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ABSTRACT
Structured Peer-to-Peer (P2P) networks, such as networks
based on Distributed Hash Tables (DHTs), can be enhanced
by using load balancing mechanisms. Current load balanc-
ing mechanisms are either trying to achieve even distribution
of objects among nodes, make the address space as evenly
populated as possible, or both. However, we have taken
a different approach to load balancing in this paper and
we have defined the Advanced Finger Selection Algorithm
(AFSA) which is not focused on balancing the objects among
the nodes and does not require evenly populated address
space. AFSA is an algorithm which changes the way how
nodes are selected as fingers to the overlay routing tables in
structured P2P networks. We implemented the AFSA algo-
rithm for both Chord and Bamboo and we evaluated it with
simulations.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distribut-
ed Systems—Distributed applications; C.2.1 [Computer-
Communication Networks]: Network Architecture and
Design—Distributed Networks; C.2.2 [Computer-Commu-
nication Networks]: Network Protocols—Applications

General Terms
Algorithms, Design, Performance

Keywords
Peer-to-peer, distributed hash table, load balancing, simu-
lation, Chord, Bamboo

1. INTRODUCTION
A number of different load balancing mechanisms have

been developed for structured Peer-to-Peer (P2P) networks,
such as for networks utilizing Distributed Hash Table (DHT)
algorithms. When the current load balancing mechanisms
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are examined from a high abstraction level, it can be said
that they are trying to achieve one or both of the two fol-
lowing features. The first feature is to attempt to achieve
an even distribution of objects among the nodes. This can
be done, for example by selecting the less loaded node out of
two when storing an object to a P2P network [4]. The sec-
ond feature is to make the address space evenly populated.
That can be done, for example by splitting the largest par-
tition of the P2P network and placing a joining node in the
middle of that partition [11].

We have taken a different approach to load balancing and
we have defined a novel algorithm, called the Advanced Fin-
ger Selection Algorithm (AFSA), that will change the way
how nodes are selected to overlay routing tables. The nodes
in an overlay routing table represent outgoing connections
from one node to another, and in this paper we refer to
them as outgoing fingers (or out-fingers). AFSA does not
balance objects among the nodes, and it does not create an
evenly populated address space. Instead, AFSA balances
the number of incoming fingers (from hereon referred to as
in-fingers) among the nodes in a P2P network, because our
simulations have shown that an uneven distribution of in-
fingers correlates with an uneven distribution of load.

The design of AFSA does not prevent the use of other
load balancing algorithms in addition of using AFSA (e.g.
for balancing the objects). AFSA also works well in an en-
vironment where the address space is unevenly populated.
Furthermore, unlike many other load balancing algorithms,
AFSA requires only one node-id (i.e. the key a node has) per
physical node and it preserves complete freedom in choosing
it. The ability to use a single arbitrary node-id is a desired
property, because then node-ids can, for example be gener-
ated by hashing the public key that presents the identity of
a node. This is similar than the cryptographically generated
addresses in IPv6 [1], but above the network layer on a P2P
network level.

By balancing the number of in-fingers AFSA also spreads
the load relatively evenly among the nodes in a P2P network.
The load AFSA is balancing is the number of packets a
node has to handle from other nodes. These packets are, for
example application level requests from other nodes that the
node has to forward. When we, from hereon, use the word
load, we mean application level packets from other nodes
in the P2P network. AFSA does not address the problems
related to popular files or services, but nothing prevents it
from being used in conjunction with other mechanisms that
do address those problems.

The even distribution of in-fingers is also a desirable prop-
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erty from the viewpoint of a designer who is designing ap-
plications on top of P2P networks. For example, the even
distribution of in-fingers can be utilized when designing a
wildcard search mechanism for P2P Session Initiation Pro-
tocol (P2PSIP) [5] networks.

The evaluation of AFSA was done with simulations. We
implemented AFSA for both Chord [19] and Bamboo [17]
algorithms. The implementations were used in simulations.
The results of the simulations show that AFSA balances the
load well among the nodes in a P2P network, and that it
produced relatively even distribution of in-fingers among the
nodes. Even though AFSA is currently implemented only for
Chord and Bamboo, we see no reason why it could not be
implemented also for many other distribution mechanisms
used in structured P2P networks.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly introduces the existing load balancing algo-
rithms. Section 3 identifies the research problem we are
solving in this paper. Section 4 describes the algorithm we
have designed, AFSA. Section 5 presents the simulation en-
vironment and the simulation results. Section 6 contains
discussion related to AFSA and the results. Section 7 gives
directions for future work, and finally Section 8 concludes
the paper.

2. RELATED WORK
In the following we present some of the current load bal-

ancing algorithms. Later on we make a comparison between
AFSA and these algorithms in Section 6.

The concept of virtual servers is used as a basis for many
load balancing algorithms, such as [19, 7, 15, 8, 9]. The vir-
tual servers, which was first introduced in [19], is a concept
where a single physical node is mapped to multiple virtual
nodes where each virtual node has an unrelated node-id.
Some of these algorithms are more suitable to static net-
works, such as [19, 7, 15], and some of them, such as [8, 9],
are suitable also to dynamic networks. Furthermore, there
are also other differences between the algorithms, such as
some of them accommodate the heterogeneity of physical
nodes, and some of them accommodate skewed distribu-
tion of object keys (e.g. in a situation where object keys
carry semantics). However, all of these algorithms have some
common properties, such as, they require more fingers than
DHTs without virtual servers, and they require one physical
node to have multiple node-ids.

Many load balancing algorithms, such as [13, 11, 4], are
attempting to minimize the variation between partition sizes.
In other words, they try to create a situation where nodes
have equally sized partitions.

Two of the above mentioned algorithms, [13] and [11],
are working in a non-continuos manner. When a new node
joins, these algorithms try to find, by using probes, a rel-
atively large partition from the P2P network, split it, and
place the new node into that partition. In addition, [13] also
balances partitions when a node leaves from a P2P network
by possibly changing a node-id of a node in the P2P net-
work. These algorithms require that nodes have to accept
arbitrary node-ids.

Bienkowski et al. have presented an infinite and contin-
uous process [4] for minimizing the variation between the
partition sizes. Each node in the network executes this pro-
cess which dynamically balances the network by migrating
the nodes responsible for relatively short partitions to points

in the address space where nodes are responsible for rela-
tively long partitions. It also copies the objects between the
migrating nodes. This process requires that nodes have to
accept arbitrary node-ids.

Karger and Ruhl have presented a load balancing algo-
rithm [10] which can be seen as a a hybrid between the
virtual server concept and an attempt to minimize the vari-
ations between partition sizes. [10] uses two different mech-
anisms. In the first mechanism each node has multiple pos-
sible positions (i.e. multiple node-ids) where it can choose
from and change its position dynamically. In other words,
one physical node has multiple virtual servers but only one of
them is active at a given time. The goal of this mechanism is
to occupy the address space evenly. The second mechanism
is such that each node can dynamically have an arbitrary
place in the address space and the goal is to have good load
balancing properties even in a scenario where objects have
a skewed distribution of keys.

Byers et al. [6] use the power of two choices paradigm
[2, 14] for load balancing in DHTs. Their load balancing is
focused on creating an even distribution of objects in a P2P
network despite the differences in partition sizes. The load
balancing works in a manner where objects are stored to the
less loaded of two (or more) nodes in the P2P network. All of
the nodes that would potentially be storing a given object
maintain a redirection pointer to a node that is actually
storing the given object. These redirection pointers speed
up the lookups.

3. IDENTIFYING THE PROBLEM
Our research work for this paper began when we noticed

that the implementation of Chord in the OverSim [3] simula-
tor had an uneven distribution of in-fingers. In other words,
the number of in-fingers varied significantly from node to
node in a Chord network. Later we discovered that Chord
as an algorithm, and not just its specific implementation in
OverSim, does produce an uneven distribution of in-fingers
by using a second independent implementation of Chord.
The second implementation was a P2PSIP overlay simula-
tor which is implemented in Java (in contrast, Chord in
OverSim is implemented in C++), and it is based on the
implementation used in [12].

The distributions of in-fingers in these two implementa-
tions is illustrated in Fig. 1. The figure illustrates the dis-
tributions of in-fingers in a setting where there are 10000
nodes and all of the nodes have been idling for 3600 seconds
after the time all the nodes have joined to the network. With
idling we mean a situation where a node is just running a
DHT algorithm, but is not sending or receiving application
level packets. It can be seen from the figure that the dis-
tributions are quite wide. For example, the network using
OverSim’s Chord has 123 nodes that have more than 50 in-
fingers and 1178 nodes that have less than 3 in-fingers.

The average number of in-finger in experiments was 13.6
with the OverSim implementation and 13.0 with Java-based
implementation. So, if the number of in-fingers would be
evenly distributed, then all the nodes would have either 13 or
14 in-fingers in both experiments. Given the fact that there
is a linear relation between the number of in-fingers and the
number of forwarded application level packets, Chord leaves
a lot to desire on its load balancing properties.

We have focused our examination to the number of in-
fingers as the indicator of uneven load balance, because it
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Figure 1: Histograms of the in-finger distributions
in two separate Chord implementations
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Figure 2: Scatter plot showing the relation between
the number of in-fingers and the number of for-
warded application level packets in Chord

was straightforward to measure it from the above mentioned
implementations, and the following simulation showed that
there is a linear relation between the number of in-fingers
and number of forwarded application level packets (i.e. load).

In order to examine the relation between the number of in-
fingers and the number of forwarded application level pack-
ets we did a simulation run with unmodified Chord using the
OverSim simulator (the equivalent simulation with Bamboo
is described in Section 4.2). The simulation contained 10000
nodes and all the nodes were idling for 1800 seconds after
all the nodes had joined. After the idling period, all the
nodes started sending application level packets, 84 in to-
tal per node, on 20 second intervals. 1800 second after the
idling period stopped, the simulation ended and we exam-
ined the number of in-fingers and the number of forwarded
application level packets in each node. The results show
that there is positive linear correlation between the number
of in-fingers and the number of forwarded application level
packets in Chord. The correlation is illustrated as a scatter
plot in Fig. 2.

The figure shows that the number of forwarded applica-
tion level packets increase as the number of in-fingers in-
crease. The Pearson product-moment correlation coefficient
(from hereon referred to as Pearson’s correlation) between
the number of in-fingers and the number of forwarded ap-
plication level packets is 0.94.

4. THE ADVANCED FINGER SELECTION
ALGORITHM

The Advanced Finger Selection Algorithm (AFSA) is in-

spired by the power of two choices paradigm, but unlike By-
ers et al. [6] we use the paradigm for selecting out-fingers,
and not for selecting target nodes for storing objects. Next
we will explain AFSA on an abstract level, and then in the
following two sections we will explain more concretely how
it is built as a part of Chord and Bamboo.

The biggest change AFSA induces to structured P2P net-
works is that it changes the way how nodes are selected
as out-fingers to overlay routing tables. The main idea in
AFSA is that each out-finger is selected from a set of out-
finger candidates in a manner that results to an even in-
finger distribution in a structured P2P network. There are
two different modes in AFSA which we will describe next.

The first mode is called an implicit mode where the selec-
tion between out-finger candidates is based on probabilities.
The probability of a candidate being selected is calculated
from some quantifiable property (f) that a candidate node
has. There is requirement that f has to have a positive lin-
ear correlation to the number of in-fingers. Implicit mode
works in a manner where the probability of the node get-
ting selected as an out-finger decreases as f increases. The
probability that an i:th candidate gets selected (Pi) as an
out-finger to an overlay routing table in a scenario where
there are c out-finger candidates is calculated with the fol-
lowing equation:

Pi =

1− fi
cX

i=1

fi

c− 1

The second mode is called an explicit mode where the
selection between out-finger candidates is done by accepting
an out-finger candidate that has the lowest number of in-
fingers at the time of the selection. It is noteworthy that
in explicit mode nodes need to keep track of how many in-
fingers they have at all times and they have to have an ability
to communicate their in-finger counts to other nodes.

Both modes have an optional parameter, cm, that defines
the maximum number on out-finger candidates (c ≤ cm).
The cm is two at minimum (if it would be one, it would
effectively mean that AFSA is disabled).

4.1 AFSA in Chord
Overlay routing tables (also know as finger tables) are re-

freshed periodically in Chord [19]. The refreshing is done by
periodically calling the fix fingers function. AFSA modifies
the fix fingers function by adding new logic to it.

We did a simulation run with an unmodified Chord us-
ing the OverSim simulator. The simulation contained 10000
nodes. When all the nodes had joined, the nodes were at idle
for 3600 seconds. After 3600 seconds of idling the simulation
ended and then we examined the number of in-fingers and
partition (i.e. the node-free address space counter-clockwise
from the node) sizes of the nodes in the simulation. The
results show that there is positive linear correlation between
the number of in-fingers and partition sizes of the nodes.
The correlation is illustrated as a scatter plot in Fig. 3.
Partition sizes are presented in the figure by translating the
30 most significant bits of the partition size into an integer
value. It can be seen from the figure that when the partition
size increases, so does the number of in-fingers. The Pearson
correlation between the number of in-fingers and partition
sizes is 0.94.
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Figure 3: Scatter plot showing the relation between
the number of in-fingers and the partition sizes of
the nodes in Chord

The implicit mode of AFSA in Chord utilizes this correla-
tion. The partition size of a node is used as the quantifiable
property, f (refer to Section 4). In other words, an out-
finger candidate with a small partition size is more likely to
be selected as an out-finger than a candidate with a larger
partition size. The reasoning is such that the nodes with
a small partition size are probabilistically less frequently in
out-finger selection situations than the nodes with a larger
partition sizes and AFSA attempts to corrects this imbal-
ance. Implicit mode is straightforward to implement to
Chord, since the partition size of a node does not have to
be explicitly calculated. Furthermore, there is no need to
explicitly convey partition size information between nodes,
since nodes performing the selection between out-finger can-
didates can derive partition sizes from node-ids. Partition
sizes can be derived from node-ids, because out-finger can-
didates are consecutive nodes in the overlay address space.

The explicit mode does not use partition sizes. It performs
the out-finger candidate selection based on in-finger counts.
So, Chord has to have some additional capabilities in order
to support the explicit mode. Each node has to keep track of
how many in-fingers they have and each node has to be able
to convey the number of in-fingers to other nodes, because
the selection is done based on that information.

In Chord, the implicit mode is easier to implement than
the explicit mode, because the implicit mode requires only
minor changes to the Chord algorithm. The design of the
Chord algorithm is such that it can benefit significantly from
having more than two out-finger candidates (i.e. cm > 2).

4.2 AFSA in Bamboo
In Bamboo [17], the overlay routing table is refreshed by

using two separate processes, local and global tuning. In the
local tuning process the overlay routing table is refreshed, in
a way, one row at a time, and in the global tuning process a
single entry in the overlay routing table is being refreshed.
AFSA modifies both of these processes.

We did a simulation run with an unmodified Bamboo us-
ing the OverSim simulator. The simulation contained 10000
nodes and all the nodes were idling for 1800 seconds after
all the nodes had joined. After the idling period, all the
nodes started sending application level packets, 84 in to-
tal per node, on 20 second intervals. 1800 second after the
idling period stopped, the simulation ended and we exam-
ined the number of in-fingers and the number of forwarded
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Figure 4: Scatter plot showing the relation between
the number of in-fingers and the number of for-
warded application level packets in Bamboo (note
that the scales are logarithmic)

application level packets in each node. The results show
that there is positive linear correlation between the number
of in-fingers and the number of forwarded application level
packets in Bamboo. The correlation is illustrated as a scat-
ter plot in Fig. 4. The figure shows that the number of
in-fingers increase as the number of forwarded application
level packets increase. The Pearson’s correlation between
the number of in-fingers and the number of forwarded ap-
plication level packets is 0.96. It is noteworthy that there
is no correlation between the number of in-fingers and the
partition sizes nor there is correlation between the number
of in-fingers and the link delays. In the former case the
Pearson’s correlation was 0.03 and -0.23 in the latter. Link
delays for each node in the simulation were taken randomly
between 30 and 70 milliseconds (ms).

The implicit mode of AFSA in Bamboo utilizes the corre-
lation between the number of in-fingers and the number of
forwarded application level packets. The sliding sum of the
forwarded application level packets by the node is used as
the quantifiable property, f (refer to Section 4). With the
sliding sum we mean a calculation where only packets from
the last tss seconds are calculated into the sum. In other
words, an out-finger candidate which has not forwarded a
lot of application level packets in the last tss seconds is more
likely to be selected as an out-finger then a candidate which
has forwarded more packets. Unlike in Chord, the implicit
mode is not straightforward to implement to Bamboo. In
Bamboo, the implicit mode requires continuous tracking of
application level packets and an ability to convey the sliding
sum of forwarded application level packets to other nodes.

The explicit mode does not use the sliding sum of the for-
warded application level packets. It performs the out-finger
candidate selection based on the in-finger counts. So, as in
Chord, also Bamboo has to have some additional capabili-
ties in order to support the explicit mode. Each node has to
keep track of how many in-fingers they have and each node
has to be able to convey the number of in-finger to other
nodes.

There are few differences in the manner how AFSA is built
as a part of Chord and Bamboo. First, unlike in Chord, the
implicit mode is not easier to implement than the explicit
mode in Bamboo. Second, unlike in Chord, the design of the
Bamboo algorithm is such that it can not significantly ben-
efit from having more than two out-finger candidates (i.e.
the utilization of cm is not needed). The reason is that in
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Bamboo the global tuning process could benefit from more
than two out-finger candidates, but it would be impractical
to implement it to the local tuning process. It would be im-
practical, because the local tuning would require fresh infor-
mation from a relatively large number of nodes (e.g. from 90
nodes) in order to make a selection between out-finger can-
didates. This fresh information can be either recent sliding
sum of forwarded application level packet or recent num-
ber of in-finger candidates. In contrast, Chord’s fix fingers
function, and Bamboo’s global tuning need fresh informa-
tion only from a relatively small set of nodes (e.g. from 2-6
nodes).

5. SIMULATIONS
We used the OverSim [3], which is built on top of the

OMNeT++ [20], simulator for conduction the simulations.
More specifically, we implemented AFSA as an extension to
Chord and Bamboo implementations in OverSim. It is note-
worthy that we used the existing Chord implementation as
a starting point, but the Bamboo implementation required
few bug fixes, most notably the fixing of the global tuning
process.

The purpose of the simulations was to evaluate how well
AFSA works with Chord and Bamboo. AFSA is regarded
as working well when it balances the load and produces rel-
atively even distribution of in-fingers among the nodes. The
purpose of the simulations was not to make a comparison
between Chord and Bamboo.

All the simulations had 10000 nodes with random node-
ids. The random numbers for the simulations were produced
by Mersenne Twister random number generator with a cycle
length of 219937. All the simulations were 4600 simulated
seconds long. When we from hereon mention seconds or
milliseconds, we are talking about the time in the simulation,
not wall-clock time. First, the nodes joined within 100 ms
intervals, and so all the nodes had joined after 1000 seconds.
Then, all the nodes were on idle for 1800 seconds. After
that, all the nodes started sending application level packets
to random keys. Each node sent 84 packets in 20 second
intervals. The simulations ended when 4600 seconds had
passed.

The simple underlay network model of OverSim was used
for all simulations. There was no churn in the simulations.
Both Chord and Bamboo used semirecursive routing type
(as it is defined by OverSim). The fixfingers function in
Chord was called every 120 seconds. The Bamboo’s global
tuning process was executed in 30 second intervals, and the
local tuning process in 60 second intervals.

When we refer to application level packets from here on,
we refer to packets that were captured between 4000 and
4010 seconds (which was 5019 packets per simulation run
on average). The topology of the simulations was such that
all the nodes in the network had a link to the same single
point in the network, and the delays of those links were taken
randomly between 30 and 70 ms. The delays remained the
same thorough the simulation. It is noteworthy that the
topology and the delay distribution used in the simulations
does not correspond the topology and the delay distribution
of the Internet.

5.1 Results
We executed 15 simulation runs with different parameters.

Seven of those runs were different Chord-based runs, and

three of them were based on Bamboo. In addition, we did
five extra runs to measure the repeatibility of the simulation
results. It is noteworthy that the simulation runs had long
execution times, because of their relatively large scale, in
our hardware.

The Chord-based simulation runs contained one run with-
out AFSA (i.e. just unmodified Chord) and both implicit
and explicit modes of AFSA had three runs each. On those
three runs the optional parameter cm was varied between 2,
4, and 6. Bamboo-based simulation runs contained one run
without AFSA, one run with the implicit mode of AFSA,
and one run with the explicit mode of AFSA. Optional pa-
rameter cm was not used in the Bamboo-based simulation
(refer to Section 4.2). The implicit mode of AFSA in Bam-
boo calculated the sliding sum of forwarded application level
packets from the last 300 seconds, so tss was 300.

When we analyzed the results from the simulations we fo-
cused on three things: to the number of in-fingers, number
of forwarded application level packets (i.e. load), and end-
to-end characteristics of application level packets. For the
number of in-fingers and the number of forwarded applica-
tion level packets we examined four key statistical values:
average, standard deviation, 5th percentile, and 95th per-
centile. These statistical values present the distribution of
in-fingers and load in the network. In addition to the statis-
tical values, we also examined selected histograms presenting
the in-finger distributions in the network. The end-to-end
characteristics, namely the average delay and average end-
to-end hop count of application level packets, were examined
so that we could evaluate the impact AFSA had on applica-
tion level packet forwarding.

All the key statistical values are presented in Table 1. The
table uses the ”Imp.”, ”Exp.”, ”Avg.”, and ”Std.” abbrevia-
tions which correspond to Implicit, Explicit, Average, and
Standard. The topmost four data rows show the key statis-
tical values regarding the number of in-fingers. For example,
the average number of in-fingers in nodes was 45.97 with the
implicit AFSA in Bamboo. It can be seen from the table
that AFSA enhances significantly the in-finger distribution,
for example by lowering the standard deviation from 11.72
(unmodified Chord) to 2.15 (Chord with the explicit AFSA,
cm=6). All the statistical values improve when AFSA is
used. In general, the explicit modes produce better results
than the implicit modes, and this is especially true for Bam-
boo. Furthermore, it can be said that the evenness of in-
finger distribution increases when cm increases in Chord.

The next four data rows in the table show the key statis-
tical values regarding the number of forwarded application
level packets. All the statistical values describing the num-
ber of forwarded application level packets behave much in
the same way as the statistical values describing the num-
ber of in-fingers. All the statistical values get significantly
better when AFSA is used. For example, the standard devi-
ation is lowered from 1333.48 (unmodified Bamboo) to 52.79
(Bamboo with explicit AFSA).

We have shown earlier in this paper that there is a positive
linear correlation between the number of in-fingers and the
number of forwarded application level packets in Chord (see
Fig. 2) and in Bamboo (see Fig. 4). This can also be seen
in the standard deviation values in the Table 1. We can see
that the variance (i.e. standard deviation) in the number
of forwarded application level packets decreases when the
variance in the number of in-fingers decreases.
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Table 1: Results from the simulations
Chord Bamboo

No Imp. AFSA Exp. AFSA No Imp. Exp.
AFSA cm=2 cm=4 cm=6 cm=2 cm=4 cm=6 AFSA AFSA AFSA

Average 13.62 13.70 13.86 13.94 13.54 13.18 12.88 46.05 45.97 45.94
Number of Std. deviation 11.72 10.51 6.62 5.47 6.22 3.10 2.15 228.19 12.78 1.38
in-fingers 5th percentile 1 3 5 6 5 9 10 1 27 45

95th percentile 37 34 26 24 24 19 17 111 69 47
Forwarded Average 546.61 534.78 532.80 529.70 547.64 549.91 552.59 218.48 225.74 226.32
application Std. deviation 456.70 390.28 230.53 180.49 286.23 185.72 154.25 1333.48 154.92 52.79
level 5th percentile 66 102 214 269 165 286 333 0 109 143
packets 95th percentile 1440 1302 955 852 1067 890 834 493 406 312
Packet Avg. delay 0.35 0.35 0.34 0.34 0.35 0.34 0.34 0.13 0.17 0.18
info Avg. hops 6.96 6.90 6.84 6.81 6.90 6.87 6.80 3.47 3.50 3.51

The average delay and average hop count of application
level packets is shown in the lowest two data rows in the
table. The hop count means how many nodes an applica-
tion level packet has to travel through before reaching its
destination, and the average delay means how long it takes
for the packet to reach its destination. It can be seen that
AFSA has only a relatively small impact to the average hop
count. Likewise Chord has only a relatively small impact
to the average delay. However, AFSA has an somewhat
degrading impact to the average delay in Bamboo. This
is not surprising, because unmodified Bamboo chooses the
out-fingers based on Round-trip Times (RTTs) of out-finger
candidates. In other word, in an unmodified Bamboo the
out-finger candidate (note that there is only one candidate)
with lowest RTT get selected as an out-finger. It is quite
natural to expect low RTTs when the out-fingers are se-
lected based on RTTs, and not on something else. There is
more related discussion in Section 7.

Three selected in-finger distributions of the Chord-based
simulations are presented as histograms in Fig. 5. The se-
lected distributions are unmodified Chord (dark gray), the
implicit AFSA where cm=6 (gray), and the explicit AFSA
where cm=6 (light gray). It can be seen from the histograms
that the in-finger distribution gets considerably narrower
when AFSA, and especially the explicit AFSA, is used. It
is noteworthy that an unmodified Chord has a very uneven
in-finger distribution where there are 1178 nodes having less
than 3 in-fingers and 123 nodes having more that 50 in-
fingers (and there is even one node with 127 in-fingers).

In-finger distributions of the Bamboo-based simulations
are presented as histograms in Fig. 6. The distributions are
unmodified Bamboo (dark gray), the implicit AFSA (gray),
and the explicit AFSA (light gray). It can be seen from the
histograms that the in-finger distribution gets considerably
narrower when AFSA, and especially the explicit AFSA, is
being used. It is noteworthy that unmodified Bamboo has
an extremely uneven in-finger distribution where there are
5563 nodes having less than 21 in-fingers and 259 nodes hav-
ing more that 300 in-fingers (and there is even one node with
6279 in-fingers). Bamboo with explicit AFSA reaches signif-
icantly better result and it has 9993 nodes that have more
than 40 but less than 61 in-fingers. Furthermore, it can be
seen from Table 1 that 90% of the nodes with explicit AFSA
in Bamboo have their in-finger counts between 45 and 47
(while average is 45.94).

As a summary from the experiments it can be said that
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AFSA enhances the in-finger distribution, and therefore also
the load balancing, significantly. In general, the explicit
modes produce better results than the implicit modes, but
also the enhancements produced by the implicit modes are
significant. The increase of cm yields better results in Chord.
Given how small changes the implicit AFSA mode in Chord
requires, it performs remarkably well when cm=6.

5.2 Repeatibility of the Results
The fundamental decision in our simulation work was to

do a number of relatively large scale (10000 nodes, 4600
seconds) simulations runs, as opposed to a greater number
of simulation runs with smaller scale. Given the limited
hardware resources, we did not run all the measurements
multiple times due to long execution times. However, to get
an idea of the repeatibility of the measurements, we did run
one simulation, Chord with explicit AFSA, cm=6, six times.

We calculated the standard error for the key statistical
values regarding the number of in-fingers. The average val-
ues of the key statistical values from the six simulation runs
are presented in the following (standard error is presented in
parenthesis after each value): average 12.88 (0.00), standard
deviation 2.20 (0.01), 5th percentile 9.83 (0.15), and 95th
percentile 17.17 (0.15). From these values we can deduct
that the results stay relatively unchanged among multiple
simulation runs.

6. DISCUSSION
AFSA is inherently scalable as an algorithm. This is due

to the fact that AFSA requires two or more (up to cm) out-
fingers candidates per overlay routing table entry in order
to do load balancing. When a structured P2P network is
relatively small, then there are less possible out-finger can-
didates per an overlay routing table entry in the network.
For example, in both Chord and Bamboo there is a short
supply of the possible out-finger candidates to those entries
in overlay routing tables that require a long prefix match. In
Chord those are the closest out-fingers and in Bamboo those
are the out-fingers in the highest rows. However, the number
of possible out-finger candidates for those overlay routing ta-
ble entries grow when the network grows. Furthermore, load
balancing is usually not a problem in relatively small P2P
networks.

As a general statement it can be said that a node in a
structured P2P network with AFSA consumes more band-
width than a node without AFSA. The increased bandwidth
usage is due to the fact that multiple out-finger candidates
needs to be are gathered and some extra information has to
be conveyed through the network (e.g. in-finger counts in
the explicit AFSA mode). We did not measure the explicit
increase in the bandwidth consumption for two reasons. The
first reason was that a part of the AFSA signaling is in the
packets that are sent to the network even in cases where
AFSA is not used. For example, the in-finger counts in
the explicit AFSA in Chord are conveyed in packets that
are created by the fixfingers function of unmodified Chord.
Another example from real networks is one where a part
of the AFSA signaling could be incorporated to otherwise
needed NAT keep-alive packets, such as to Binding meth-
ods of Session Traversal Utilities for NAT (STUN) [18]. The
second reason was that the increase in bandwidth usage is
highly dependent on the implementation factors. For ex-
ample, the gathering of multiple candidates in the implicit

mode of AFSA in Chord can take either only a single packet
exchange with one out-finger candidate (thanks to Chord’s
successor list), or packet exchanges with all the candidates.

In this paper we examined AFSA in an environment where
all the nodes had AFSA capabilities and there was no churn.
The current implementation of AFSA does not have such
failure case handlers and retransmission timers that would
be needed for evaluating incremental deployability and churn
resistance. However, our assumption is that at least the im-
plicit mode of AFSA in Chord is well suited to environments
where only a portion of nodes support AFSA and where the
rest are running unmodified Chord. Furthermore, we do not
see any theoretical reasons why a given structured P2P net-
work with AFSA would have worse churn resistance that the
same structured network without AFSA.

The fact that AFSA balances the number of in-fingers
among all the nodes in the network might not be an ideal
solution for all environments. For example, an uneven in-
finger distribution, which could be based on node capabili-
ties, might make the P2P network more efficient and robust
in heterogenous environments.

AFSA has some benefits and differences when compared
to the existing load balancing algorithms. First, AFSA does
not increase the number of out-fingers (which can be indi-
rectly seen by observing the average number of in-fingers
in Table 1) like the load balancing mechanisms based on
virtual servers concept [19, 7, 15, 8, 9] do. Second, AFSA
preserves the complete freedom in choosing node-ids unlike
the load balancing mechanisms that are minimizing the vari-
ation between the partition sizes [13, 11, 4]. Third, AFSA
does not mandate that a single physical node has more than
one node-id, unlike the load balancing mechanism presented
by Karger and Ruhl [10]. And lastly, AFSA is not focused
on creating an even distribution of objects unlike the load
balancing algorithm by Byers et al. [6]. Due to this dif-
ference, it might be beneficial to use AFSA in conjunction
with [6].

7. FUTURE WORK
One of the desirable properties of AFSA is that it pro-

duces a relatively even in-finger distribution to a P2P net-
work. We believe that this property can be used, and is
essential, for creating probabilistic wildcard searches on top
of P2P networks. With wildcard searches we mean, for ex-
ample a ”*catering*” query in a P2PSIP network [5] which
would return the contact information of catering services in
a probabilistic manner.

Simulation results in Section 5.1 show that AFSA in-
creases the end-to-end delay of the application level packets
when compared to unmodified Bamboo. The reason for this
is that the unmodified Bamboo selects its out-fingers based
on RTT and does not care about load balancing. There
might be environments where it would be beneficial to have
an algorithm that takes both, RTT and load balancing, into
consideration when selecting between the out-finger candi-
dates. This kind of hybrid algorithm could be, for example
implemented as an extension to AFSA.

In theory, there should be no reasons why the AFSA al-
gorithm could not be applied also to other structured P2P
networks, in addition to Chord and Bamboo, which have
out-fingers pointing to distant locations in the address space
of the overlay. However, AFSA is not suitable to such struc-
tured P2P networks where the out-fingers of the nodes are
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pointing only to the immediate neighbors, such as vanilla
version of Content-Addressable Network (CAN) [16]. We
believe that AFSA is especially easy to implement to such
structured P2P networks that are using periodic stabiliza-
tion, as opposed to reactive stabilization, because periodic
stabilization usually makes the gathering of multiple out-
finger candidates quite convenient.

Given the promising simulations results, it would be ben-
eficial to build a real implementation (i.e. not a simulation)
of AFSA. The real implementation could be used for validat-
ing the AFSA by conducting experiments in real networks,
such as in Internet.

8. CONCLUSIONS
A novel load balancing algorithm, the Advance Finger

Selection Algorithm (AFSA), was presented in this paper.
AFSA is an inherently scalable algorithm that produces a
relatively even distribution of in-fingers and load among the
nodes in a structured P2P network. We believe that the rel-
atively even in-finger distribution can be utilized for building
new services, such as a wildcard search mechanism, on top
of structured P2P networks. AFSA was implemented for
both Chord and Bamboo algorithms in the OverSim simula-
tor. The simulation results from OverSim show that AFSA
works well. Even though AFSA was implemented only for
Chord and Bamboo, we believe that it would be feasible to
implemented it to other structured P2P networks as well. A
notable property of AFSA is that it requires only a single
node-id per physical node and it preserves complete free-
dom in choosing it. Furthermore, AFSA does not increase
the number of fingers in a P2P network.
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