

Lab
Simulation

Lab
Simulation

Lab
Simulation

Figure 4.4: 50 messages per second with 10B payload.

4.3. WIRELESS CHANNEL MODEL 31

4.3 Wireless Channel Model

A shortcoming of OMNeT++ is the limited number of available simulation
models for different network protocols and technologies. Especially in the
area of wireless networks there is still a lot of development necessary to make
OMNeT++ a more powerful simulator. The latest INET framework release
contains support for wireless network simulations. However, among other
things, OMNeT++ still lacks models to simulate wireless channel properties.

Wireless channels differ a lot from wired channels, due to their unreliable
behavior. The state of a wireless channel may change within very short time
spans. On the other hand, wireless communication is known for its corre-
lated error characteristics which lead to error bursts ([9],[10]). Therefore, we
extended OMNeT++ by a simple though powerful model that enables the
user to model wireless channel properties.

A very often referenced bit-level wireless channel model is the so called
Gilbert or Gilbert-Elliot model ([11], [12]). It is a first-order Markov model
which assumes a good and a bad channel state. Within every state, bit errors
occur according to the independent model with rates eG and eB, respectively,
with eG << eB. The bit error rates in general depend on the frequency and
coding scheme used and on environmental conditions. The statistics of the
bit errors are then fully characterized by the transition matrix

P =

(
pBB pBG

pGB pGG

)

where pBG is the transition probability from the bad to the good state, and
the other entries in the matrix are defined analogously. The steady-state
probabilities to be in a certain state are given by

pG =
1− pBB

2− (pGG + pBB)
pB =

1− pGG

2− (pGG + pBB)

and the mean bit error rate is given as e = pGeG + pBeB. The mean state
holding times can be computed as

1

1− pGG

1

1− pBB

for the good state and the bad state respectively. The Gilbert-Elliot model
has short-term correlation properties for bit errors, but burst length se-
quences are uncorrelated.

For our purposes, this model was simple enough to implement and is
sufficient to simulate wireless channels with a certain burstiness. Other al-
gorithms found in literature, e.g. [13] may be more accurate due to their

32 CHAPTER 4. EXTENDING OMNET++

Figure 4.5: Gilbert-Elliot Channel Model

trace-based approach, however they need to be fed with a trace having the
desired characteristics. Also, more accurate models mostly imply that the
number of parameters to be computed is much larger.

Chapter 5

MQTT Performance Analysis

Up until now, no performance analysis of the MQTT protocol has been made,
although there are various parameters that one can vary and which will
have an impact on the systems behavior. This chapter discusses some first
performance measurements recorded with OMNeT++ enhanced with the
integrated NetBSD TCP stack. The goal is to test the protocol’s behavior
under different network setups and to show how and why chosen parameter
settings influence the protocols performance.

In the first section, the parameters and options used and varied will be
listed. Also, the performance measures of interest are discussed. Then,
the findings for the simulated wired networks are presented, followed by the
probably most interesting and realistic case of wireless networks using IEEE
802.11.

5.1 Parameters and Performance Measures

A host using TCP as transport protocol has usually a set of parameters
and options that it can alter or use. Depending on the TCP implementa-
tion/operating system, it may be e.g. possible to use special ack mechanisms
such as SACK, or to use the timestamp option etc. Having additionally on
top of TCP MQTT that allows applications to choose some parameters ac-
cording to their needs (e.g. the QoS) increases the “degrees of freedom”. On
the other hand, you also have the choice between several data link layer and
especially MAC protocols such as Ethernet and IEEE 802.11. Next, OM-
NeT++ provides the necessary means to define the physical layer properties
such as the bandwidth. This shows us that there are basically a lot of param-
eters for different OSI layers that can be set to appropriate values. Hence, it
is important to first specify which options the simulator provides and which

33

34 CHAPTER 5. MQTT PERFORMANCE ANALYSIS

of them will be used. Each of the following subsections discusses one layer
and the possible modifiable parameters. The final subsection defines the
performance measures of interest.

5.1.1 MQTT Parameters

The most interesting parameter from a MQTT application point of view is the
QoS which can take one of three possible values: 0 (at most once semantics),
1 (at least once semantics) and 2 (exactly once semantics). The additional
messages involved in QoS greater than 0, i.e. the acknowledgments at MQTT
layer and the potential retransmissions after timeouts will cause extra load
and influence thereby the performance of the system.

Since the MQTT protocol does not restrict the payload size of PUBLISH
messages, an application is free to choose the amount of data to be published
(note that the topic name is also counted as payload from the point of view
of a MQTT application). This parameter again directly affects the data laod
produced on layers beneath and on the system.

Moreover, a publisher may choose freely at which rate it wants to send
out data. Regardless of the fact that there is no limit on the payload amount
published, we should rather consider increasing the sending rate than the
payload size since this will more likely correspond to publish/subscribe and
sensor networks infrastructures. Considering for instance the case of a sensor
reporting the current temperature of a location, the data would consist of
only a few bytes.

Not only the sending rate, but also the arrival distribution of PUBLISH
messages is of interest. Two very typical scenarios would be to have sensors
that send whenever an event occurs (e.g. a sensor measuring the tempera-
ture detects a change), which could be modeled with a poisson distribution
(exponentially distributed interarrival times). On the other hand it is also
possible that a sensor reports status at fix points in time, e.g. every ten sec-
onds. This scenario would be modeled with a constant sending rate. We will
concentrate our attention on the poisson distributed arrival process, since
this introduces some variance which may result in more interesting impacts.

Even if it cannot directly be considered as a MQTT parameter, the num-
ber of MQTT clients can obviously also be varied. In sections 5.2 and 5.3
we will first start with a small network and increase the number of clients
afterwards.

Table 5.1 lists the parameters of interest mentioned above.

5.1. PARAMETERS AND PERFORMANCE MEASURES 35

5.1.2 TCP Parameters and Options

Depending on the operating system used, the TCP implementation offers
various options to be tuned to the users need. A setting that has an important
impact on TCP’s performance is the send and receive buffer sizes/window
sizes. Most common OS use send and receive buffers of 16KB or 32KB per
default. The user is subsequently allowed to change this value to his needs.
However, the TCP specification limits the maximum window size to 64KB
(since the window field in the TCP header is limited to 16 bits). Thus, some
implementations provide the window scale option specified in [15], which
allows to scale the window size to higher values. This is achieved by specifying
the scale in an additional option field in the TCP header of a SYN message.
This option is also available in our OMNeT++ TCP implementation.

[15] also suggests an other option to better estimate the round-trip time
RTT of a connection. This timestamp option which consists of three bytes,
is a countermeasure to the fact that many TCP implementations base their
RTT measurements on a sample of only one packet per window. The times-
tamp option proposes the sender to place a timestamp in each data segment
and the receiver to reflect the timestamp in the ACK. The sender can then
more accurately calculate the RTT based on the timestamp.

The default maximum segment size MSS of TCP is 536, which is based
on IP’s default maximum datagram size of 576. Changing this (and accord-
ingly IP’s maximum datagram size) value can affect the loss probability of a
segment. Moreover, for application messages larger than the MSS the frag-
mentation may cause higher end-to-end delays as the application data is split
into different segments.

Unfortunately, an important ACK related option, the so called selective
acknowledgment (SACK) mechanism described in [16] is not supported by
our version of NetBSD (the SACK option was just recently added to the
NetBSD stack). SACKs would inform the sender of data that has been
received as opposed to cumulative ACKs where the sender is only informed
which sequence number the receiver expects next.

Finally, for all simulations, the NewReno TCP version ([18]) was used.
In addition to the fast retransmission algorithm used in TCP Tahoe [19]
(when the sender receives three duplicate ACKs before the timeout expires
the packet is considered as lost and retransmitted), TCP Reno [19] makes
use of the fast recovery algorithm. It prevents the sender to slow start after
executing fast retransmission. Instead, when the third duplicate ACK is re-
ceived, the window threshold size ssthreshold is set to half the last seccussful
congestion window (cwnd) and the cwnd is set to ssthresh + 3 (instead of
1). Each time a duplicate ACK is received the cwnd is “artificially inflated”

36 CHAPTER 5. MQTT PERFORMANCE ANALYSIS

by one and a new segment is transmitted if possible. Once an ACK arrives
that acknowledges new data, the cwnd is set to ssthresh. In the case of
NewReno, fast retransmit and congestion window adaptation are as in Reno,
but the loss recovery mechanism is as in Tahoe. That is, NewReno will not
send the first lost packet alone and wait for its ACK like Reno. Instead it
will continue with the transmission of subsequent packets like Tahoe. This
allows NewReno to recover in some cases from multiple packet losses within
a window (as opposed to Reno).

5.1.3 Data Link Layer Settings

Knowing that we want to test MQTT’s performance under wired and wireless
networks, we need adequate MAC protocols for each type of network. For
a wired setup, we will use Ethernet as it best represents today’s state of
art. Regarding wireless networks, the INET framework (see section 4.2)
provides an implementation of IEEE’s 802.11 MAC layer. Also supported is
the RTS/CTS mechanism that can optionally be enabled or disabled.

5.1.4 Physical Layer Settings

For the physical layer the set of parameters depends on the protocol used at
the layer above. When using Ethernet, we have to choose the bandwidth of
the channel, the delay and the bit error rate. Thanks to the implemented
Gilbert-Elliot channel model, we can also define the error burstiness of the
channel (see section 4.3). Although originally designed to model wireless
channel properties, we can use this model also to introduce error burstiness
in a wired network.

When simulating a wireless network, we have again the choice to set the
bandwidth to our needs. For additional random errors besides collisions,
we will have to use an adapted Gilbert-Elliot model which allows to set the
state holding times, i.e. how long we stay in each (good or bad) state. This
modification will be explained in section 5.3.2.

Actually, we have some more parameters that might be varied, including
the carrier frequency, the path loss coefficient, the transmission power and
the sensitivity of the WLAN cards. Nevertheless, these parameters were set
to reasonable fixed values for all experiments.

Table 5.1 summarizes all the available parameters mentioned in this chap-
ter.

5.1. PARAMETERS AND PERFORMANCE MEASURES 37

5.1.5 Performance Measures

The performance of a protocol can be defined in many ways. But depending
on the simulator used and on the network you would like to simulate, some
things may or may not be possible to be measured. For our needs, we basi-
cally would like to test MQTT’s performance in three dimensions: end-to-end
delay, power consumption and where appropriate effective throughput.

The end-to-end delay measures the time it takes a PUBLISH message sent
by a MQTT publisher to be received by a MQTT subscriber. For this, the
publishing application puts a timestamp in the message in order to allow the
receiving application to calculate by a simple subtraction how long it took the
PUBLISH message to traverse the network. Please note that in OMNeT++
you can make use of a timestamp without increasing the message’s size.

For wireless communication there is an extra measure which should be
considered: power consumption. This measure is very important especially
for small footprint devices such as sensors. In [21] the power consumption
for several components of a Mica2 sensor have been measured. While the
radio consumed 7mA in receiving state, the current consumed when trans-
mitting varied between 4 and 20mA depending on the transmission power
level used. At the same time, the CPU consumed only 8mA when being
active. Other components tested were the EEPROM (6mA for read oper-
ations, 18mA for write operations) or the LED (2mA). This clearly shows
that the power consumed by the radio makes up a very important part of
the overall power consumption of a small device. Since on-going research
aims at integrating MQTT with exactly this kind of “restricted” devices, it
is crucial to have results indicating how good the protocol performs with
respect to this aspect. Now, since we are using virtual networks where no
real wireless communication is involved, it is difficult to measure the power
consumed by a host. Though, it is possible to record other related statistics
that, when interpreted correctly, can give an indication on how power effi-
cient the protocol is. The main idea is to measure the number of transmitted
and received packets and bytes at the MAC layer to have an estimate of
the power consumed. The measurement at packet granularity would indicate
how many times the radio interface switched from idle to active state. At
byte granularity, we get an estimate of how long the radio has been active.
Furthermore, the recorded statistics can be very useful when compared to
the number of sent and received messages and bytes at the application layer.
From this kind of comparison, you can deduce an estimate for the efficiency
of the protocol. For instance, sending out one packet at the MAC layer per
PUBLISH message sent by the application would be acceptable. Having five
packets sent out per PUBLISH message is on the other hand less efficient

38 CHAPTER 5. MQTT PERFORMANCE ANALYSIS

and may be caused by packet losses due to bit errors, retransmissions at e.g.
the TCP layer etc. And since this indicator is not only useful for estimat-
ing the power consumption but also to have an idea of the efficiency of the
system, we will consider this measure also for wired networks. This will also
allow comparisons between running the protocol in a wired and in a wireless
environment. For the rest of this document b-efficiency for the publisher
will refer to the ratio sent bytes at the application versus bytes sent (and
received) at the MAC layer. For the subscriber b-efficiency denotes the ratio
bytes received at the application versus bytes received (and sent) at the MAC
layer. Similarly, we will use the term m-efficiency for the sending/receiving
ratios of application messages to frames at the MAC layer.

The effective throughput on the other hand is defined as the application
data per unit of time that a MQTT publisher was able to transmit. As data
we count the publish topic and the corresponding payload published to that
topic, plus one additional byte for the QoS (for the MQTT protocol layer
has to know with which QoS level the PUBLISH should be delivered).

For all experiments, the convergence detection algorithms provided by
OMNeT++ (see section 3.4) were used and applied to the end-to-end delay. If
no convergence up to 1% accuracy was detected, the simulation was stopped
as soon as each subscriber had received 50000 MQTT messages.

Table 5.1: Simulation Parameters

Protocol/Layer Parameter/Option

MQTT

QoS
Payload Size
Publisher’s Sending Rate
Number of MQTT Clients

TCP

Buffer/Window Sizes
Window Scale Option
Timestamp Option
Maximum Segment Size (MSS)

MAC Layer
Ethernet MAC
IEEE 802.11 MAC

Physical Layer

Bandwidth
Propagation Delay
Error Rate
Error Burstiness

5.2. WIRED NETWORK 39

5.2 Wired Network

Although MQTT is a lightweight protocol mainly for remote sensors and
control devices through low bandwidth communications, it is certainly in-
teresting to see the protocol’s behavior under other conditions, too. Since
MQTT over TCP/IP will certainly behave differently depending on the un-
derlying data link and physical layer properties, it is important to compare
results obtained under different network assumptions. This will allow us to
see how different settings influence MQTT’s behavior and the results may be
considered for future applications of MQTT. Nevertheless, the focus should
be on wireless networks, since they represent the main application area of
MQTT. Moreover, we are particularly interested in lossy links with error
bursts.

5.2.1 Preliminary Observations with a Small Ethernet
Network

In this section we will discuss some basic observations we make when assum-
ing a simple Ethernet network of only two clients besides the broker. This is
certainly not a realistic setup, since in practice you will usually have several
tens or hundreds of clients per broker. However, this will give us a first in-
sight into MQTT’s and TCP’s behavior depending on the paramater values
chosen. It will also serve to choose some default values for certain parameters
which will assure stability of the system.

The MQTT payload length is set to 30B (includes the topic name, the
publish data and 1B for the QoS) and the interarrival time of PUBLISH
messages is exponentially distributed with parameter λ = 5ms (corresponds
to a mean sending rate of 200 messages per second). The MQTT timeout
value for QoS > 0 is set to 10 seconds per default.

Regarding TCP, we set the buffer sizes to the default value of 32*MSS
with MSS equal to 210B. All options mentioned in section 5.1.2 are disabled.

The transmission links have a bandwidth of 100Mb/s and a propagation
delay of 1ms. The probability pBB of the Gilbert-Elliot channel model is set
to 0.1 which corresponds to a 10% probability of staying in the bad state.
This can clearly be considered as a non-bursty error distribution.

Table 5.2 shows some basic numbers regarding the efficiency of MQTT
over TCP/IP for a bit error rate (BER) of 10−5. It is clear that the higher
the QoS level is, the lower the ratio of PUBLISH messages sent to total
number of frames sent (by the publisher) will be. Figure 5.1 illustrates this
property. With QoS 0, the ratio will only significantly drop below 1 when
there are many retransmissions at the TCP layer, which is not the case for

40 CHAPTER 5. MQTT PERFORMANCE ANALYSIS

Table 5.2: Small Ethernet network: Efficiency for different QoS.

QoS 0 QoS 1 QoS 2
Publisher M-Efficiency .99 .49 .25
Publisher B-Efficiency .33 .19 .10
Subscriber M-Efficiency .99 .49 .24
Subscriber B-Efficiency .33 .21 .11

this experiment (the m-efficiency is slightly below 1 because of the initial
TCP and MQTT connection establishment packets, running the simulation
for a longer time would yield a ratio of 1). Increasing the QoS to 1 will
inevitably bring down the ratio to below 50% as the publisher has to send
back a TCP ACK for the received PUBACK. Analogously, with QoS 2 we
will have to send a TCP ACK for both the PUBREC and the PUBCOMP
received, therefore the ratio is supposed to fall below 25%. It is also not
surprising that the b-efficiency (for the publisher this is the ratio of bytes
sent by the application to overall number of bytes sent at the MAC layer,
and for the subscriber analogously for received application bytes and received
bytes at the MAC layer) is much lower with higher QoS.

Figure 5.1: Overhead caused by higher QoS levels.

Doing the same simulations with higher application payload sizes high-
lights further facts. It is reasonable that increasing the payload size will lead
to better b-efficiency. This is due to TCP ACKs and MQTT ACKs (PUB-
REC, PUBREL and PUBCOMP) still having the same size independently of
the size of the PUBLISH messages. Therefore the publisher will experience
a rise in the number of bytes sent that is more significant at the application
layer than it is at the MAC layer. Of course, this is under the assumption
that the increased payload size does not significantly affect the packet loss

5.2. WIRED NETWORK 41

rate and thereby the number of TCP retransmissions. According to the sim-
ulation results, this is clearly the case. An ideal indicator for this measure
is the m-efficiency. If it stays about the same for different payload sizes, we
can deduce that TCP’s behavior was not importantly influenced.

However, the increase of the b-efficiency is not linear to the increase of the
payload size (e.g. for QoS 0 the publisher’s b-efficiency rises by 12% when the
payload is incresed from 100B to 250B, but only by 6% from 250B to 500B).
This is because increasing the payload and thereby also the packet size results
in a higher probability of the packet being lost. This will consequently lead
to more bytes being retransmitted, and thus the increase of the b-efficiency
will be slowed down.

Note also the symmetry between the publisher’s and the subscriber’s m-
and b-efficiency. Taking again a look at figure 5.1 shows that this is not
surprising. Nevertheless, please note that the publisher’s m- and b-efficiency
refer to sent messages or sent bytes ratio, whereas the subscriber’s m- and
b-efficiency measure the received messages or received bytes ratio.

Table 5.3 summarizes the observations explained in this section for a BER
of 10−4.

Table 5.3: Small Ethernet network: Influence of the payload size on the
efficiency.

QoS 0 QoS 1 QoS 2
100B 250B 500B 100B 250B 500B 100B 250B 500B

Publisher M-Efficiency .98 .97 .95 .49 .50 .49 .24 .25 .26
Publisher B-Efficiency .56 .68 .74 .41 .58 .68 .27 .44 .58
Subscriber M-Efficiency .97 .98 .98 .49 .50 .53 .24 .25 .28
Subscriber B-Efficiency .57 .69 .75 .41 .58 .68 .27 .46 .59

5.2.1.1 Effect of Error Correlation

TCP was originally designed for an environment where packets are lost
mostly due to congestion, and therefore the control algorithms embedded
therein act accordingly. When a connection extends over wireless links,
packet losses occur primarily due to channel errors or during handoff. There-
fore, it is important to understand the effect of channel errors. Wireless
channels are known to introduce correlated bursts of errors at the physical
layer ([9], [10]). In this chapter we would like to test MQTT’s behavior over
TCP/IP and Ethernet while having a channel with similar characteristics to
a wireless environment.

42 CHAPTER 5. MQTT PERFORMANCE ANALYSIS

0 10 20 30 40 50

101

102

103

104

105

Simulation Time [sec]

E
nd

−t
o−

E
nd

 D
el

ay
 [m

s]

Error Burstiness with pBB = 0.1

0 10 20 30 40 50

101

102

103

104

105

Simulation Time [sec]

E
nd

−t
o−

E
nd

 D
el

ay
 [s

ec
]

Error Burstiness with pBB = 0.9

Figure 5.2: Impact of the error distribution on the end-to-end delay for a
BER of 10−4, 30B payload and QoS 0.

As a first approach to see the impact of error burstiness on the system’s
performance, we record the end-to-end delay of PUBLISH messages (time it
takes a PUBLISH message to get from the publisher to the subscriber). Let’s
take a simple setup with just 30 bytes of payload published with QoS 0 (the
other parameters are set as in the previous section). Figure 5.2 shows the
recorded statistics for a BER of 10−4. A clear rise of the end-to-end delay can
be detected. More precisely, the mean end-to-end delay increased from 55ms
to over 570ms, hence a difference of an order of magnitude. Note also that
the distribution contains much more variance with high peaks. This makes
clear how deep the impact of the bit error distribution on the performance
can be. Doing the same experiments with higher QoS leads to the same
observation: one order of magnitude increase of the mean end-to-end delay.
The explanation is that back-to-back losses caused by the burstiness of the
channel lead to an exponential increase of TCP’s RTO. This not only implies
higher end-to-end delays, but also more variance.

Observing an effective throughput of around 48Kb/s at the publishing
application unambiguously shows that the performance loss is not due to
congestion of TCP buffers (48Kb/s results from a sending rate of 200 mes-
sages per second with 30 bytes per message).

Considering that with a bit error rate of 10−5 no significant end-to-end
delay increase was observed, it may be interesting to see how the mean end-
to-end delay evolves for a BER in the range between 10−5 and 10−4. Figure
5.3 plots the evolution of the mean end-to-end delay for different MQTT QoS
levels and 30B payload.

The shapes of the curves for QoS 0 and 1 are the same, which is reasonable
as QoS 1 does not delay messages from the point of view of MQTT. QoS
1 does only effect MQTT’s return path, on which an additional message
(PUBACK) is sent. The curve of QoS 2 indicates about 10ms higher mean

5.2. WIRED NETWORK 43

2 4 6 8 10

x 10−5

101

102

103

Bit Error Rate

M
ea

n
E

nd
−t

o−
E

nd
 D

el
ay

 [m
s]

Mean End−to−End Delay Distribution

Figure 5.3: Mean end-to-end delay evolution for different QoS and 30B pay-
load.

end-to-end delays, which is due to the additional protocol steps to ensure
exactly once semantics.

Nevertheless, we will concentrate in the following on the upper “limit” of
a BER of 10−4.

Given the preliminary results from above, we may expect the performance
to be worse when increasing the payload size. For the moment, we will in-
crease the payload size to 65B (i.e. we double more or less the payload size)
and observe the corresponding behavior. Please note that we are just dou-
bling the payload size, not the overall frame size which includes the MQTT,
TCP/IP and Ethernet headers (∼60B overhead). Thus, theoretically the
packet loss probability for a PUBLISH message is increased by “only” 3%
approximately.

Interestingly, by this 35B payload increment we get astonishing results.
Plotting the end-to-end delay of the first 150 simulated seconds basically
reveals a tremendous increase of the mean end-to-end delay for all QoS levels.

The distribution of the end-to-end delay shows that the end-to-end delay
keeps increasing with simulation time advancing. Looking at the tcp socket
send and receive buffers reveals that the publisher’s send buffer is filled up
nearly from the beginning. Hence, the packet losses produced by the error
channel completely break TCP’s throughput which would back pressure the
application. But since the application produces load regardless of the ef-
fective throughput that it experiences, more and more application messages
will be queued up, i.e. once the send buffer is full, following socket send calls
will be blocked. Since TCP assumes that packets get lost because of network

44 CHAPTER 5. MQTT PERFORMANCE ANALYSIS

congestion, the exponential backoff mechanism will be triggered. However,
this is unlikely to help, for the mean channel BER will actually be around
the same in the future.

As a matter of fact, only the publisher’s send buffer will actually be
congested, but not the broker’s one which is dedicated to sending data to the
subscriber. This can be easily explained if we consider that the publisher’s
TCP layer will send at the rate that the advertised window by the broker’s
TCP layer allows it to. Therefore, the broker will receive MQTT messages
at the rate the publisher was restricted to, and hence the sending rate of
the broker towards the subscriber will be lower or equal to the receiving rate
of the broker (which is significantly lower than the publisher’s sending rate
because of the publisher’s congested buffers).

Assuming that we cannot change the properties of the channel, i.e. it is
given that the channel exhibits error correlations in the form of bursty errors,
we would like to find a way to get more promising results. Let’s also assume
that we cannot change the application’s behavior. More precisely, consider a
real life situation where a sensor reports some status information whenever
an event happens, and the events happen at an average rate of 200 events per
second. We would not like to reduce this rate nor the size of the information
data if it can be avoided.

As a first approach, one could suggest to increase the send and receive
buffers either beyond the default values, or even beyond TCP’s maximum
allowable value of 64KB by using the window scale option. But essentially
this will not give better results. The reason why we see bad performance is
not because the application is not provided with large enough buffers, but
because TCP’s throughput decays as a response to overall network properties.
Simulations carried out underline this basic fact.

The simplest solution to a bad performance mainly caused by an error-
prone channel is basically to try reducing the direct effect of bit errors. If
we have a given bit error rate, the packet error rate still can vary depending
on the parameter settings. The packet loss rate depends on the packet sizes
and more specifically, the probability of a packet getting lost (i.e. to contain
a bit error) depends on its size. Therefore, varying TCP’s maximum seg-
ment size MSS can have important effects. We therefore consider reducing
the MSS from 1024B as set by default, to 536 as suggested by [17]. One
should be aware that in most TCP implementations the socket buffer sizes
are declared as multiples of the MSS, thus when varying the MSS it should
not be forgotten to adjust accordingly the buffer sizes.

Table 5.4 shows the mean end-to-end delay distribution for several BER.
It can clearly be seen that the impact of a lower MSS is huge for high BER.
For lower BER, we get approximately the same results. However, comparing

5.2. WIRED NETWORK 45

the efficiency in terms of application bytes sent to bytes sent at the MAC
layer is unnecessary since we know that we have a very bad performance in
the case of a MSS of 1024B.

Table 5.4: Impact of the MSS on the mean and the standard deviation of
the end-to-end delay [ms] for 65B payload and a bursty channel.

BER QoS 0 QoS 1 QoS 2
536B 1024B 536B 1024B 536B 1024B

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.
0 4.0 0 4.0 0 4.0 0 4.0 0 12.0 0 12.0 0

10−6 4.1 1 4.2 1 4.1 1 4.1 1 12.3 1 12.2 1.2
10−5 4.8 4 4.9 4 5.2 6 5.2 6 14.3 9 14.4 10
10−4 150 170 inf inf 159 190 inf inf 750 920 inf inf

Note that the mean end-to-end delay fo QoS 0 and QoS 1 does not differ
much, independent of the BER. However, while for low BER the mean end-
to-end delay for QoS 2 is three times higher than for lower QoS (caused by
the 4-way handshake of QoS 2), with high error rates we have a factor of five
(with a MSS of 536B).

The timestamp option suggested in [15] and supported by the NetBSD
TCP stack is worth to be considered in more detail. The main problem is
that many TCP implementations (including NetBSD) base the RTT mea-
surements on one packet sample per window. Hence, the data sent out with
a certain packet rate is sampled only at the windows rate. Neverteless, a
good RTT estimator with a conservative retransmission timeout calculation
can significantly improve performance. This is especially true when the num-
ber of dropped packets increases. Since Karn’s algorithm prevents the RTT
from being computed on retransmitted segments, at least a window’s worth
of time has to be waited before a new RTT measurement can be computed.

Figure 5.4 shows the impact of activating the timestamp option on the
computed retransmission timeout (RTO) of TCP. The traces were collected
at the publisher. First, we can see that the RTO’s with timestamp option
disabled are much higher than with enabled option. Also, we can detect
a higher sampling rate when the option is on. An interesting fact is that
with higher QoS we get lower RTOs than with QoS 0 when not using the
timestamp option. For QoS 1 this could be explained by the fact that the
PUBACK (in this case sent back by the broker to the publisher) can also
serve as an ACK (piggybacking). If the original TCP ACK was lost (we have
a BER of 10−4) there is still the PUBACK which can act as a TCP ACK. In
the case of QoS 2 we also have this effect, but additionally the publisher (in
this case) has to send PUBRELs, which are smaller than PUBLISH messages

46 CHAPTER 5. MQTT PERFORMANCE ANALYSIS

0 10 20 30 40 50

102

103

104

Simulation Time [sec]

C
om

pu
te

d
R

et
ra

ns
m

is
si

on
 T

im
eo

ut
 [m

s]

QoS 0

Without Timestamp
With Timestamp

0 10 20 30 40 50

102

103

104

Simulation Time [sec]

C
om

pu
te

d
R

et
ra

ns
m

is
si

on
 T

im
eo

ut
 [m

s]

QoS 1

Without Timestamp
With Timestamp

0 10 20 30 40 50

102

103

104

Simulation Time [sec]

C
om

pu
te

d
R

et
ra

ns
m

is
si

on
 T

im
eo

ut
 [m

s]

QoS 2

Without Timestamp
With Timestamp

Figure 5.4: Computed TCP RTO with and without timestamp option for
65B of payload and BER = 10−4.

(depending on the payload) and hence have a bigger chance to get through.
Please note that NetBSD’s TCP implementation contains a parameter

which, for algorithmic stability, sets the minimal allowable retransmission
timeout (TCPTV MIN). This value is set to 1 second per default. However,
this has been proven to be bad for networks with bandwidths higher than
a modem. Thus, in FreeBSD’s TCP implementation the default value was
corrected to 30ms, which is also the value we have chosen (and can be seen
in figure 5.4).

Based on the results in this section, we will use a MSS of 536B and enable
the timestamp option if not specified explicitly.

5.2.2 Several Publishers and Subscribers

After shortly having discussed the main issues and options, in this section
the results of simulations carried out for a network of 20 MQTT clients, half
of them being publishers and the other half subscribers, are discussed. To
introduce some variance, different kinds of publishers and subscribers are
present. Basically, we subdivide the publishers into three sets of similar
size. Those publishing to let’s say topic X, another set of publishers sending
data to topic Y and a third group informing the subscribers about topic Z.
Analogously, we have three different sets of subscribers: some subscribers
being subscribed to all topics, i.e. to topics X, Y and Z, others receiving
PUBLISHes to two of the three topics and finally a group of subscribers only
being subscribed to one topic. Among other things we would like to see if
and how the number of subscribed topics influences the performance. The
data rate (100Mb/s) and the propagation delay (1ms) are kept.

Since Ethernet provides a high data rate, the focus will be on high pub-
lisher sending rates of 40 messages per second and per publisher. The down-
side is that we are restricted to small payloads, since otherwise TCP’s buffers
will not be able to handle the load. We will see in section 5.3.4 that in a

5.2. WIRED NETWORK 47

0 0.1 0.25 0.5 0.75 1
4

4.5

5

5.5

6

6.5

BER [x 10−4]

M
ea

n
E

nd
−t

o−
E

nd
 D

el
ay

 [m
s]

QoS 0

0 0.1 0.25 0.5 0.75 1
4

4.5

5

5.5

6

6.5

7

BER [x 10−4]

M
ea

n
E

nd
−t

o−
E

nd
 D

el
ay

 [m
s]

QoS 1

0 0.1 0.25 0.5 0.75 1
12

13

14

15

16

17

BER [x 10−4]

M
ea

n
E

nd
−t

o−
E

nd
 D

el
ay

 [m
s]

QoS 2

50B
200B

50B
200B

50B
200B

Figure 5.5: Mean end-to-end delay for pBB = 0.1.

wireless network the sending rate will have to be reduced to low values, and
hence we will investigate on large payload sizes there.

The preliminary results from the previous section have shown that for
small payload sizes, a BER below 10−5 does not significantly influence the
performance measures. This makes perfectly sense since having e.g. 100B
MQTT payload will result in Ethernet frames of around 175B including the
MQTT, TCP/IP and Ethernet headers. For such a frame the probability to
contain a bit error is only around 1%, hence very small. On the other hand,
if we increase the BER up to 10−3, on average each frame containing 100B
MQTT payload will be lost. So the interesting BER range for small sized
MQTT messages is between 10−5 and 10−4 and thus, we will use BERs in
this range for the following simulations.

It can be debated what a small size for a MQTT messages is. How-
ever, considering a MSS of 536B and that we expect the MQTT clients to
be small footprint devices, payload sizes up to 200B may be a reasonable
assumption. Also, the additional bytes added through the headers of each
layer will significantly increase the packet size.

End-to-End Delay

Figure 5.5 summarizes the mean end-to-end delays obtained for a mean bad
state sojourn time of one bit duration (i.e. pBB = 0.1, see section 4.3). No
interesting observations can be made, as the effect of the BER is negligible.
Moreover, the influence of the payload size does not affect the results, neither.
QoS 0 and 1 basically show the same statistical values. Only QoS 2 shows
some bias due to the MQTT 4-way handshake which delays the MQTT
PUBLISH messages by a factor of three.

Considering a PUBLISH message with 50B payload and 75B headers,
with a BER of 10−4 we expect a 10% packet loss rate for those kind of
messages. The figures indicate how insensitive TCP is to these values, on
average the delay increases by only 3ms when introducing a BER of 10−4.

48 CHAPTER 5. MQTT PERFORMANCE ANALYSIS

0 0.1 0.25 0.5 0.75 1
100

101

102

103

BER [x 10−4]

M
ea

n
E

nd
−t

o−
E

nd
 D

el
ay

 [m
s]

QoS 0

50B
100B
150B
200B

0 0.1 0.25 0.5 0.75 1
100

101

102

103

BER [x 10−4]

M
ea

n
E

nd
−t

o−
E

nd
 D

el
ay

 [m
s]

QoS 1

50B
100B
150B
200B

0 0.1 0.25 0.5 0.75 1
101

102

103

104

BER [x 10−4]

M
ea

n
E

nd
−t

o−
E

nd
 D

el
ay

 [m
s]

QoS 2

50B
100B
150B
200B

Figure 5.6: Mean end-to-end delay for pBB = 0.8.

As stated above, we would like to see the effect of lossy links with bursty
error characteristics (as it is the case in wireless communications). Hence,
by increasing the pBB probability of the Gilbert-Elliot model we get higher
error burst lengths. When we increase the bad state sojourn time to 5 bit
durations (pBB = 0.8), we actually should expect to see different results.
This is shown in figure 5.6. The end-to-end delay is now very sensitive to
both, the BER and the payload size. Again, we mostly see a match of QoS
0 and 1, while QoS 2 is a case for itself. To better see how the values evolve
table 5.5 indicates the mean and standard deviation of the end-to-end delays
for 50 and 200B.

Table 5.5: Mean and standard deviation of the end-to-end delay [ms] for
pBB = 0.8.

BER QoS 0 QoS 1 QoS 2
50B 200B 50B 200B 50B 200B

Mean Std. Mean Std. Mean Std. Mean Std. Mean Std. Mean Std.
0 4 0 4 0 4 0 4 0 12 0 12 0

10−5 5 4 6 7 5 4 6 7 14 7 15 9
10−4 25 46 485 400 27 43 574 412 59 67 2000 1000

It is clearly shown that the effect of both the BER and the payload
size is very significant. However, we have taken the averages over all sub-
scribers. Looking at the figures and the table mentioned above, it looks like
the back-to-back losses introduced through the error burstiness and the re-
sulting exponentially increasing TCP RTO’s have led to congested buffers.
But actually we don’t have congestion between the broker and the publish-
ers, but between the broker and some subscribers. It is worth noting that
we have ten publishers sending 40 messages per second each. Assuming a
client subscribed to all available topics, it will be served by the broker with
400 messages per socond. We saw in figure 5.5 that with low burstiness this

5.2. WIRED NETWORK 49

does not cause any problems, but now that we have introduced longer error
bursts, we see the effects especially when increasing the payload size or the
BER.

In figure 5.7 we compare the end-to-end distribution of three different
subscribers: one is subscribed to all topics, one to two and another only
to one topic. Obviously the number of topics plays an important role with
regard to the end-to-end delay. This is due to fact that depending on the
number of subscribed topics, the broker will have to send different amounts
of data to a subscriber. For the client subscribed to only one topic (right
plot in figure 5.7) this will lead to a lower mean arrival rate of PUBLISH
messages as for the other two subscribers. Hence, if the number of subscribed
topics and the sending rates of the publishers result in too high amounts of
data to be transmitted by the broker to the client, the congested buffers will
be responsible for poor performance. The end-to-end delay distribution for
the client subscribed to all topics also points out the burstiness of the link.
We will see in the next section if the number of subscribed topics also affects
the efficiency.

0 5 10 15 20

102

103

104

105

Simulation Time [sec]

E
nd

−t
o−

E
nd

 D
el

ay
 [s

ec
]

Client Subscribed to 2 Topics

0 5 10 15 20

102

103

104

105

Simulation Time [sec]

E
nd

−t
o−

E
nd

 D
el

ay
 [s

ec
]

Client Subscribed to 1 Topic

0 5 10 15 20

102

103

104

105

Simulation Time [sec]

E
nd

−t
o−

E
nd

 D
el

ay
 [m

s]

Client Subscribed to All (3) Topics

Figure 5.7: Mean end-to-end delay distribution for pBB = 0.8, 10−4 and
200B payload. Comparison between different kinds of subscribers.

Efficiency

In this section the efficiency of MQTT is addressed. Tables 5.6 and 5.7 con-
tain the relevant data for pBB = 0.1. For the given payload sizes we observe
the same facts as in the previous section for the end-to-end delay: the BER
hardly changes the efficiency. The system is in a quite stable state, both
from the point of view of the end-to-end delay but also with regard to the
efficiency. The S and R ratios for QoS 0 and 200B payload are especially
informative. We only loose 3% of b-efficiency when a BER of 10−4 is intro-
duced. The higher the QoS, the lower is the effect of the BER on the m- and
b-efficiency. This is due to the fact that errors will affect also smaller sized
messages such as PUBACKs, PUBRECs etc. Loosing such messages is more

50 CHAPTER 5. MQTT PERFORMANCE ANALYSIS

favorable for the efficiency as compared to loosing PUBLISH messages. We
can actually conclude that if the error burst length is low, BER in the tested
range don’t significantly affect the performance.

Table 5.6: Efficiency for 50B payload and pBB = 0.1. Pub denotes the pub-
lisher, Sub the subscriber, S the ratio of application bytes sent to bytes sent
at the MAC layer, R analogously for received bytes. For the publisher Tp

refers to the ratio application bytes sent to overall bytes sent and received
at the MAC layer, for the subscriber analogously with application bytes re-
ceived (Ts).Additionally, we have included the ratios with respect to messages
instead of bytes (Sm, Rm, Tpm and Tsm).

BER QoS 0 QoS 1 QoS 2
Pub Sub Pub Sub Pub Sub

S Tp R Ts S Tp R Ts S Tp R Ts

0 .41 .26 .41 .26 .26 .15 .26 .15 .15 .08 .15 .08
10−4 .4 .26 .4 .26 .26 .15 .26 .15 .15 .08 .15 .08

Sm Tpm Rm Tsm Sm Tpm Rm Tsm Sm Tpm Rm Tsm

0 .99 .49 .99 .49 .5 .25 .5 .25 .25 .13 .25 .12
10−4 .98 .5 .98 .5 .5 .25 .5 .25 .25 .12 .25 .12

Table 5.7: Efficiency for 200B payload and pBB = 0.1.

BER QoS 0 QoS 1 QoS 2
Pub Sub Pub Sub Pub Sub

S Tp R Ts S Tp R Ts S Tp R Ts

0 .73 .58 .73 .58 .58 .41 .58 .41 .41 .26 .41 .26
10−4 .7 .56 .7 .56 .56 .4 .56 .4 .4 .25 .4 .25

Sm Tpm Rm Tsm Sm Tpm Rm Tsm Sm Tpm Rm Tsm

0 1 .5 1 .5 .5 .25 .5 .25 .25 .13 .25 .13
10−4 .96 .48 .95 .48 .49 .25 .49 .25 .25 .13 .25 .12

We have seen that the results for a bad state sojourn time of one bit
duration reveals a rather stable state of the system, introducing longer error
bursts produces the results represented in tables 5.8 and 5.9. Considering
a payload size of 50B, it is clearly shown that the efficiency decreases. For
QoS 0 we get around 5% lower S and Sm ratios. It is worth noting that
the Tp and Ts values experience a lower decrease than the corresponding S
and R values. For the publisher this is because messages that it sends out
are on average larger than the messages it receives (for QoS 0 it receives
only TCP ACKs). Thus, on average the packets that it transmits have a
higher loss probability than packets sent to it by the broker. This implies

5.2. WIRED NETWORK 51

that the publisher will have to retransmit more often and larger packets than
the broker. The total number of bytes received is hence less affected by the
effects of the error burstiness than it is the case for the total number of bytes
sent. For the subscriber, analogously, the packets sent by the broker will
experience a higher loss probability than the packets the subscriber sends
itself.

For QoS 2 the effect of back-to-back losses is negligible. This again is due
to the small MQTT ACK messages that lower the impact of lost packets.
This is partially also true for QoS 1.

Table 5.8: Efficiency for 50B payload, pBB = 0.8 and BER = 10−4.

QoS 0 QoS 1 QoS 2
Pub Sub Pub Sub Pub Sub

S Tp R Ts S Tp R Ts S Tp R Ts

.36 .24 .34 .24 .22 .13 .21 .13 .14 .08 .14 .08

Sm Tpm Rm Tsm Sm Tpm Rm Tsm Sm Tpm Rm Tsm

.92 .48 .98 .51 .44 .22 .46 .23 .24 .12 .25 .12

In the previous section it was shown that not only the BER but also
the payload size significantly affect the end-to-end delay when the channel
is bursty. As we can see from table 5.9 this is also the case for the mea-
sured efficiency. This time also the Tp and Ts ratios experience a significant
downstream, due to the fact that PUBLISH messages are bigger and have a
higher loss probability. Retransmissions will result in more data having to
be retransmitted than it is the case with 50B payload. For instance for the
publisher, the number of outgoing bytes will affect the Tp ratio much stronger
than it is the case with lower payload sizes.

Impressive is again the robustness of higher QoS levels, especially of
QoS 2. While the T-ratios only differ by 3% from the measured values with
pBB = 0.1, the m-efficiency only differs by 1%.

Table 5.9: Efficiency for 200B payload, pBB = 0.8 and BER = 10−4.

QoS 0 QoS 1 QoS 2
Pub Sub Pub Sub Pub Sub

S Tp R Ts S Tp R Ts S Tp R Ts

.56 .47 .52 .44 .48 .36 .47 .35 .36 .23 .34 .23

Sm Tpm Rm Tsm Sm Tpm Rm Tsm Sm Tpm Rm Tsm

.83 .44 .9 .49 .46 .23 .52 .26 .24 .12 .26 .13

According to the results obtained for the end-to-end delay the number of

52 CHAPTER 5. MQTT PERFORMANCE ANALYSIS

subscribed topics and the resulting arrival rate of messages have a significant
effect on the performance. The recorded statistics allow us to see if this is
also true for the efficiency. The results are summarized in tables 5.10 and
5.11. To avoid overfilling the tables, only the more important b-efficiency is
considered.

Table 5.10 serves just as a sanity check (and as a benchmark for the
comparison with pBB = 0.8). The “type” of subscriber does not affect the
efficiency. Hence for any subscriber, the efficiency it experiences is equal to
the efficiency averaged over all subscribers.

If we increase the error burst length (see table 5.11) it shows that in such
a setup, different subscribers experience different performances. But actually
what was already stated earlier on, still holds: the higher the QoS level is
the minor is the performance gain of subscribing to less topics. If we look at
QoS 0, we see that for small payload sizes different subscribers see the same
performance. However, with a payload of 200B subscriber groups S2 and S3

suffer an efficiency drop. The reason why we see worse efficiency of these
groups is not directly obvious, though. We can argue that higher sending
rates from the broker to these subscribers because of the higher number
of interesting PUBLISHes can result in loaded TCP buffers. This would
justify that end-to-end delays increase. Nevertheless, this does not directly
justify that also the efficiency increases, since the ratio of application bytes
received to bytes received (and sent) at the MAC layer is not directly affected
by congested buffers. If we look at the number of bytes received and sent
(instead of looking at the ratios R and Ts) we can actually conclude why
we see this artifact. The recorded values reveal that, for a given amount of
application bytes received, the more topics the client is subscribed to, the
higher is the number of bytes received and the slightly lower the number of
bytes sent at the MAC layer. The higher number of MAC bytes received is
an indication that there are more retransmissions. And this can only be due
to the fact that TCP packets are larger and therefore have a higher error
probability, i.e. the packet error rate has increased. Why packets are larger
in size can be explained by the fact that the higher number of subscribed
topics fills the send buffers at the broker. And since there is data in the
buffer waiting to be sent, TCP segments will be filled with more data (up to
MSS). Thanks to OMNeT’s powerful GUI this was easily verified, since you
can inspect the size of each packet in the network.

On the other hand, the decreased number of MAC bytes sent is actually
due to the same reason: since there are more bytes contained in a TCP
segment, the subscribers can acknowledge more data at once, i.e. they have
to send less TCP ACKs.

The fact that this feature is clearly less observable with higher QoS levels

5.2. WIRED NETWORK 53

needs further discussion. Comparing again the raw number of bytes received
and sent at the MAC layer shows that the difference between different sub-
scribers diminishes in the sense that the number of bytes received is nearly
equal and the same holds for the nunmber of bytes sent. This is most prob-
ably due to the additional MQTT ACKs and the corresponding TCP ACKs
that will sum up to the bytes sent and received by the subscribers. This
amount of additional bytes will actually be the same for all subscribers, since
each subscriber will have to send a MQTT ACK for each MQTT message
that it wants to acknowledge and similarly the broker will send the corre-
sponding TCP ACK for each such MQTT ACK received by a subscriber.
And the higher the QoS, the more MQTT ACKs and corresponding TCP
ACKs we will have.

Table 5.10: B-Efficiency comparison of different subscribers, pBB = 0.1. S1

denotes the average over all clients being subscribed to only one topic, S2

the average over subscribers to two topics and S3 accordingly for subscribers
to all three topics.

BER QoS 0 QoS 1 QoS 2
R Ts R Ts R Ts

50B 200B 50B 200B 50B 200B 50B 200B 50B 200B 50B 200B

0
S1 .41 .73 .26 .58 .26 .58 .15 .41 .15 .41 .08 .26
S2 .41 .73 .26 .58 .26 .58 .15 .41 .15 .41 .08 .26
S3 .4 .73 .26 .58 .26 .58 .15 .41 .15 .4 .08 .25

10−4
S1 .41 .7 .26 .56 .26 .56 .15 .4 .15 .41 .08 .26
S2 .4 .7 .26 .56 .26 .56 .14 .4 .15 .4 .08 .25
S3 .4 .7 .26 .55 .25 .56 .15 .4 .15 .4 .08 .25

Table 5.11: B-Efficiency comparison of different subscribers, pBB = 0.8,
BER = 10−4.

QoS 0 QoS 1 QoS 2
R Ts R Ts R Ts

50B 200B 50B 200B 50B 200B 50B 200B 50B 200B 50B 200B
S1 .35 .55 .24 .47 .22 .49 .14 .36 .14 .35 .08 .24
S2 .34 .51 .24 .43 .21 .47 .14 .35 .14 .35 .08 .22
S3 .34 .48 .24 .4 .20 .46 .13 .34 .14 .34 .08 .22

54 CHAPTER 5. MQTT PERFORMANCE ANALYSIS

5.3 Wireless Network

In this chapter we will focus on MQTT’s performance in a wireless environ-
ment. More specifically, the most recent INET-framework version (INET-
20050720) for OMNeT++ includes modules to simulate IEEE 802.11 net-
works.

5.3.1 Introduction

In IEEE 802.11, in addition to MQTT’s and TCP’s ACKs, we also have
ACKs at the MAC layer. This leads to a more complex behavior than in an
Ethernet network. Furthermore, in a wireless environment, there are more
error sources than in a wired network. Bit errors and packet losses will not
only occur because of random error sources and collisions, but also because
of signal strength weakening over distance and fading. OMNeT’s INET-
framework allows to set some parameters that influence these characteristics.
In the following paragraphs we specify the chosen values.

Path attenuation refers to RF power loss due to e.g. link path obstructions
and link distance. It is usually expressed in dB. In the following simulations
the path loss coefficient is set to 3dB. We also assume that the area over
which the MQTT hosts are distributed, is composed of 100m · 100m. The
broker is placed within the area such that it is within transmission range of
all clients and vice versa.

How strong a received signal is also depends on the sender’s transmission
power. A reasonable value of 2mW (3dB) was chosen, with the receivers’
sensitivity set to -100dB.

Moreover, for each host we define a threshold for the signal-to-noise ratio
(SNR). When a signal is received and the SNR is beneath this threshold, the
frame is considered to be corrupted and will be lost. This threshold was set
to 4dB.

OMNeT++ also allows to set the thermal noise, which is noise generated
by the thermal agitation of electrons in a conductor. For completeness this
value was set to -110dB (which is nearly negligible).

Finally, the carrier frequency was fixed to 2.4GHz, which corresponds to
a IEEE 802.11b WLAN.

5.3.2 Adapted Gilbert-Elliot Model

Due to OMNeT++’s internal functionality, it does not allow the use of the
developed Gilbert-Elliot model (see section 4.3) in a wireless network. How-
ever, the INET-framework includes a modified Gilbert-Elliot model which

5.3. WIRELESS NETWORK 55

behaves similarly. It basically has two parameters: meanGood and mean-
Bad. These correspond to the time spent in each state before a transition to
the other state, hence they represent the mean state sojourn times.

Figure 5.8: Gilbert Channel Model

The main difference to the Gilbert-Elliot model is actually that the mean
error probabilities for each state are fixed such that when you are in the
good state, no errors occur, when you are in the bad state the packet error
probability is uniformly distributed with a bad state packet error probability
of 0.5. The transition probabilities are also fixed in the sense that the proba-
bility to stay in a state after the state sojourn time has ellapsed is zero, thus
we change state everytime the state holding time (meanGood, meanBad)
indicates to do so. This is a simplified version of the Gilbert-Elliot model
and corresponds to the Gilbert model ([11]), but still allows us to introduce
bursty errors. However, it clearly has deficiencies. First, because of the fixed
per state error and transition probabilities, and secondly because the burst
length will basically depend on the data rate used. Still, up to a certain point
it allows for simulating wireless channel characteristics.

Figure 5.9: Difference between the Gilbert and the Gilbert-Elliot channel
models.

In the following simulations, we will fix the ratio meanBad/meanGood
to 10%, i.e. around 10% of the time the channel is in the bad state. This
will allow for the rest of this document to only indicate the chosen meanBad
value, the meanGood parameter can then easily be computed.

56 CHAPTER 5. MQTT PERFORMANCE ANALYSIS

5.3.3 Small IEEE 802.11 Network

We first would like to consider again a simple network of just two clients in
addition to the broker. The bandwidth of the channel is set 2Mb/s and the
RTS/CTS mechanism ([20]) is enabled.

As a preliminary step, an adequate sending rate for the publisher should
be found. Please note that we reduced the bandwidth of the channel from
100Mb/s in the Ethernet network to 2Mb/s. But, also we should consider
that we now have acknowledgments at the MAC layer in addition to the
already existing acknowledgment procedures in TCP and MQTT. Moreover,
when RTS/CTS is enabled, we have additional messages sent by the 802.11
MAC layer, which should lead to less collisions.

Looking at the end-to-end delay for meanBad values in the range of 0
to 60 ms and a small payload size of 30B shows that the impact of varying
the sending rate is significant. Especially for QoS 2 we see a high variance
between different sending rates. E.g. decreasing the mean interarrival time
from 50 to 40ms increases the mean end-to-end delay by at least 2 orders of
magnitude for higher sojourn times in the bad state of the channel model.
Based on these observations, we choose a temporary sending rate of 25 mes-
sages/second.

We now would like to see the impact of data load on the performance of
MQTT from the point of view of the end-to-end delay and especially with
regard to the b-efficiency.

The focus will be on the mechanisms that actually produce more data
load on the network. There are several features at different protocol levels
that should be considered. On the MQTT level, we can clearly identify the
MQTT payload size as one of the factors contributing to the data load. Also,
we expect different QoS levels to be unequally efficient since they produce
different amounts of MQTT control messages.

At the 802.11 MAC layer, the amount of data sent/received also depends
on the fact that the RTS/CTS mechanism is enabled or not. Enabling this
collision avoidance mechanism leads in general to an increased amount of
data sent and received. But on the other hand it is supposed to lead to less
collisions and hence to less retransmissions.

Table 5.12 shows the recorded values for a MQTT payload size of 200B.
The results are similar for smaller sized payloads (simulations were performed
for 30B up to 200B of payload). With regard to the mean end-to-end delay,
a very obvious observation is made. Since we have only a few hosts (ex-
actly 3 of them) sharing the same medium, collisions are quite unlikely to
happen. Hence, the delay introduced by first sending a RTS message and
secondly waiting for the corresponding CTS from the peer before sending

5.3. WIRELESS NETWORK 57

the data frame, clearly affects the end-to-end delay. The higher the QoS,
the more significant this impact is since there are more overall packets sent
(please note that any MQTT message will trigger the sending of many other
packets including RTS/CTS frames, MAC layer ACKs, TCP ACKs and even-
tually MQTT ACKs). And more (MQTT and TCP) messages sent implies
more performed RTS/CTS procedures. This also explains why for a disabled
RTS/CTS mechanism the mean end-to-end delay for QoS 2 is around three
to four times higher than for lower QoS levels whereas with RTS/CTS the
ratio is clearly higher (say five to six).

Table 5.12: End-to-end delay [ms] with and without RTS/CTS with 200B
payload. mB denotes the mean sojourn time in the bad state (= meanBad
parameter).

mB [ms] RTS/CTS QoS 0 QoS 1 QoS 2
Mean Std. Mean Std. Mean Std.

0

Enabled

6 2 11 5 49 35
20 10 31 14 28 71 80
40 11 35 16 31 90 160
60 12 26 18 35 95 162

0

Disabled

5 1 7 3 23 11
20 7 22 10 36 28 21
40 8 31 10 30 30 31
60 6 28 9 31 35 43

We can also observe how the evolution for different mB (mean bad state
sojourn time) differs depending on the usage of RTS/CTS. Having this option
disabled leads to minor increases in the end-to-end delay. Making usage of the
RTS/CTS procedure instead lets the end-to-end delay nearly double when
having a 60ms state holding time in the bad state, as compared to having
no additional errors (mB = 0). This is in fact again caused by the increased
number of steps involved in delivering a MQTT message over TCP and 802.11
from sender to receiver, for then it is more probable that a step has to be
reexecuted because of a loss. Hence, it shows that in this setup it clearly
does not pay off to use the RTS/CTS machanism, as it leads to significantly
increased end-to-end delays because of the additional message flows.

Probably more interesting than the mean end-to-end delay is the efficiency
in terms of bytes sent and received by the MQTT clients. Again we will
discuss the results for 200B payload, but the observations made also apply
for smaller sized payloads (see figure 5.10). At first, it is interesting to see
that the ratios calculated don’t differ much for different mean bad state so-
journ times (that’s why in table 5.13 only the statistics for two mB values

58 CHAPTER 5. MQTT PERFORMANCE ANALYSIS

are included). On average they differ by 2 or 3%. It may primarily sound
contradictory to the results obtained for the end-to-end delay. There, we
actually experienced quite large variances of the performance for different
mB values, especially for higher QoS levels. However, this can be explained
as follows. First of all we know that for higher mB values the performance
decreases because of retransmissions at any layer (mainly on TCP and on
the MAC layer). Then, the end-to-end delay for a retransmitted packet will
mainly depend on the chosen retransmission timeout. But, since retranmit-
ted packets will encouter the same mean error probability, the probability
that a retransmission is lost is non-negligible. The retransmission timeout
will then increase exponentially and significantly affect the end-to-end delay.
On the other hand, the retransmitted bytes will only add linearly to the
b-efficiency ratios, hence the efficiency is less sensitive to retransmissions.

The table also reveals that for a given mB and QoS level with RTS/CTS
enabled or disabled, the total amount of bytes sent and received by a client
is independent of the client being a publisher or a subscriber, i.e. Tp and Ts

(see the table) are equal for a given set of parameters. This indicates that
the clients are in transmission range of each other, because then every packet
sent by one client is received by the other, and assuming that both clients are
in trasmission range of the broker, they both will receive the brokers data.
Moreover, assuming that each PUBLISH message sent by the publisher will
be delivered to the subscriber (TCP should take care of this), the number
of application bytes sent by the publisher equals the number of application
bytes received by the subscriber. Hence, Tp and Ts are equal.

Table 5.13: B-Efficiency with and without RTS/CTS with 200B payload.
Pub denotes the publisher, Sub the subscriber, S the ratio of application
bytes sent to bytes sent at the MAC layer, R analogously for received bytes.
For the publisher Tp refers to the ratio application bytes sent to overall bytes
sent and received at the MAC layer, for the subscriber analogously with
application bytes received (Ts).

mB [ms] RTS/CTS QoS 0 QoS 1 QoS 2
Pub Sub Pub Sub Pub Sub

S Tp R Ts S Tp R Ts S Tp R Ts

0
Enabled

.59 .21 .25 .21 .42 .13 .16 .13 .28 .08 .1 .08
60 .56 .2 .23 .2 .4 .13 .16 .13 .27 .08 .1 .08

0
Disabled

.66 .25 .28 .25 .49 .16 .2 .16 .35 .1 .13 .1
60 .6 .22 .25 .22 .44 .15 .17 .16 .32 .09 .12 .09

It should now also be clear, why the S ratio is always higher than the
R ratio. Again, this is because of the subscriber receiving everything that

5.3. WIRELESS NETWORK 59

0 50 100 150 200
0

5

10

15

20

Payload Size [B]

A
pp

l.
by

te
s/

M
A

C
 b

yt
es

 s
en

t a
nd

 re
ce

iv
ed

 [%
]

T−Efficiency

0 50 100 150 200
0

10

20

30

40

50

60

Payload Size [B]

A
pp

l.
by

te
s/

M
A

C
 b

yt
es

 s
en

t a
nd

 re
ce

iv
ed

 [%
]

S−Efficiency

0 50 100 150 200
0

5

10

15

20

25

Payload Size [B]

A
pp

l.
by

te
s/

M
A

C
 b

yt
es

 s
en

t a
nd

 re
ce

iv
ed

 [%
]

R−Efficiency

QoS 0

QoS 1

QoS 2

QoS 0

QoS 1

QoS 2

QoS 0

QoS 1

QoS 2

Figure 5.10: B-Efficiency for 60ms mean bad state sojourn time and enabled
RTS/CTS. T-Efficiency refers to the ratio averaged over Tp and Ts, S- and
R-Efficiency denote the S and R ratios.

the publisher sends (to the broker) in addition to the data received from the
broker (be it data sent to the publisher or to the subscriber itself). It is
nevertheless impressive to see already with QoS 0 that while for the pub-
lisher more than every second byte sent out is MQTT application data, for
the subscriber at most every fourth byte received will be delivered to the
application. And the higher the QoS, the lower these ratios are, both for
the publisher and for the subscriber. Also, disabling the RTS/CTS mech-
anism will not help much, on average we will only see a 5% enhancement.
Therefore we can actually state that the RTS/CTS mechanism has rather
an impact on the measured end-to-end delays than on the efficiency ratios
(power consumption).

With regard to the Tp and Ts respectively, we see that the lower the QoS
level, the bigger is the difference of the values between enabled and disabled
RTS/CTS mechanism. The reduced number of bytes sent and received is
self-explanatory, it corresponds to the RTS/CTS frames that are not sent
nor received. Hence, in this setup some power is saved by disabling the
RTS/CTS procedure with QoS < 2.

Figure 5.10 summarizes the observations made. It clearly shows that the
shape of the different b-efficiency measures is the same for all QoS, what
differs is the scale.

5.3.4 Several Publishers and Subscribers

From the observations in the previous section it becomes clear that the fact
that clients are in transmission range of each other or not has a clear impact
on the performance measures. In the following experiments the clients are
randomly distributed over the test area, some of them being in transmission
range of each other and some not. In a real life situation it may be possible

60 CHAPTER 5. MQTT PERFORMANCE ANALYSIS

to place the clients at adequate positions to reduce the interference, but this
scenario will not be subject of the following simulations.

The network setup is similar to the one in section 5.2.2, i.e. we have 10
MQTT publishers and 10 MQTT subscribers subdivided into the same kinds
of sets.

Since we have more hosts sharing the medium, it is sensible to increase
the bandwidth to 11Mb/s, which corresponds to a 802.11b network. Simi-
larly, the test area has been expanded to 150m · 150m, again because of the
increased number of hosts. This implies that the average distance between
hosts increases and hence, also the transmission power has been adapted to
6mW (∼8dB).

Preliminary tests have shown that already for sending rates of 10 messages
per second (100ms mean interarrival time) per publisher the system becomes
very unstable in the sense that the end-to-end delays rise to tens of seconds
and buffers congest. It has to be kept in mind that having 10 publishers
sending at such a rate will unevitably lead to an overall sending rate of 100
messages per second. This was discovered to be to high already in the setup
of the previous section, where we only considered two clients, a publisher and
a subscriber. Hence, we will focus on a sending rate of just one message per
second and per publisher. It should however be considered that this will all
the same lead to a highly enough used medium, since all the control messages
of different OSI layers, i.e. RTS/CTS and ACKs at the 802.11 MAC, TCP
and MQTT layer, will add to the PUBLISH messages sent.

5.3.4.1 RTS/CTS Enabled

We first consider that the RTS/CTS mechanism is turned on by every MQTT
host. Since the sending rate has been reduced, we can effort to increase the
payload sizes and vary them between 200 and 1000B (and we still have a
TCP MSS of 536B).

End-to-End Delay

In the following mean end-to-end delay refers to the mean averaged over all
clients. We first concentrate on QoS 0 and 1 before discussing the results
for QoS 2. The results show that in general increasing the bad state holding
time of the Gilbert model and thereby increasing the error burstiness of the
channel is not significant for lower application payload sizes. This was also
observed in the small network of the previous section. For QoS 0 we actually
have a rather smooth evolution of the mean end-to-end delay for different
bad state sojourn times and a fixed paylaod size. Only in the case of 1000B

5.3. WIRELESS NETWORK 61

payload we notice a strong impact of the error burstiness. For QoS 1 we
actually see the impact of the burstiness once the payload size goes beyond
the MSS.

Increasing the payload over the MSS threshold leads clearly to an increase
of the mean end-to-end delay as TCP will fragment the payload and hence the
fragments of the MQTT PUBLISH message may arrive delayed. However,
also for higher payload sizes we have a low variation of the delay for QoS 0
(except for the case mentioned above), only the measured delay when having
no additional errors differs significantly. Thus, we have a kind of robustness
against error burstiness with QoS 0. This is interesting to compare with
the results we obtained in section 5.3.3 (see table 5.12) where we actually
experienced a doubling of the delay when increasing the bad state holding
time from 0 to 60. This discrepancy basically has two reasons. On one hand
it is caused by the fact that we have reduced the sending rate. On the other
hand the increased number of clients and the resulting contention periods
and collisions may reduce the impact of additional random packet losses.

Interestingly, QoS 1 seems to be more sensitive to error burstiness when hav-
ing big payload sizes. Moreover, the scale of the mean end-to-end delay is
completely different, we have values around 100% greater than the corre-
sponding values for QoS 0. This increase cannot be explained by MQTT’s
operation, as the additional PUBACKs in the return paths do not directly
delay the PUBLISH messages to be delivered to the subscribers’ applications.
However, it can be explained by the consequences of the additional MQTT
PUBACK messages, namely the loading of the medium by the PUBACKs
and all the resulting messages (RTS/CTS, 802.11 ACKs, TCP ACKs and
potential retransmissions). In fact, the broker will send a PUBACK for each
PUBLISH received from any of the ten publishers, and the ten subscribers
will do the same when receiving data from the broker. This will obviously
lead to contentions and/or collisions. If we compare these results with the
observations made with Ethernet networks, it shows that a wireless envi-
ronment is much more sensitive to additional message traffic, hence we get
significant differences of the performance between QoS 0 and 1, whereas with
Ethernet this was not the case.

62 CHAPTER 5. MQTT PERFORMANCE ANALYSIS

200 400 600 800 1000

0
40

80
120

0

50

100

150

200

Payload Size [B]

QoS 0

Bad State Sojourn Time [ms]

M
ea

n
E

nd
−t

o−
E

nd
 D

el
ay

 [m
s]

200 400 600 800 1000

0
40

80
120

0

100

200

300

400

Payload Size [B]

QoS 1

Bad State Sojourn Time [ms]

M
ea

n
E

nd
−t

o−
E

nd
 D

el
ay

 [m
s]

Figure 5.11: Mean end-to-end delay evolution for QoS 0 and 1. RTS/CTS
enabled.

The most curious results were obtained for QoS 2. As figure 5.12 shows
we have tremendous mean end-to-end values in the range of several seconds.
It is actually difficult to interpret the results, because there seems to be
quite a lot of randomness. Nonetheless, we should take these results as an
indication that QoS 2 can lead to unstableness and poor performance as
compared to lower QoS levels. Moreover, it introduces a lot of variance that
makes it impossible to estimate the performance. It should also be kept in
mind that we get such bad results with low sending rates of one message per
second and per publisher, and that we have a simplified network of “only” 20
clients. Experimenting with a network of 100 clients or more would probably
completely break the system, i.e. the effective end-to-end delay would be
enormous.

200
400

600
800

1000

0
40

80
120

0

2

4

6

8

10

Payload Size [B]

QoS 2

Bad State Sojourn Time [ms]

M
ea

n
E

nd
−t

o−
E

nd
 D

el
ay

 [s
]

Figure 5.12: Mean end-to-end delay evolution for QoS 2. RTS/CTS enabled.

It was mentioned at the beginning of this section that we would also like to
compare the end-to-end delay distributions of different types of subscribers,
i.e. clients that are subscribed to different numbers of topics. Nevertheless,
comparing the obtained distributions don’t show any particularly interesting
behavior. We would actually expect the distributions to be different when

5.3. WIRELESS NETWORK 63

0 10 20 30 40 50

102

104

106

Simulation Time [sec]

E
nd

−t
o−

E
nd

 D
el

ay
 [m

s]

End−to−End Delay Distribution for 200B

0 10 20 30 40 50

102

104

106

Simulation Time [sec]
E

nd
−t

o−
E

nd
 D

el
ay

 [s
ec

]

End−to−End Delay Distribution for 1000B

Figure 5.13: End-to-end delay distribution with QoS 0. 200 and 1000B.

the higher number of subscribed topics would result in congestions of TCP
windows. But since the contentions and collisions affect all messages equally
and the publishers send at a low rate, there shouldn’t be any special effect
when being subscribed to more topics.

But what certainly should be compared is the distribution of the end-to-
end delay for low and large payload sizes with respect to the MSS. Figure
5.13 compares the distribution for payload sizes of 200 and 800B, QoS 0 and
a mean bad state holding time of 120ms for a client subscribed to all topics.
We observe that actually the peaks reach up to the same values with 200 and
800B. But, looking at the bottom line of the plot reveals that there is a larger
“base” end-to-end delay for 800B messages. Furthermore, the frequence of
the peaks is higher with larger payload size, i.e. with 200B peaks are more
sporadic.

In figure 5.14 we observe that with QoS 2 there are bursty peaks already
with 200B (e.g. during the period between 20 and 30 simulated seconds).
Looking at the distribution for 800B, we actually don’t have anymore peaks,
we rather have constantly high values. We clearly see the drawback of big
payload sizes when using QoS 2, and also with lower QoS levels the network
is very sensitive to the payload size.

64 CHAPTER 5. MQTT PERFORMANCE ANALYSIS

0 10 20 30 40 50

102

103

104

105

106

Simulation Time [sec]

E
nd

−t
o−

E
nd

 D
el

ay
 [m

s]

End−to−End Delay Distribution for 200B

0 10 20 30 40 50
102

103

104

105

106

Simulation Time [sec]

E
nd

−t
o−

E
nd

 D
el

ay
 [s

ec
]

End−to−End Delay Distribution for 1000B

Figure 5.14: End-to-end delay distribution with QoS 2. 200 and 1000B.

Since we have seen that the impact of the payload size is huge and we
argue that it depends on the MSS, we should consider increasing the MSS
to a value beyond the biggest payload size used. Hence, we now will discuss
the results for a MSS of 1024B, which is a common value used in most
implementations.

Figures 5.15 and 5.16 show clearly that by increasing the MSS the mean
end-to-end delay was significantly reduced for payload sizes larger than the
old MSS. Moreover, for smaller payload sizes we get similar results as with a
MSS of 536B. Therefore it seems that although larger packets have a bigger
chance to get lost with respect to the random errors introduced, we get much
better results if TCP can avoid fragmenting the payload.

However, we again experience a high variance when having QoS 2. More-
over, there are no huge mean end-to-end delay values anymore, but still we
get significantly larger values than with lower QoS levels due to the nature
of QoS 2 (4-way handshake).

5.3. WIRELESS NETWORK 65

0 200 400 600 800 1000

04080120

10

20

30

40

50

60

Payload Size [B]

QoS 0

Bad State Sojourn Time [ms]

M
ea

n
E

nd
−t

o−
E

nd
 D

el
ay

 [m
s]

0 200 400 600 800 1000
04080120

20

40

60

80

100

Payload Size [B]

QoS 1

Bad State Sojourn Time [ms]

M
ea

n
E

nd
−t

o−
E

nd
 D

el
ay

 [m
s]

Figure 5.15: Mean end-to-end delay evolution for QoS 0 and 1 with 1024B
MSS. RTS/CTS enabled.

200 400 600 800 1000

0
40

80
120

0.1

0.2

0.3

0.4

0.5

Payload Size [B]

QoS 2

Bad State Sojourn Time [ms]

M
ea

n
E

nd
−t

o−
E

nd
 D

el
ay

 [s
]

Figure 5.16: Mean end-to-end delay evolution for QoS 2 with 1024B MSS.
RTS/CTS enabled.

Efficiency

After having analyzed the measured end-to-end delays, in this section the
focus will be on the (power-)efficiency. Statistics were collected over all pub-
lishers on one hand, and over all subscribers on the other hand.

If we first take a look at table 5.14 it seems that introducing bursty errors
via the Gilbert model does only have an impact on the S and Sm ratios, all
the other values are approximately the same for different mean bad sojourn
times (mB). We can also imagine why the other ratios remain the same. The
number of bytes and frames received by any host, both frames addressed to
the receiving host or not (it will receive both and detect on the MAC layer
if it is the destination) clearly dominates over the frames sent by a host.
That is the reason why e.g. the S and the Tp measures differ by two orders of
magnitude. In the case of a network of only 2 clients the Tp ratio was clearly
higher because the publisher only received redundant frames from 2 hosts,

66 CHAPTER 5. MQTT PERFORMANCE ANALYSIS

Table 5.14: Efficiency for 200B payload. mB, S, R, Tp and Ts are defined
as in table 5.13. Additionally, we have included the ratios with respect to
messages instead of bytes (Sm, Rm, Tpm and Tsm).

mB [ms] QoS 0 QoS 1 QoS 2
Pub Sub Pub Sub Pub Sub

S Tp R Ts S Tp R Ts S Tp R Ts

0 .58 .005 .03 .04 .41 .003 .024 .023 .26 .002 .014 .013
120 .49 .005 .03 .03 .38 .003 .023 .022 .24 .002 .014 .013

Sm Tpm Rm Tsm Sm Tpm Rm Tsm Sm Tpm Rm Tsm

0 .24 .002 .01 .01 .12 .0008 .005 .005 .06 .0004 .003 .003
120 .18 .001 .009 .009 .1 .0007 .005 .005 .06 .0004 .003 .003

Table 5.15: Efficiency for 1000B payload.

mB [ms] QoS 0 QoS 1 QoS 2
Pub Sub Pub Sub Pub Sub

S Tp R Ts S Tp R Ts S Tp R Ts

0 .74 .008 .06 .05 .66 .006 .05 .05 .57 .005 .04 .03
120 .67 .007 .05 .05 .63 .006 .04 .04 .54 .005 .03 .03

Sm Tpm Rm Tsm Sm Tpm Rm Tsm Sm Tpm Rm Tsm

0 .11 .0007 .005 .005 .08 .0005 .004 .003 .05 .0003 .002 .002
120 .09 .0006 .004 .004 .07 .0004 .003 .002 .04 .0003 .002 .002

the broker and the other client. In this setup there are 19 other clients, some
of them being in transmission range and hence everything sent by them will
be received. In addition, every client will receive everything that the broker
sends, since the network setup was chosen in such a way. Hence, if there are
20 clients talking to the broker, every client will receive the redundant data
sent by the broker to any of the other clients.

Moreover, the measured ratios at message granularity (Sm, Rm, Tpm and
Tsm) are much smaller than the corresponding byte ratios. This could indi-
cate that there are a lot of small frames received by a host. Small frames
may be RTS/CTS and MAC layer ACKs frames. Hence, the radio interface
is “active” a significant amount of time to receive small control frames, and
most of them are not even being addressed to the host itself.

With 1000B payload, we experience the same robustness against errors
and their burstiness as with smaller payload sizes. If we remember that the
mean end-to-end delays were significantly influenced by the additional bursty
errors, this is quite astonishing. We can again observe that additional packet
losses due to random errors introduced impact the end-to-end delay, but not
very much the efficiency or wastefulness of the protocol.

5.3. WIRELESS NETWORK 67

In addition, the byte count ratios are eminently higher with 1000B pay-
load. Some of them, e.g. the S ratio for QoS 2 are twice as high. However,
the price to pay is an increased number of radio interface switches. But this
is clearly due to the overstepping of the MSS. Since TCP will fragment the
1000B payload into two packets, the number of frames sent and received will
be higher. And thus, we actually have around 50% lower m-efficiency ratios
with 1000B than with 200B. This is clearly improved when increasing the
MSS over 1000B, as table 5.16 shows.

Table 5.16: Efficiency for 1000B payload with 1024B TCP MSS.

mB [ms] QoS 0 QoS 1 QoS 2
Pub Sub Pub Sub Pub Sub

S Tp R Ts S Tp R Ts S Tp R Ts

0 .86 .01 .07 .07 .76 .008 .06 .06 .62 .006 .04 .04
120 .78 .008 .06 .06 .7 .007 .05 .05 .59 .006 .04 .04

Sm Tpm Rm Tsm Sm Tpm Rm Tsm Sm Tpm Rm Tsm

0 .24 .002 .01 .01 .12 .0008 .006 .005 .06 .0004 .003 .003
120 .19 .001 .009 .008 .1 .0006 .005 .005 .06 .0004 .003 .003

When comparing the ratios between different QoS levels, we notice a
pretty linear evolution of the values. While we noticed a high variance intro-
duced by QoS 2 when discussing the mean end-to-end, this is not true for the
efficiency. A reason might be that the end-to-end delay is highly sensitive to
contention periods caused by the additional MQTT control messages. How-
ever, the efficiency only depends on the transmission/reception of a frame,
not on the time it was delayed because of a busy medium.

5.3.4.2 RTS/CTS Disabled

In this section, the results obtained when disabling the RTS/CTS mechanism
are shortly discussed and compared with the results of the previous section.
As already mentioned previously, the main benefit of using the RTS/CTS
mechanism is when terminals are “hidden” from each other, i.e. they are
not in transmission range of each other, but there is a terminal (in our case
the broker) which both can hear. When having hosts distributed randomly
over the test area, comparisons between results obtained with and without
RTS/CTS can potentially vary a lot depending on the positioning of the
hosts. Since simulations have been carried out with randomly positioned
hosts with respect to the broker, the results are of course specific to that
setup. Therefore, this section should rather serve to give an idea of how
small or big the difference can be between using and not using RTS/CTS for
given MQTT and TCP parameters.

68 CHAPTER 5. MQTT PERFORMANCE ANALYSIS

End-to-End Delay

Table 5.17 gives an impression of how strong the impact of disabling RTS/CTS
can be with regard to the end-to-end delay in a random setup. To have a
better overview, only the results for the smallest and largest payload sizes
have been included.

Clearly, we see a better performance when disabling the RTS/CTS mech-
anism for all mB values and both payload sizes. We observed this already
in the network with only two MQTT clients in transmission range of each
other. In general it seems that without RTS/CTS we have more stability in
several dimensions. First, if we look at the variance introduced by the error
burstiness factor mB, the table shows much higher proportional increases
with RTS/CTS. Secondly, in the dimension of the payload size, it can be
identified that in both cases the impact of having payloads bigger than TCP’s
MSS is high. However, it has a deeper effect when enabling RTS/CTS. Third,
when increasing the QoS level, we again experience a bigger performance loss
with RTS/CTS. So, in summary we cannot find any advantage of using the
RTS/CTS mechanism in a network with our parameter settings.

Table 5.17: Mean end-to-end delay [ms] with and without RTS/CTS with
200B and 1000B payload.

mB [ms] RTS/CTS QoS 0 QoS 1 QoS 2
200B 1000B 200B 1000B 200B 1000B

0

Enabled

13 45 24 82 124 290
40 26 117 45 200 230 > 1s
80 30 130 50 270 330 > 1s
120 30 200 57 400 260 > 1s

0

Disabled

8 23 12 29 49 100
40 11 36 17 54 76 770
80 11 44 20 62 84 > 1s
120 11 42 22 75 86 > 1s

Nevertheless, there is a property that the fact of not using the RTS/CTS
mechanism did not solve. With QoS 2 we still have the unstableness when
using big payload sizes and having additional errors. We get high variance
and mean end-to-end delays in the range of several seconds. This seems to
be an artifact that is difficult to avoid.

In section 5.3.4.1 we determined that also when having a high enough
TCP MSS, i.e. 1024B, we still noticed the high variance of QoS 2 with high
payload sizes when varying the mean bad state sojourn time. Table 5.18
compares the measured statistics for 1000B payload and according to the

5.3. WIRELESS NETWORK 69

usage of the RTS/CTS option with the MSS set to 1024B. Again, it shows
that with RTS/CTS the error burstiness affects the measured mean end-to-
end delay much more than it is the case when the option is disabled.

Table 5.18: Mean and standard deviation of the end-to-end delay [ms] with
and without RTS/CTS with 1000B payload and 1024B MSS.

mB [ms] RTS/CTS QoS 0 QoS 1 QoS 2
Mean Std. Mean Std. Mean Std.

0

Enabled

18 11 32 26 150 110
40 34 37 58 69 450 365
80 36 45 92 138 450 410
120 52 84 90 135 280 274
0

Disabled

15 6 18 10 62 35
40 17 11 29 35 100 83
80 17 13 26 20 112 94
120 19 18 27 26 170 225

Efficiency

Finally, we will shortly discuss the results for the efficiency of the protocol
without the usage of RTS/CTS frames. Tables 5.19 to 5.21 contain all the
gathered statistics.

As in the case with RTS/CTS, we notice a fairly constant behavior when
increasing the error burstiness. Comparing the results for no additional errors
and 120ms mean bad state sojourn time evidently points out that except for
the S ratio, no other measure differs by more than 1%. Therefore, according
to the results and our power consumption estimates, we cannot conclude that
having larger error burst lengths leads to significantly higher wastefulness of
MQTT. On average, a single publisher will actually experience more TCP
or MAC layer retransmissions when having longer error bursts, however the
total amount of time where the radio interface is not idle, including trans-
mission and receiving periods, is fairly constant. This again implies that
the overall time spent in the receiving state is much longer than the overall
time spent transmitting. Looking up the raw data recorded with OMNeT++
shows that for a publisher on average only 8 out of 1000 bytes are transmitted
bytes, the rest of the data was received.

What actually interests more is the comparison with the results obtained
with enabled RTS/CTS option. Comparing the S and Sm ratios makes clear
that sending RTS/CTS frames will actually have an impact on the number

70 CHAPTER 5. MQTT PERFORMANCE ANALYSIS

of times the radio switches state. This can be seen by the Sm value that is
twice as high with disabled RTS/CTS for all QoS levels. Nonetheless, the S
ratio is only 5% higher since RTS/CTS frames are small in size.

It is worth noting that in general it can be detected that the impact
of error burstiness on the publisher is bigger with disabled RTS/CTS. E.g.
comparing the S ratio for 1000B payload and QoS 1 shows only a 3% decrease
with RTS/CTS enabled when the mean bad state sojourn time is changed
from 0 to 120ms. But, in the absence of the RTS/CTS mechanism the
publisher will experience a 15% decrease. However, it seems difficult to
explain this behavior. A possible explanation may be that by using RTS/CTS
frames, a significant part of the frames sent are exactly frames of that type.
Then, an error burst may lead to the loss of RTS/CTS frames and their
retransmissions. And since RTS/CTS frames are small as compared to data
frames, loosing them instead of data frames will not have a deep impact on
the number of MAC layer bytes sent. In the absence of RTS/CTS frames,
errors and especially error bursts will affect data frames (or ACKs) and their
retransmissions. So, the probability that the errors will affect frames of bigger
size (namely data frames) is actually bigger.

5.3. WIRELESS NETWORK 71

Table 5.19: Efficiency without RTS/CTS and 200B payload.

mB [ms] QoS 0 QoS 1 QoS 2
Pub Sub Pub Sub Pub Sub

S Tp R Ts S Tp R Ts S Tp R Ts

0 .64 .006 .04 .04 .48 .004 .03 .03 .31 .002 .02 .02
120 .54 .005 .03 .03 .39 .003 .02 .02 .27 .002 .01 .01

Sm Tpm Rm Tsm Sm Tpm Rm Tsm Sm Tpm Rm Tsm

0 .47 .003 .02 .02 .24 .002 .01 .01 .12 .0008 .006 .005
120 .4 .003 .02 .02 .2 .001 .009 .008 .1 .0006 .005 .005

Table 5.20: Efficiency without RTS/CTS and 1000B payload.

mB [ms] QoS 0 QoS 1 QoS 2
Pub Sub Pub Sub Pub Sub

S Tp R Ts S Tp R Ts S Tp R Ts

0 .79 .009 .06 .06 .73 .008 .05 .05 .6 .006 .04 .04
120 .63 .007 .05 .04 .58 .006 .04 .04 .5 .004 .03 .03

Sm Tpm Rm Tsm Sm Tpm Rm Tsm Sm Tpm Rm Tsm

0 .23 .001 .01 .01 .16 .001 .007 .007 .09 .0006 .005 .004
120 .19 .001 .008 .008 .12 .0007 .005 .005 .08 .0005 .003 .003

Table 5.21: Efficiency without RTS/CTS, 1000B payload and 1024B MSS.

mB [ms] QoS 0 QoS 1 QoS 2
Pub Sub Pub Sub Pub Sub

S Tp R Ts S Tp R Ts S Tp R Ts

0 89 .01 .07 .07 .79 .09 .06 .06 .66 .007 .05 .05
120 .7 .008 .06 .06 .65 .007 .05 .05 .51 .005 .04 .03

Sm Tpm Rm Tsm Sm Tpm Rm Tsm Sm Tpm Rm Tsm

0 .47 .003 .02 .02 .24 .002 .01 .01 .1 .0008 .006 .005
120 .38 .002 .02 .02 .2 .001 .009 .009 .1 .0006 .004 .004

72 CHAPTER 5. MQTT PERFORMANCE ANALYSIS

Chapter 6

Conclusion and Future Work

This chapter is split into two sections: one for the conclusion about the
discrete event simulator OMNeT++, and the other for the MQTT protocol
itself.

OMNeT++ as a Simulation Tool

OMNeT++ is definitely worth to be considered a powerful simulation sys-
tem that can keep up with other popular simulation tools. Its clear structure,
modular design and debugging capabilities are big advantages over other com-
mercial and non-commercial simulators. Moreover, its strong GUI support
makes it one-of-a-kind. With regard to the performance aspect, it seems
that this represents a big challenge for most popular simulators, and OM-
NeT++ is no exception. On the other hand, we face a lack of models and
especially the problem of not enough validated models. This is the reason
why in the context of this thesis a TCP and a wireless channel model were
integrated into the simulator. But considering that the OMNeT++ commu-
nity is continuously expanding, it is just a matter of time when more stable
and complete simulation models will increasingly satisfy the users needs.

MQTT Performance

In this thesis several performance measures and several factors affecting these
measures have been looked at. Of particular interest were the end-to-end
delay and the (power-) efficiency of MQTT. Parameters on several layers
(MQTT, TCP, MAC including Ethernet and IEEE 802.11 and physical layer)
were varied and the resulting performance observed.

On the basis of a small Ethernet network it was shown how significantly
TCP’s MSS, the timestamp option and the error correlation of the physical

73

74 CHAPTER 6. CONCLUSION AND FUTURE WORK

link affect the measured performance (especially the end-to-end delay). Also,
it was demonstrated how higher QoS decrease the efficiency because of the
additional MQTT ACK control messages.

The transition to an Ethernet network with 20 MQTT clients revealed
that when having non-bursty errors we don’t experience significant changes
of the performance measures when varying parameters such as the bit error
rate (BER). However, introducing burstiness makes clear how important the
BER and the payload size are for the resulting performance. QoS 2 seems
to be a paradoxical case where the end-to-end delay is very sensitive to the
values of the parameters mentioned above whereas the efficiency stays rather
constant. It was also shown how the performance for different subscribers
varies depending on the number of topics the clients are subscribed to.

The main focus was however on wireless IEEE 802.11 networks. This com-
pletely changes the observed performance since not only we have significantly
higher probabilities of collisions and contention periods, but also we have
MAC layer acknowledgments. The Gilbert channel model was used to sim-
ulate wireless links and the effect of the usage of the RTS/CTS option was
tested.

For the network setups tested, much more variance of the end-to-end delay
was observed than in Ethernet networks. Also, the measured performance
differences between the available QoS levels was eminently higher. In general,
the wireless setup proved to be much more sensitive to the parameter settings.
With regard to the RTS/CTS mechanism, it was shown that disabling this
option led to significantly better performance.

Future Work

This project was a first step towards evaluating MQTT’s performance under
several network assumptions by means of the OMNeT++ simulator. Clearly,
testing MQTT under all possible parameter combinations was out of the
scope of this work, only a subset of the potential setups has been focused on.
For future tests (possibly with OMNeT++ and the MQTT and TCP models
developed) there are however critical points that should be addressed.

One evident aspect is the network size. In practice, MQTT is used with
several hundred clients per broker, and this should also be considered in
the simulations. Especially in wireless networks the number of clients plays
a crucial role when measuring the performance of the protocol. Neverthe-
less, OMNeT++ does not seem to be able to simulate such networks with
reasonable performance when using adequate publisher sending rates.

In addition, more tests with different sending rates and distributions

75

would be senseful, as these are important parameters, too.
To simulate wireless channels, the Gilbert model shipped with the INET

framework is clearly not sufficient. Another enhanced model should be de-
veloped in order to allow for specifying more accurately wireless channel
characteristics.

The INET framework also provides some support to simulate mobile net-
works, i.e. it is possible to have moving hosts. It would be interesting to test
MQTT in mobile networks where sensors change position over time. How-
ever, this has been identified to lead to more events to be handled by the
simulation kernel and therefore the performance of the simulator degrades
significantly.

76 CHAPTER 6. CONCLUSION AND FUTURE WORK

Bibliography

[1] WebSphere MQ Telemetry Transport.
http://publib.boulder.ibm.com/infocenter/wbihelp/index.jsp?topic=
/com.ibm.etools.mft.doc/ac10840 .htm

[2] A. Varga. OMNeT++, http://www.omnetpp.org.

[3] K. Entacher, B. Hechenleitner, S. Wegenkittl. A simple OMNeT++
queueing experiment using parallel streams. PARALLEL
NUMERICS’02 - Theory and Applications, pages 89–105, 2002.

[4] P. Hellekalek. Don’t trust parallel Monte Carlo. ACM SIGSIM Simula-
tion Digest, 28(1):82–89, July 1998.

[5] Makoto Matsumoto and Takuji Nishimura. Mersenne Twister: A 623-
dimensionally equidistributed uniform pseudorandom number generator.
ACM Transactions on Modeling and Computer Simulation, 8(1):3–30,
1998.

[6] Jeroen Idserda. TCP/IP modeling in OMNeT++. B-Assignment, Uni-
versity of Twente, the Netherlands, July 2004.

[7] NetBSD, http://www.netbsd.org.

[8] Roland Bless and Mark Doll. Integration of the FreeBSD TCP/IP-Stack
into the Discrete Event Simulator OMNeT++. Proc. of the 2004 Winter
Simulation Conference.

[9] Andreas Willig, Martin Kubisch, Christian Hoene, and Adam Wolisz.
Measurements of a Wireless Link in an Industrial Environment using an
IEEE 802.11-Compliant Physical Layer. IEEE Transactions on Indus-
trial Electronics, 2001.

77

78 BIBLIOGRAPHY

[10] David Eckhard and Peter Steenkiste. Measurement and analysis of the
error characteristics of an in-building wireless network. In Proc. of ACM
SIGCOMM’96 Conference, pages 243-254, Stanford University, Califor-
nia, August 1996.

[11] E. N. Gilbert. Capacity of a burst-noise channel. Bell Systems Technical
Journal, 39:1253-1265, September 1960.

[12] E. O. Elliot. Estimates of error rates for codes on burst-noise channels.
Bell Systems Technical Journal, 42:1977-1997, September 1963.

[13] Almudena Konrad, Ben Y. Zhao, Anthony D. Joseph, Reiner Ludwig. A
Markov-Based Channel Model Algorithm for Wireless Networks. Wire-
less Networks 9, 189-199, 2003.

[14] David D. Clark. Window and Acknowledgment Strategy in TCP. RFC
813, July 1982.

[15] V. Jacobson, R. Braden, D. Borman. TCP Extensions for High Perfor-
mance. RFC 1323, May 1992.

[16] M. Mathis, J. Mahdavi, S. Floyd, A. Romanow. TCP Selective Acknowl-
edgment Options. RFC 2018, October 1996.

[17] J. Postel. TCP Maximum Segment Size and Related Topics. RFC 879,
November 1983.

[18] S. Floyd, T. Henderson. The NewReno Modification to TCP’s Fast Re-
covery Algorithm. RFC 2582, April 1999.

[19] Kevin Fall and Sally Floyd. Simulation-based Comparisons of Tahoe,
Reno, and SACK TCP. Laurence Berkeley National Laboratory.

[20] Wireless LAN Medium Access Control (MAC) and Physical Layer
(PHY) Specification. ANSI/IEEE Std 802.11, 1999 Edition (R2003).

[21] Victor Shnayder, Mark Hempstead, Bor-rong Chen, Geoff Werner Allen,
and Matt Welsh. Simulating the Power Consumption of a Large-Scale
Sensor Network. Harvard University.

	Introduction
	WebSphere Message Queue Telemetry Transport Protocol
	Introduction
	Protocol Specification
	MQTT Message Format
	MQTT Command Messages

	The Discrete Event Simulation System OMNeT++
	Introduction
	Modeling Concept
	Basic Parts of an OMNeT++ Model
	Interesting Features
	Comparison with Other Simulators

	Protocols and Models Implemented for OMNeT++
	MQTT Implementation
	Integration of a TCP Stack
	Integration of the NetBSD TCP Stack
	Validation with Real TCP

	Wireless Channel Model

	MQTT Performance Analysis
	Parameters and Performance Measures
	MQTT Parameters
	TCP Parameters and Options
	Data Link Layer Settings
	Physical Layer Settings
	Performance Measures

	Wired Network
	Preliminary Observations with a Small Ethernet Network
	Several Publishers and Subscribers

	Wireless Network
	Introduction
	Adapted Gilbert-Elliot Model
	Small IEEE 802.11 Network
	Several Publishers and Subscribers

	Conclusion and Future Work

