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ABSTRACT
To distribute data from one sender to multiple receivers efficiently
and concurrently, multicasting is one of the most appropriate mech-
anisms. Application Layer Multicast (ALM), often also referred to
as Overlay Multicast, has been introduced to overcome the limita-
tions of IP Multicast. The OM-QoS (Quality of Service for Over-
lay Multicast) framework aims to enable QoS for different ALM
protocols. We applied the OM-QoS mechanisms to the Overlay
Multicast protocol NICE and performed evaluations in QoS envi-
ronments using resource reservations and measurement based QoS.
Our evaluations show that we can support the QoS requirements of
all paths in the multicast tree, while introducing an acceptable over-
head in terms of delay.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Proto-
cols; C.2.4 [Computer-Communication Networks]: Distributed
Systems; C.4 [Computer Systems Organization]: Performance
of Systems

General Terms
Design, Experimentation, Measurement, Performance

Keywords
Application layer multicast, Overlay networks, Peer-to-peer

1. INTRODUCTION
Multicasting is an efficient mechanism for a sender to distribute

multimedia data to many receivers concurrently. IP Multicast is
an implementation of the multicast paradigm for the Internet. Un-
fortunately, IP Multicast is not widely available for end users in
the Internet today. This is due to multiple reasons, such as com-
plex provider billing agreements, security concerns, configuration
complexity and others. Peer-to-Peer (P2P) and Application Layer
Multicast (ALM) networks offer a viable solution to overcome the
limitation of IP Multicast availability. To give the best service to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’10 March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

end-users, Quality of Service (QoS) mechanisms for P2P/ALM net-
works would be desirable. This would enhance user experience for
multimedia applications such as IP-TV, multiplayer online games,
real-time A/V conferencing and streaming, etc.
A description and evaluation of how Scribe/Pastry could be made
QoS aware, by changing Pastry’s ID assignment mechanism, was
presented in [6]. The evaluation of the approach was performed us-
ing Freepastry’s integrated simulator. Freepastry is a freely avail-
able implementation of Scribe / Pastry. A self-managing Quality
of Service for Overlay Multicast (OM-QoS) framework as a pro-
tocol independent approach on how to enable QoS for different
P2P/ALM protocols was proposed in [8]. Different P2P proto-
cols were analyzed and solutions on how to make those protocols
QoS aware were presented but not evaluated. The solution to make
Content Addressable Networks (CAN) [16, 15] QoS aware using
OM-QoS as presented in [8] was evaluated in [5] using the OM-
Net++ [19] network simulator. In this paper, we discuss the ap-
plication of OM-QoS to NICE (NICE is the Internet Cooperative
Environment) [1] and evaluate this also using OMNet++ [19]. We
introduce mechanisms to support certain guarantees regarding de-
lay constraints for the path from a node to the multicast root.
The remainder of this paper is structured as follows. Section 2 gives
a very short overview of P2P/ALM and NICE. In Section 3 we de-
scribe how we enhanced NICE with QoS awareness/capabilities.
The evaluation of our approach is described in Section 4. Finally,
in Section 5 we present our conclusions.

2. RELATED WORK

2.1 Application Layer Multicast
Application Layer Multicast (ALM) [10] and Peer-to-Peer (P2P)

[18, 13] networking has become very popular. ALM helps to over-
come the limited availability of IP Multicast to end users in the In-
ternet today. In order to improve the P2P/ALM concepts, Quality
of Service (QoS) aspects have to be taken into account. Different
approaches such as QRON [12] and Pathaware Multicast [11] have
been introduced to enable QoS functionality in P2P/ALM.
In order to offer a flexible and general approach to support QoS
for ALM, the OM-QoS (Quality of Service for Overlay Multicast)
framework [6, 7, 8, 5] has been introduced. It aims to enable dif-
ferent P2P/ALM protocols to support QoS. The first analysis in [6]
focused on how to make the Scribe ALM [9], which runs on-top of
Pastry P2P [17], QoS aware. This approach could work also with
other Plaxton routing [14] based ALM/P2P infrastructures, such as
Bayeux and others. In order to support more P2P/ALM protocols,
mechanisms have been analyzed regarding how to enable QoS for
NICE [1] and Content Addressable Networks (CAN) [16, 15]. The
corresponding solutions have been described in [8].
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2.2 NICE Overlay Multicast
In this paper, we focus on the implementation and evaluation of

OM-QoS for NICE. Nodes in NICE are arranged in clusters and
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Figure 1: Example of NICE

layers and are structured hierarchically as shown in Fig. 1. Nodes
within the same cluster are called cluster mates. Each cluster mate
knows its cluster leader and some or all other cluster mates in the
same cluster. The size of a cluster varies between the lower bound
k and the upper bound 3k − 1, with k being a predefined cluster
constant larger than zero. These boundaries help to avoid conflict-
ing maintenance operations, which will be discussed later. One of
the cluster mates within a cluster is determined to be the cluster
leader. This cluster leader is then a member of a cluster of the next
higher layer. Cluster leaders are determined by choosing randomly
a node from the so-called graph-theoretic center of clusters. This
graph-theoretic center is calculated by calculating the eccentricity
for each node. The eccentricity is the maximum distance from the
node to any other node in the cluster. Nodes with minimum eccen-
tricity then build the center of the cluster. Each layer consists of
one or more clusters. They are are ordered from the bottom layer
zero to the top layer n. The top layer consists only of a single clus-
ter with one cluster member. This is the root of the NICE network.
The structure of NICE is specified with five invariants. They have
to be fulfilled at any time. 1) A node belongs to only a single clus-
ter on each layer. 2) A node located at layer L is also also located
at layers L − 1, ..., 0. 3) A node not present in layer L can not be
present in any higher layer (L+ i, i ≥ 1). 4) The size of a cluster is
between k and 3k − 1, where k is a constant with k > 0. 5) There
is a maximum of logk N layers and the highest layer only contains
one node (the root node).

2.2.1 Joining a NICE Network
A node joining a NICE network has to contact first the root node

for that specific NICE network. It then receives a list of all cluster
leaders on the next lower layer. In the next step, it contacts ev-
ery reported node and identifies the closest node to itself in terms
of round trip time (RTT). This helps to select the most appropri-
ate cluster to join. Therefore, nodes that are physically close are
grouped together in a cluster. Afterwards, the joining node sends a
new request to the determined closest node. This process is itera-
tively repeated until layer 0 is reached. There, the new node joins
the most appropriate cluster.

2.2.2 Leaving a NICE Network
Nodes can leave a NICE network in two ways, gracefully and un-

gracefully. In the graceful case, the leaving node announces its de-

parture to its cluster mates before it really disappears. Other nodes
can now react to this situation appropriately and perform any han-
dovers from the leaving node that might be necessary. If a node
suddenly disappears, then it leaves ungracefully. The cluster leader
and the cluster mates do not recognize the departure of the node
directly but only by timeouts and missing heartbeat messages. In
such cases, parts of the NICE network might not work properly due
to invalid states or missing handovers.

2.2.3 Maintenance of a NICE Network
Maintenance of NICE contains several refinement operations to

handle the nodes and the tree structure. Heartbeat messages are
used to periodically exchange information such as the view of a
cluster by a node and its RTT to the other cluster members. The
refinement operations might consist of splitting a cluster, merging
two clusters, or to determine a new cluster leader. The refinement
operations are only invoked by a cluster leader when it detects an
invalid or not optimized state in its cluster. Leave and join opera-
tions could require the cluster leaders to be changed.

3. QUALITY OF SERVICE FOR NICE

3.1 QoS Aware Multicast Trees
In order to enable QoS for Overlay Multicast, the multicast dis-

tribution tree has to hold certain properties. As described in [6, 8],
the multicast tree has to be built such that the QoS requirements or
capabilities are monotonically decreasing from the root to the leaf
nodes. This guarantees that nodes are only connected to a parent
node having the same or higher QoS requirements than the con-
necting node itself. Therefore, the parent node will be able to serve
the connecting node with multicast data that supports the connect-
ing nodes’ QoS requirements. Such a QoS aware tree is depicted
in Fig. 2, where thicker lines between nodes correspond to higher
QoS requirements.

path with 
monotonically

decreasing
QoS

Leaf

Root

Figure 2: QoS Supporting Multicast Tree

3.2 QoS Classes
To manage different QoS parameters, we introduce the concept

of QoS classes. We can combine multiple QoS parameters into
a QoS class, which is then represented as a single integer value.
To maintain the structure as shown in Fig. 2, QoS classes have to
follow certain rules: 1) A total order relation for all QoS classes
exists. 2) QoS class parameters are independent of link length and
number of hops in the network. 3) The number of QoS classes is
finite. This means that a QoS class can be a combination of band-
width, hop-by-hop jitter and CPU requirements. Parameters that
are accumulated over many hops, e.g., end-to-end delay, can not be
combined into a QoS class. Our solution for the delay problem will
be explained later in this Section.
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3.3 QoS Trees for NICE
As a first option, the creation of QoS aware trees can be achieved

by a simple modification of the NICE protocol. Instead of deter-
mining the cluster leader from the graph theoretic center of the
cluster, it is determined by the nodes having the highest QoS class
in the cluster. This approach is explained in more detail in [8].
A second approach to build such QoS aware trees is the Quality
of Service for Overlay Multicast (OM-QoS) Framework layered
(protocol independent) approach presented in [8]. The basic idea
is to use for each active QoS class a dedicated P2P/ALM instance
(called slice). Using NICE, we build a separate NICE slice for ev-
ery QoS class as shown in Fig. 3. The different slices are intercon-
nected using gateway nodes, connecting adjacent slices (in terms
of QoS) with each other. This approach guarantees that the result-

NICE instance for QoS class n
n+1

n+2
n+3

n+4
n+5

n+6, n+7, ..., n+j

n-i
n-4

n-3
n-2

n-1

Figure 3: QoS for NICE using multiple NICE Slices

ing multicast tree in such a collective of NICE networks follows the
previously described property of monotonically decreasing QoS re-
quirements (from root to leaf nodes) as shown in Fig. 2.
To reduce the overall hop-count and latency from the root to a leaf
node, the different NICE slices can not only be interconnected by
single steps through adjacent slices. Instead, additional links can be
established jumping over multiple slices as shown in Fig. 3. This
mechanism helps to improve the reliability and latency of forward-
ing multicast data between slices. To further optimize the relia-
bility, we introduced backup links between the slices as proposed
in [2]. If a gateway node fails, the adjacent gateway nodes from a
lower or higher slice (in terms of QoS) already have backup links to
alternative gateway nodes prepared and ready. These backup links
to alternative gateway nodes then can takeover the task of forward-
ing multicast data between slices from the failing node on the fly.

3.4 Node to Root RTT Constraints for NICE
To support also end-to-end delay constraints, we introduce end-

to-end delay as an additional parameter. This is independent from
the QoS class construct and allows a peer to request a QoS class
(for example a certain bandwidth) for its connection and also ask
for an upper bound of the round trip time (RTT) to the root of the
multicast tree. We call this upper bound node to root RTT con-
straints.
In this paper, we only take node to root RTT constraints ranging
from 25ms–50ms into account when joining the NICE network.
When a node joins a NICE network, it automatically participates in
multicast distribution tree for that NICE network, and starts receiv-
ing and possibly also forwarding multicast data. We implemented
this mechanism to support node to root RTT constraints as follows.
When a newly joining node measures the RTT to the potential clus-
ter leaders on each layer, it also asks the potential cluster leaders
on all layers for their current node to root RTT value. The clus-
ter leader that fulfills the node to root RTT constraint as closely as
possible is then selected for the next iteration. That means the node
offering the maximum node to root RTT that is still below the node

to root RTT constraints (with a certain safety margin) is selected
for the next step in the next lower layer. This is continued until we
reach layer 0, where the node joins a cluster that fulfills the node to
root RTT constraints.
As an example, we can assume that we have a NICE network with
4 layers. In the top layer 3, only the root is present in its own clus-
ter. A newly joining node asks the cluster leader in layer 3 (the
root node) for its cluster mates in layer 2. These cluster mates are
cluster leaders of clusters in layer 1 and also at layer 0. The joining
node then measures the RTT to these reported nodes and asks them
for their node to root RTT. Now, the joining node can determine
its own node to root RTT if it would join a cluster of the previ-
ously reported nodes. It selects and contacts the node that offers
the maximum node to root RTT below its own node to root RTT
constraints to ask for that nodes’ cluster mates in layer 1. These
reported nodes are cluster leaders of clusters in layer 0. Then, de-
termining the node to root RTT matching the node to root RTT
constraints are performed again as described before. Finally, the
node joins the cluster in the layer that offers the maximum node to
root RTT just below its own node to root RTT constraints.

4. EVALUATION

4.1 Overview
Our evaluation of QoS for NICE has been performed using the

OMNet++ [19] simulator. We implemented the basic NICE pro-
tocol and made some enhancements to support further reliability,
such as handshakes for cluster-leader transfers, split and merge op-
erations, leaving and root transfers. Our implementation is fully
decentralized, the overlay structure was setup and maintained us-
ing only message transmission among the NICE nodes.
We investigated different scenarios, starting comparing the influ-
ence of the k parameter on certain issues of a normal NICE network
without QoS support. Furthermore, we compared normal NICE
and QoS aware NICE (protocol dependent OM-QoS approach).
The QoS aware NICE has been evaluated using static hard QoS
guarantees offered by the underlying network and dynamic soft
QoS. Hard QoS could be achieved using e.g. DiffServ or EuQoS
[3]. Soft QoS is a measurement based best-effort QoS. Nodes mea-
sure the QoS provided by potential parents and then select the one
supporting the required QoS. But, QoS capabilities of a node can
change over time. This means that some links between nodes might
not support the required QoS anymore after a certain time. Then,
a new parent has to be found, which again on the link between
the node and the parent supports the initially required QoS. The
protocol independent (layered) OM-QoS approach was also inves-
tigated. Finally, we also looked at the node to root RTT constraints
explained in Section 3.4 that a node might request. We modified the
join process to the NICE network in such a way that nodes should
have their node to root RTT below their requested upper bound for
that value directly after they entered the network.

4.2 Simulation Scenarios and Parameters
The latencies between all the nodes for the simulation scenarios

are determined using distance matrices defining the latencies for
each possible node pair connection. We use for that matter distance
matrices, which we built using topologies generated by Brite [4].
As model, we used “Router Waxman” with α = 0.15, β = 0.2,
and with 5000 squares for the main plane and inner planes. Nodes
were placed randomly with incremental growth type and have two
neighboring nodes.
Brite creates a topology file that contains nodes and edges with dis-
tances between nodes specified as a delay value in ms. For every
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Figure 4: Comparing normal NICE with k=3, k=4, and k=5

Table 1: Delay Properties of Distance Matrices in ms

Matrix min RTT (ms) mean RTT (ms) max RTT (ms)
Matrix 0 0.08 22.47 48.44
Matrix 1 0.09 30.35 90.48
Matrix 2 0.05 30.56 94.58
Matrix 3 0.05 29.76 90.23
Matrix 4 0.07 23.26 57.52
Matrix 5 0.09 22.78 51.82
Matrix 6 0.04 22.77 49.24
Matrix 7 0.08 23.27 52.30
Matrix 8 0.05 22.91 53.92
Matrix 9 0.05 23.27 50.83

Matrix 10 0.08 22.47 48.44
Matrix 11 0.05 22.91 54.00
Matrix 12 0.01 23.13 54.17

pair of nodes, we calculated the shortest path in terms of delay.
Then we stored these values in the distance matrices as the delay
for a certain edge between two nodes. Table 1 depicts the mini-
mum, maximum, and mean delay values of the matrices.
We performed our simulations using various network sizes with a
node count from 100 to 2000 in steps of 100. Each of these steps
was evaluated using 13 different distance matrices, which we eval-
uated each with three different random seeds. The seeds are influ-
encing the arrival time, departure decisions and many other random
based values. Therefore, each scenario consists of 780 simulation
runs. For all scenarios, we removed 1% of the outliers (0.5% of the
min. and max. values each). We evaluated different values in each
of the scenarios as presented in Table 2.

4.3 Impact of k Value on Normal NICE
Figure 4 compares the impact of the k value to normal NICE on

multicast fan-out, hop count, node to root RTT, and number of clus-

Table 2: Values Evaluated in the Simulation Scenarios

Multicast fan-out describes the number of cluster mates
a cluster leader has to serve with mul-
ticast data.

Multicast hop
count

depicts the number of hops required to
reach the root of the multicast tree.

Node to root RTT denotes the round trip time (RTT) from
a node to the root of the multicast tree.

Number of cluster
mates

measures the number of cluster mates
per cluster leader.

Node to root QoS shows the percentage of paths, which
fulfill the QoS requirements.

Percentage of mul-
ticast received

describes the percentage of multicast
messages received per node.

Rejoin duration is the time a node takes to join a new
cluster, if its QoS requirements are not
fulfilled in its current cluster.

Node to root
RTT constraints
fulfilled

is the percentage of nodes for which
NICE satisfies the given E2E RTT con-
straint during the initial join process.

Node to root RTT
after join

is the RTT from a node to the multicast
root directly after joining.

Node to root RTT
failed difference

is the difference between effectively
achieved node to root RTT and the
node to root RTT constraint after join.

ter mates. We evaluated the maxima and minima for the different
values of k individually. But, we only show the highest maximum
and lowest minimum encountered for any value of k.
In Fig. 4(a), we can see that the average fan-out is only slightly de-
pending on k. The presented maximum is encountered using k = 5
and is caused by the root node. Leaf nodes do not forward any mul-
ticast data, hence we have a minimum fan-out of 0. This is where
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Figure 5: Comparing normal NICE with with QoS aware NICE, both with 256 QoS Classes and k=5

we have the highest number of cluster mates per cluster on aver-
age, and where this particular root node has to serve every layer
with multicast messages. With lower k, the hop count increases as
shown in Fig. 4(b). When we have smaller clusters, we will get
more layers, which leads to a higher hop count. The maximum
is though still acceptable, only 1–2 hops higher than the average.
Since NICE always tries to optimize clusters according the RTT
between the cluster mates, the mean node to root RTT values as
shown in Fig. 4(c) are only slightly increasing with lower k values.
The maximum is slightly above twice the worst average. Finally,
the number of cluster mates presented in Fig. 4(d) is again heavily
depending on the k value and behaving as expected, being some-
what above the effective k value. The maximum is again roughly
twice the highest average value encountered for k = 5. For all
these aspects analyzed, the minima values are as expected, consid-
ering that the outliers have been removed.

4.4 Normal NICE vs. QoS Enabled NICE
In Fig. 5 we compare normal NICE (QoS-unaware) with QoS

enabled NICE using the protocol dependent OM-QoS approach,
both having k = 5. Choosing k = 5 reduces the number of lay-
ers in a NICE network, and therefore also reduces the hop count
and node to root RTT while only having a slightly increased fan-
out. Each node gets a QoS class assigned from the range 0–255.
We assume that the underlying network will provide the requested
QoS for the QoS aware NICE scenario. Therefore, the QoS will
remain static. We call this hard QoS. In normal NICE, the cluster
leaders are determined using delay measurements and calculating
the graph-theoretic center as described in Section 3.3. Therefore,
QoS classes are not taken into account when joining or when clus-
ter leaders have to be determined in normal NICE. But we still
check how many paths would satisfy the property of monotonically
decreasing QoS requirements as described before. In Fig. 5(a) we
can see that on average, only 30% of the paths hold the property,
whereas in Fig. 5(b) with QoS aware NICE, 100% of the paths ful-
fill the QoS requirements. Since the QoS aware NICE has a differ-
ent cluster leader determination mechanism, we also compare the
node to root RTT in Figures 5(c) and 5(d). The normal NICE mode

is optimized and has an average node to root RTT between 20ms–
40ms depending on the number of nodes in a NICE network. The
QoS aware NICE has an average node to root root RTT of 30ms–
60ms. Using the QoS aware mechanism adds another 50% of extra
delay to the node to root RTT. This is expected due to the fact that
cluster leaders are not anymore determined and optimized using
delay measurements. Instead, QoS classes are used to determine
cluster leaders. The maximum of the node to root RTT value on
the other hand almost doubles when using QoS mechanisms. Still,
introducing QoS to NICE using our mechanism allows us to guar-
antee that all paths from the root node to the leaf nodes in the mul-
ticast tree fulfill the QoS requirements while adding an acceptable
overhead in terms of delay.

4.5 NICE with Dynamic Soft QoS
In Figure 6, we look at the scenario with dynamic soft QoS. This

means that the QoS guarantees can change over time. If QoS can-
not further be supported along a path, the node has to look for a
new parent (or cluster leader in NICE) that actually supports again
its QoS requirements. In this evaluation, we assume that QoS guar-
antees can fail up to 5 times per node while it is in a NICE network.
The time interval during which this can happen depends on the join
and leave times of a node which are determined randomly. It is
also determined randomly how often QoS guarantees fail per node
. Again, we use 256 QoS classes and also k = 5 for this sce-
nario with the protocol dependent OM-QoS approach to support
QoS for NICE. As shown in Fig. 6(a), the dynamic behavior of the
QoS guarantees does not have a negative impact on the percentage
of multicast messages received by nodes on average. Almost all
multicast messages are delivered as intended. Some nodes though
might have a higher loss rate due to multiple rejoins, merging and
split operations, cluster leader and root transfers, as visible from
the minimum value. During these times, there might be some mo-
ments where a node is not part of a cluster, and therefore might
not receive multicast messages from a cluster leader. This is es-
pecially the case for nodes that are only participating in a NICE
network for a short time. If during this time the previously men-
tioned operations (rejoin, split, merge, transfers) occur frequently,
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Figure 6: QoS aware NICE in a Dynamic Soft QoS Environment with 256 QoS Classes and k=5
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Figure 7: QoS aware NICE using the OM-QoS Framework Layered Approach with 32 QoS Classes and k=5

it can happen that such nodes only receive a few multicast mes-
sages. This then leads to a high loss rate. The number of cluster
mates presented in Fig. 6(b) is lower (by one node) than in the
normal NICE network previously shown in Fig. 4(d) for k = 5.
This is due to the fact that nodes actually leave their cluster and
rejoin other clusters, which contributes to a more equal distribu-
tion of nodes among the layers and clusters. The rejoin duration is
presented in Fig. 6(c), where the average rejoin duration is around
20ms and the maximum is around 50ms, which are both acceptable
values. Figure 6(d) presents how many paths actually fulfill certain
node to root RTT constraints for a NICE network that does not take
these RTT constraints into account. Each node selects a node to
root RTT constraint in the range of 25ms–50ms. We then check

how many paths actually fulfill these constraints during the time a
node participates in the NICE network.

4.6 NICE with Protocol Independent OM-QoS
The results for a QoS aware NICE network using the protocol

independent (layered) OM-QoS approach with 32 QoS classes and
k = 5 are presented in Fig. 7. Nodes are now distributed over 32
different NICE networks (slices). There is one dedicated NICE net-
work for each of the 32 QoS classes. Before, there was only one
NICE network for all the nodes independent of their QoS class.
Nodes joining the same network results in more layers and clusters
in the network compared to distributing them among several slices,
which then have less layers and clusters. We now used 32 QoS
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Figure 8: Comparing QoS aware NICE with Normal Join and Modified Join taking Node to Root RTT Constraints into Account

classes, which is still a reasonable value, to have an acceptable hop
count compared to normal NICE, because of the additional hops
introduced by forwarding data between slices. As already men-
tioned, we now have much smaller NICE networks in terms of par-
ticipants, with less clusters and less layers. Nodes that join a spe-
cific NICE network slice might be distributed in such a way, that
only small clusters would be formed in those NICE network slices.
This fact leads to a lower fan-out per node, less hops to the root
of the multicast tree and also a lower node to root RTT inside the
individual NICE network slices compared to having one big NICE
network holding all nodes. As shown in Fig. 7(a), using multiple
slices of NICE in parallel has an impact on the average node to root
RTT, which is now 110ms–120ms. Also the maximum raises up
to 400ms. This is due to the fact that the 32 NICE network slices
have to be interconnected as described in Section 3.3, causing ad-
ditional hops resulting in a higher node to root RTT. The average
fan-out presented in Fig. 7(b) is between 3–8 hops. Although we
have additional fan-out caused by the gateway links, the average
fan-out starts lower than for the normal NICE with k = 5 as shown
in Fig 4(a). It also has the same peak for the average for more
hosts in the scenario. The maximum is though raising almost up to
20, which is due to the multiple optimized gateway links as well as
the backup links (when they are in use). The hop count presented in
Fig. 7(c) suffers from the same penalty of having multiple instances
and is now on average between 8–9 hops, with a maximum raising
almost up to 20 hops. Having multiple parallel instances has again
an impact on the number of average cluster mates as presented in

Fig. 7(d). Again, the nodes are distributed over parallel instances of
NICE. Therefore, the average number of cluster mates is reduced
compared to the normal NICE network with k = 5 as presented
in Fig. 4(d). Still, since we have now 32 NICE instances in par-
allel and have optimizing gateway links and backup links between
the different NICE instances, the overall resulting values from that
scenario remain acceptable. In some cases they even have been im-
proved, e.g. average number of cluster mates and maximal fan-out.

4.7 NICE with Node to Root RTT Constraints
Figure 8 presents the evaluation results comparing QoS aware

NICE using the normal join process of NICE and a modified join
process that takes the node to root RTT constraints into account.
When nodes join the NICE network, they select randomly a node
to root RTT constraint in the range of 25ms–50ms. The number of
fulfilled node to root RTT constraints for a QoS aware NICE net-
work that does not offer a join process taking those constraints into
account is presented in Fig. 8(a). Almost half of the nodes do not
have a node to root RTT, which is below their required constraints
(directly after joining the NICE network). In a NICE network with
the modified join process taking these constraints into account, al-
most all nodes have their RTT to root constraints satisfied (directly
after joining the NICE network) as shown in Fig. 8(b). The result-
ing node to root RTT after a node has joined a NICE network using
the normal NICE join process is presented in Fig. 8(c). The aver-
age starts to go quite close to the upper end (50ms) of the node to
root RTT constraint’s range with more nodes in the network. The
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maximum is around 100ms, which is the double of the allowed
range. The results for a NICE network using the modified join pro-
cess, which tries to fulfill the node to root RTT constraints (between
25ms–50ms) of a node are shown in Fig. 8(d). The average for the
node to root RTT is close to the middle (37.5ms) of the RTT con-
straint’s range. The maximum is at the end of the constraint’s range
(50ms). In Figures 8(e) and 8(f), the deviation from the required
node to root RTT constraint directly after joining is presented. As
expected, using the normal NICE join process results in a higher
deviation to the node’s RTT constraints compared to the modified
join process. The node to root RTT values achieved using the mod-
ified join process would be normally still tolerable. This is due to
the fact that the deviations are small and the achieved values for
the node to root RTT are generally only slightly above constraint.
Keep in mind that using the modified join process results in only
a few nodes that do not have fulfilled their requirements regarding
the node to root RTT constraint (directly after joining the NICE
network) as shown in Fig. 8(b).

5. CONCLUSION
In this paper, we have presented OM-QoS (Quality of Service for

Overlay Multicast) applied to NICE, which allows NICE to offer
Quality of Service (QoS) enabled multicasting. We evaluated the
different approaches of OM-QoS, the protocol dependent as well
as the protocol independent (layered) approach.
Using OM-QoS in the protocol dependent approach introduces a
slight additional delay compared to normal NICE. This is due to
the modified cluster leader determination mechanism, but does not
change other basic aspects of NICE significantly. All the paths
from the node to the root of the multicast tree in the hard QoS and
soft QoS scenarios support QoS when OM-QoS was used. The
soft QoS results show that in dynamic QoS environments, nodes
quickly can find new clusters (which means parents in the multicast
tree) in case QoS is not supported anymore by its current cluster.
In the hard QoS scenarios, QoS is statically guaranteed by resource
reservation performed in the underlaying network. Hence, joining
a cluster that supports the QoS requirements of a node means that
the cluster leader / parent will always support the requested QoS as
long as the node remains in the NICE network.
The protocol independent (layered) approach introduces additional
hops and has higher delays compared to the protocol dependent
approach. But, using the protocol independent approach also re-
duces other aspects, such as the average number of cluster mates
and maximum fan-out. This is due to the fact that there are now
smaller NICE networks existing and cooperating in parallel slices.
Finally, our presented approach to take also certain node to root
RTT constraints into account seems to be promising. When a node
joins a NICE network, it tried to find a cluster that supports its node
to root RTT requirements. A joining mechanism that takes node to
root RTT constraints into account enables that the majority of the
nodes have those constraints fulfilled directly after joining.
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