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Abstract

We apply a simple queuing-experiment using parallel streams of random
numbers to exhibit shortcomings of the OMNeT++ random number genera-
tor. As an improvement we implement more modern generators.

1 Introduction

OMNeT++ [20] is an object-oriented discrete event simulation system based on
C++. It is primarily designed to simulate computer networks, multi-processors
and other distributed systems. The basic development of OMNeT++ began at the
Technical University of Budapest (BME) in 1992. Currently, OMNeT++ is be-
ing used by dozens of universities and companies as a research tool, for validating
hardware and protocol designs, and for performance evaluations. OMNeT++ is a
non-commercial, open-source project. It is easy to integrate new components or
alter current implementations of components within its object-oriented architec-
ture. OMNeT++ has been extended to support parallel stochastic discrete event
simulation. Several synchronization mechanisms can be used. One suitable syn-
chronization mechanism is the statistical synchronization, for which OMNeT++
provides explicit support. Further details on this issue can be found in the OM-
NeT++ on-line manual [20].

In the present paper we apply a simple queuing-experiment using parallel streams
of random numbers to exhibit important shortcomings of the OMNeT++ random
number generator (RNG). As an improvement we implement more modern RNGs,
one of them supports well tested parallel streams. The following two sections con-
tain a description and the properties of these RNGs. The simulation experiments
and the corresponding results are described in Sections 4 and 5.
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2 OMNeT++ Random Number Generator

OMNeT++ implements the well-known “minimal standard” generator, which was
originally suggested for the IBM System/360 by Lewis, Goodman and Miller in
1969 [15]. It was examined in more detail in Park and Miller [19] and further on
in several other studies on random number generation. We will denote this RNG
as ran0 .

This generator is a multiplicative linear congruential type [6, 8, 10, 11, 18]
which produces pseudorandom integers via the recursion

xn
� a � xn � 1

�
mod m ��� n � 1 � (1)

with multiplier a � 75 � 16807, modulus m � 231 	 1 � 2147483647, and seed
1 
 x0 � m. The period length of this recursion equals p � m 	 1. Uniform pseu-
dorandom numbers in � 0 � 1 � are derived by transformation un � xn 
 m, non-uniform
distributions by different transformation methods [3].

This particular generator has widely been used and actual implementations are
available from the Internet. See [1, 6, 8, 10, 11, 12, 13, 14, 19] for references, em-
pirical tests and implementations in free and commercial software. The following
online resources contain related material: Resampling Stats (www.resample.com),
Numerical Recipes (www.nr.com), the mathematical software MATLAB (www.
mathworks.com), the IMSL Libraries, or the simulation software ACSL (www.
acslsim.com), SIMAN/Arena, Slam II, AweSim (www.pritsker.com) and the
network simulation software ns-2 (www.isi.edu/nsnam/).

A first problem of ran0 is the period length p � 231 	 2 which is far too short
for actual simulations, especially when several parallel streams of random numbers
are applied.

The standard OMNeT++ implementation provides 32 RNG objects, each stream
with an initial seed x0 � 1 by default. The user is asked to previously initialize the
streams with certain seeds, otherwise equal random number streams will be gener-
ated from each object.

One has to be very careful when manually seeding parallel streams. For exam-
ple, using the seeds xi � 0 � i, i � 1 � 2 ������� k would result in the following k random
number streams which are heavily correlated

xi � n � an � xi � 0 �
mod m � n � 0 � 1 
 i 
 k � (2)

These correlations can easily be shown from the vectors
�
xn : � �

x1 � n � x2 � n ��������� x j � n � � an � � 1 � 2 ��������� j � �
mod m ��� j 
 k � n � 0 � (3)

Since an �
mod m ��� n � 1 cycles all numbers in � 1 � 2 ������� m 	 1 � , the vectors above

are contained in the set � n � � 1 � 2 ��������� j � �
mod m � : 1 
 n 
 m 	 1 � . Therefore the
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Figure 1: Correlations between two and three different streams of random numbers
generated by the OMNeT++ RNG.

normalized vectors
�
un : � �

xn 
 m � n � 1 are situated in a lattice structure in the unit
square � 0 � 1 � 2 consisting of a few lines only, see Fig. 1.

In the following section we will show that such correlations can result in com-
pletely biased results even in simple OMNeT++ simulation examples.

Unfortunately not only simple seeding procedures produce strongly correlated
streams of random numbers. There are many possible seed combinations where the
corresponding streams are heavily correlated. Further examples are seeds x i � 0 � k � i,
i � 1, k � Z, or all combinations of seeds consisting of very small numbers.

If special seeds are used, so that the full period of the RNG is divided into large
blocks, and if each of these blocks will be used as a single stream of random num-
bers,then strong correlations will appear as well. This property is well known as
long-range correlations1 of linear random numbers, see [2, 4, 5] and the references
given there. As an example, Seed Set 4 in Table 1 divides the period p into 5 large
blocks.

The quality of linear random number generators and their parallelization has
theoretically and empirically been studied in detail. For an overview and references
see the surveys contained in [6, 7, 11, 12, 18].

1The term long-range correlations may be slightly misleading since it also appears in the theory
of stochastic processes. In our context it refers to a geometric property of linear random number
generators.
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3 Modern Generators

A modern object-oriented RNG which supports well-tested parallel streams of ran-
dom numbers was implemented by L’Ecuyer et al. [13]. The source-code of this
RNG can easily be included in OMNeT++ simulations. The provided C++ files,
which implement the class RngStream, have to be included in the same directory
where all the other files for the simulations are contained. For our simulations, the
RNG objects were invoked by the generator objects. Therefore when executing
the OMNeT++ scripts opp makemake -f and make in the simulation directory, the
RNG is compiled together with all the other simulation components. As exponen-
tially distributed random numbers were needed, but the offered RNG package does
not provide them, a respective function had to be added to the class RngStream. In
the following sections, this RNG is denoted as RandU01 .

The Mersenne Twister (MT ) [16] is another up-to-date random number gener-
ator. This generator is very fast, has a huge period (219937 	 1) and is known to
be theoretically and empirically well tested. Source code of MT for several pro-
gramming languages is freely available at the Mersenne Twister home page [17].
For the integration of MTas an OMNeT++ component, the standard MTc-codes
(mt19937int.c and mt19937-2.c) were used.

4 Simulation Topology

Although there could be many possible topologies and situations where correla-
tions between parallel streams of random numbers could lead to wrong simulation
results, a very simple example was chosen for examinations of bad effects due to
correlations. The intention of this was to highlight that bad effects already manifest
in simple simulation scenarios.

Figure 2 shows the topology which was chosen for the simulations. Job streams
of 5 exponential generators (Expo 1 to Expo 5) are aggregated at FIFO, a simple
First In First Out buffer with a buffer size of 1000 jobs. FIFO is connected to
Sink, which does nothing else than absorbing the jobs, which are handed over by
the service entity of FIFO. The 5 exponential generators produce streams of jobs
with exponential inter-arrival times and FIFO offers an exponentially distributed
service time for each job. Therefore, the resulting simulation topology constitutes
a M/M/1/1001 queuing system.

For the simulations done, each of the exponential traffic generators Expo 1 to
Expo 5 had the same parameter settings. The mean of the exponentially distributed
time between the generation of two successive jobs (inter-arrival time) was set to
41ms. Each of the 5 job streams produced by the generators Expo 1 to Expo 5
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Figure 2: Simulation topology.

can be seen as a Markov Process with an average arrival rate of λ � 1 job
41ms . When

aggregating Markov Processes, their average arrival rates may simply be added
to get the average arrival rate of the aggregated Markov Process. Therefore the
aggregated Markov Process, which arrives at the buffer of FIFO, has an average
arrival rate of λsum � 5 � λ � 1 job

8 � 2ms . The service times of FIFO for the arriving
jobs are exponentially distributed with a mean of 8ms, thus the mean service rate
of FIFO is µ � 1 job

8ms . Summing up, FIFO can be seen as a M/M/1/1001 queuing

system with a utilization factor of ρ � λsum
µ � 0 � 97561.

Referring to the theoretical M/M/1 model in [9, 10], the mean number of jobs in
the system N̄ calculates as N̄ � ρ 
 � 1 	 ρ � . Considering a M/M/1 queuing system
with a utilization factor of ρ � 0 � 97561, the average number of jobs in such a
system would therefore be N̄ � 40 � 0004 jobs. The distribution of the number n of
jobs in the system is given by the geometric distribution p

�
n � � �

1 	 ρ � ρn.

5 Simulation Results

Regarding the simulations, each of the 5 exponential generators used its own RNG
object. Different sets of seeds were used for seeding the 5 RNG objects. For each
simulation, the average number of jobs in the system N̄ was calculated. Further-
more, the CDF of the number of jobs was determined and plotted for each simu-
lation run. The simulation time was set to 40000s for each run, which is 975610
times the average inter-arrival time of 41ms between two successive jobs of each
generator.
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Seed Set 1 Seed Set 2 Seed Set 3 Seed Set 4

seed 1 1 934100682 1 1
seed 2 1140279430 558746720 2 634005912
seed 3 1328964554 2081634991 3 634005911
seed 4 310283214 144443207 4 2147483646
seed 5 488838574 513791680 5 151347773

estim. N̄ 39.66 38.78 44.39 37.73

Table 1: Seed sets used for the OMNeT++ default RNG ran0 .

5.1 Results for ran0

For the simulations using the default RNG of OMNeT++ (ran0 ), the seed sets from
Table 1 were used. The first seed set produces consecutive blocks of random num-
bers of length 2 million. The seeds from Seed Set 2 are taken from the default seeds
implemented in the ns-2 network simulator which implements the same RNG as
OMNeT++. Both seed sets (’good’ seeds) are expected to not produce correlated
streams. The remaining two seed sets (’bad’ seeds) produce strongly correlated
random number streams, see Sect. 2.

The resulting mean values of the number of jobs in the system are given in Ta-
ble 1. The values for ’good’ seeds are close to the expected value whereas the mean
values for ’bad’ seeds show stronger deviations from the theoretical N̄. Figure 3
shows more detailed information. It compares the theoretical vs. empirical CDFs
for the simulations with ’good’ seeds and ’bad’ seeds. As can be seen easily, the
CDFs using ’good’ seeds almost exactly match the expected theoretical CDF. On
the other hand, the resulting CDFs using ’bad’ seeds show significant deviations.

We carried out several simulations with increasing simulation time . All results
showed the same behavior as in Figure 3.

5.2 Results for RandU01

The seeding procedure for RandU01 is well defined. The first RandU01object,
which is used, has to be initialized using an integer vector of length 6 as seed. The
initial states of all following RandU01RNG objects are generated automatically.

Ten simulations with equal simulation time t � 40000 s were carried out using
the randomly chosen initial vectors given in Table 2. The average of the mean val-
ues of these simulations equals 40.336 with a standard deviation of 0.7419 which
results in a 99% confidence interval � 39 � 5736 � 41 � 0984

�
for N̄.

The upper graphics in Figure 4 shows the empirical CDFs of our first five sim-
ulations. The obtained CDFs match the theoretic CDF very well (same for the
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1412384165 236002145 542159054 521487915 2018087536 414877493
2048888926 655005779 906412827 235849136 1209759501 1676730349
694867568 1899502794 83494906 1475474107 1915987305 2004754650
2074490988 826814765 1119975261 2085427774 1708126621 2029829150
1563149874 1863670447 1639687603 184913654 1409851396 119692977
1305470914 1017386359 1041111727 655198235 699830490 2020995355
982430240 854044306 312611657 750371147 1503044684 744590471
1738868915 1211171448 1524311206 1550825011 554302720 46329467
1244029748 1547483752 1426952987 997595553 631930979 1896589808
1427162620 1470904152 1984561598 1995777718 3457391 1495308727

Table 2: Seeds used for simulation with RandU01and MT .

remaining 6 simulations). In addition we carried out simulations with increasing
simulation time ti � 2i s � 11 
 i 
 20.

Note that it is highly recommended to apply the described automatic seeding
procedure of RandU01 . If all used RNG objects are initialized by the user, and if
the user chooses bad seed vectors for initializing the RNG objects, the simulation
may yield poor simulation results. As an example, one may apply the seed vectors
� j � j � j � j � j � j � , 1 
 j 
 5 for the initialization of our five streams. The parallel ran-
dom number streams obtained applying these special seeds are highly correlated,
similar as Seed Set 3 for ran0 . The verification for this may be done in a similar
way as for ran0 in Section 2.

5.3 Results for MT

The Mersenne Twister has no explicit seeding procedure for parallel streaming.
It is often recommended to use random seeds for each stream, since for the huge
period of the generator it is unlikely to get overlapping streams.

Again ten simulations with equal simulation time t � 40000 s were carried out
using the first five numbers from each row in Table 2 to initialize the five streams of
our simulation setup. The average of the mean values of these simulations equals
39.2224 with a standard deviation of 0.9003 which results in a 99% confidence
interval � 38 � 2971 � 40 � 1477

�
for N̄.

The lower graphics in Figure 4 shows the empirical CDFs of our first five
simulations. Results from further simulations with increasing simulation time
ti � 2i s � 11 
 i 
 20 are presented below.
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5.4 Increasing Simulation Time

In addition to the examples above, we applied simulations with increasing time.
We have varied the simulation time from 211 s to 220 s. For each simulation time,
10 simulations with different seeds were carried to get mean values and error bars
for the mean number of jobs in the system.

The seeds for ran0have appropriately been chosen to asure nonoverlapping
consecutive blocks of random numbers for all simulation times. These same seed
values were taken to initialize the simulations with MT . Similar as in Subsection
5.2 the initializing seed vectors for RandU01were generated randomly using ran0 .

See Figures 5, 6 and 7 for the results.
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Figure 3: Comparison of the theoretical vs. empirical CDFs for the simulations
with ’good’ seeds (upper graphics) and ’bad’ seeds.
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Figure 4: Comparison of the theoretical vs. empirical CDFs for five simulations us-
ing RandU01with automatic initial seeding (upper graphics), and the same number
of simulations using MT .
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Figure 5: Mean values and 95% confidence intervals for the mean number of jobs
in the system using ran0 (two differnt simulations).
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Figure 6: Mean values and 95% confidence intervals for the mean number of jobs
in the system using MT (two differnt simulations).
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Figure 7: Mean values and 95% confidence intervals for the mean number of jobs
in the system using RandU01 (two differnt simulations).
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