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Queries are convenient abstractions for the discovery of information and services, as they offer
content-based information access. In distributed settings, query semantics are well-defined, for
example, queries are often designed to satisfy ACID transactional properties. When query pro-
cessing is introduced in a dynamic network setting, achieving transactional semantics becomes
complex due to the open and unpredictable environment. In this article, we propose a query pro-
cessing model for mobile ad hoc and sensor networks that is suitable for expressing a wide range
of query semantics; the semantics differ in the degree of consistency with which query results
reflect the state of the environment during query execution. We introduce several distinct notions
of consistency and formally express them in our model. A practical and significant contribution of
this article is a protocol for query processing that automatically assesses and adaptively provides
an achievable degree of consistency given the operational environment throughout its execution.
The protocol attaches an assessment of the achieved guarantee to returned query results, allowing
precise reasoning about a query with a range of possible semantics. We evaluate the performance
of this protocol and demonstrate the benefits accrued to applications through examples drawn from
an industrial application.
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1. INTRODUCTION

The widespread adoption of portable devices has the potential to support truly
ubiquitous computing. These developments have led to heightened interest
in designing software-intensive systems for mobile ad hoc networks: dynamic
networks formed opportunistically by nodes within wireless communication
range. Applications in such settings are often designed to exploit information
and services provided by other applications in the network. In marketplace
applications, for example, a shopper may search for nearby services or prod-
ucts. On an intelligent construction site, a site supervisor can collect infor-
mation from a network deployed on the site to manage assets and maintain
safety.

An abstraction that can help simplify the process of discovery in such appli-
cations is a query. Query processing masks the details of complex network com-
munication required to discover information and services distributed across a
mobile ad hoc network. Query use in such open and dynamic settings is partic-
ularly appropriate, as queries eliminate the unrealistic assumption of knowing
in advance the location or exact nature of the desired information.

Traditionally, database query semantics have been precisely defined to en-
sure that executing a query results in a single, correct answer, usually requiring
a transaction that upholds the ACID properties of atomicity, consistency, iso-
lation, and durability. In distributed databases, preserving these properties
often requires a distributed locking protocol that prevents changes to data dur-
ing query execution. In effect, a query appears to execute over all hosts in the
network in a single step. Applying the ACID properties becomes more com-
plicated when hosts are mobile because such locking protocols are expensive
in highly dynamic environments rife with disconnections. In addition, using
locking protocols in these networks, which are often designed to provide access
to streaming data, is not feasible. Attempting to strictly adhere to the ACID se-
mantics makes it difficult, if not impossible, to receive any query results under
common operational conditions.

We contend that a number of applications for dynamic computing environ-
ments may require guarantees other than strict transactional semantics. We
propose a new perspective on query semantics, which allows us to discover,
precisely define, and reason about the kinds of query semantics needed by ap-
plications in these dynamic environments. We introduce a model that can be
used to formalize a range of consistency semantics associated with query exe-
cution in mobile ad hoc networks. To our knowledge, this is the first attempt to
provide a general specification method for query execution semantics in such
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networks. We use this model to formally express novel consistency semantics
that lie in between the extreme strong and weak forms of consistency typically
identified in query processing models.

The ability to express query consistency semantics will provide a solid in-
tellectual foundation for discovery and enhanced understanding, but without
a practical realization of a particular semantic, it is of no use in application
design. For this reason, our work couples the formal expression of query seman-
tics with protocol development. We present a protocol for query execution in
dynamic ad hoc networks that automatically assesses the changing operating
environment and adapts its execution to provide query results. An assessment
of the achieved consistency semantic is provided with the query results. Such a
protocol offers a more flexible approach to query execution than transactional
approaches yet allows for careful reasoning about query results.

This article extends our previous work on defining query consistency se-
mantics in dynamic environments [Payton et al. 2007] to make our approach
accessible to application developers and to demonstrate its feasibility. Specifi-
cally, we define an application programming interface that can be used to create
expressive and adaptive applications based on our flexible and self-assessing
approach to query processing. In addition, we demonstrate the impact of envi-
ronmental dynamics through a carefully grounded application example, which
also illustrates how programmers use the API to create expressive query pro-
cessing applications.

The remainder of this article is organized as follows. Section 2 overviews
related work and uses it as a foundation to motivate our problem definition.
Section 3 introduces our model of dynamic networks and query execution within
them. A range of consistency semantics is introduced in Section 4, coupled with
application examples and formalizations. In Section 5, we present an adaptive,
self-assessing protocol for query execution, which provides varying degrees of
consistency; an implementation and evaluation of that protocol is described in
Section 6, including an application-driven analysis. Section 7 concludes.

2. RELATED WORK AND PROBLEM DEFINITION

In this section, we review existing approaches that relate to our proposed
query processing and assessment framework. We then use this existing work
to crystallize the definition of the specific problem we undertake.

2.1 Existing Approaches

Distributed databases have traditionally focused on wired, strongly connected
environments. As devices become increasingly mobile, the research community
has responded by investigating the deployment of databases in mobile and
peer-to-peer network settings [Barbara 1999]. Several of these strategies focus
on issues related to dynamic cache allocation [Sistla et al. 1998] or optimistic
replication [Kistler and Satyanarayanan 1992], while others allow applications
to explicitly issue weak operations that are allowed to operate over potentially
inconsistent data [Pitoura and Bhargava 1995]. Our approach differs in that
we avoid caching data locally, instead desiring to acquire it on-demand from a
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dynamic environment. We also postpone the decision of how weak an operation
to perform until run time, providing applications with the strongest semantic
achievable in a given operational context.

In a similar vein, researchers have looked within mobile database systems
at transactional semantics. This work has begun to address the need for a new
view of consistency semantics by proposing new transaction models for mobile
settings. Many of these models relax the constraints imposed by the ACID prop-
erties and execute queries using transactions that adhere to a weaker set of
properties, though the approaches tend to differ significantly. A few [Dunham
et al. 1997; Walborn and Chrysanthis 1999] use the concept of split transactions
to handle intermittent disconnections and reconnections. Others focus on main-
taining or relaxing a particular ACID semantic; isolation-only transactions [Lu
and Satyanarayanan 1994] ensure that committed transactions only appear as
though executed independently; toggle transactions [Dirckze and Gruenwald
1998] enable extended execution, relaxing both atomicity and isolation; and
the prewrite transaction model [Madria and Bhargava 1998] focuses almost
exclusively on data-availability. These models are generally limited to use in
nomadic networks, in which periodic access to the wired infrastructure is avail-
able, and solutions can rely on the use of a resource-rich fixed node to manage
transactions. Because of their reliance on powerful and fixed nodes on the fringe
of the network, these weakened transactional models cannot be applied to the
more extreme form of mobility found in mobile ad hoc networks. Moreover, the
frequent disconnections and reconnections in a mobile ad hoc network could
result in significant overhead when employing similar approaches.

Closely related to our work is a study of query semantics for dynamic net-
works [Bawa et al. 2004]. The authors define a new class of semantics based on
the single-site-validity principle, in which a query result appears to be equiv-
alent to an atomic execution from the query issuer’s perspective. While the
themes are similar, the work differs in scope. Their study defines a particular
class of semantics, while we attempt to provide a model that can define classes
of semantics.

2.2 Problem Definition

As amotivation for the problem we undertake, consider an application querying
a network spanning a construction site. Such intelligent construction sites are
becoming increasingly commonplace, connecting sensors distributed around
the site to measure environmental and structural conditions with small mo-
bile devices carried by workers and inspectors and more powerful stationary
computers. For example, worker may pose queries to the network to retrieve
measures of the concentration of a potentially hazardous compound. Given
that the worker knows what concentration constitutes a danger, he can use the
result of this query to take subsequent actions. However, in a dynamic envi-
ronment, there may be some degree of uncertainty associated with the query’s
result, due to movement in the network over which the query was issued. If the
worker has an understanding of the degree of this uncertainty, his subsequent
actions may change. For example, while a dangerous concentration may call
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for evacuation in all cases, containment measures may depend on the actual
concentration. If the worker is certain of the query response (i.e., the query
was executed with the traditional strong semantics), he may be able to begin
the appropriate containment procedure immediately. However, if uncertainty
exists, further measurements may be necessary before the appropriate action
is known.

Such a scenario provides a motivation for a query processing protocol that
can assess a query’s achieved guarantee as it processes the query. This is
in contrast to existing protocols that provide rigid implementations at one
extreme or the other. For example, a protocol providing a strong guarantee
may only deliver a result when that strong guarantee can be achieved, leaving
applications without any information when the guarantee is not possible. On
the other hand, a best-effort protocol may be able to always provide a result,
but an application has no idea how that result relates to the ground truth.
Therefore, it becomes meaningful to provide a self-assessing query processing
protocol that not only delivers a query result but also labels that result with
the achieved semantic.

In this article, we build on our previous work [Payton et al. 2007] in address-
ing the need for a fundamental reexamination of query processing theory and
practice. This requires a formal framework that enables characterization and
reasoning about query consistency coupled with a precise formal characteri-
zation of a range of application-relevant types of consistency. Providing these
consistency ranges to concrete applications requires a protocol that not only
supports the semantics but can reflect upon its own behavior to provide an as-
sessment of its achieved consistency. Such self-assessment allows application
logic to rely on query consistency to adapt decision making processes.

3. AMODEL OF QUERY EXECUTION

In this section, we introduce the concepts that lay the foundation for our study
of query processing in mobile environments. The idea is to model the evolution
of the system as transitions between successive configurations and to relate
new concepts such as query consistency semantics to this model. By modeling
configurations as sets of mobile entities with associated attributes, we provide a
model that is general and flexible enough to capture different types of queries
over different types of mobile entities independent of a query specification
language, and we can easily express mobility and time as state transitions. We
subsequently use this model to precisely define the query processing guarantees
that can be offered to queries in dynamic mobile computing environments.
Furthermore, this model can drive the discovery of new semantics that may be
further beneficial to application development.

3.1 Modeling the Environment

Understanding the environments in which queries execute is fundamental to
modeling their semantics. We view a mobile ad hoc network as a closed system
of hosts where each host, 4, has a location and a single data value (though a
single data value may represent a collection of values). A host is represented as
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a tuple (¢, v, 1), where ( is a unique host identifier, v is the host’s data value, and
A is the host’s location. The global abstract state of an ad hoc network, which
we call a configuration, is simply a set of host tuples. Formally, we describe a
configuration as:

H
C= U(t, v, M),
i=0
where H is the number of hosts in the network.

Given a specific host 4, called the reference host, we define an effective con-
figuration as the projection of the configuration with respect to the set of hosts
that are reachable from h. Reachability is often defined in terms of physical
network connectivity, captured by a relation that conveys the existence of a
(possibly multi-hop) network path between a pair of hosts. We use a binary
logical connectivity relation, K, to express the existence of a direct (one-hop)
communication link between two hosts. Reachability is defined as the reflexive
transitive closure relation, *. Using a host’s state (the values of fields of a host
tuple), we can derive physical and logical connectivity relations in a configu-
ration and, in turn, the reachability relation on hosts in the ad hoc network.
A physical connectivity relation that represents a connectivity model with a
circular, uniform communication range can be defined using the location field
of host tuples:

(hi,he) e K & |h1 13 —he 13| <d,

where 1 3 refers to a tuple’s third field (the host’s location) and d is the com-
munication range. It is possible to model other physical connectivity models
in a similar fashion, and logical connectivity relations can be defined using
constraints on the identifier and value fields of a host tuple.

Given this definition of reachability, we define the portion of the global ab-
stract state of the ad hoc network that may, in principle, be visible to a reference
host. We call this locally visible state an effective configuration, which is a pro-
jection of a configuration with respect to the reachable hosts. We formally define
an effective configuration E for a reference host % in a configuration C as:

Clh=(Uhh:heCAheCARKCh:h),

where K* is logical connectivity, and | denotes projection.

The environment, however, is not static; it evolves as the network topology
changes and value assignments occur. We model this evolution as a state tran-
sition system in which the state space is defined by the set of possible system
configurations, and transitions are defined as configuration changes. Sources
of configuration change include:

—variable assignment. a single host changes its data value v, resulting in a
new configuration. Formally, this is:

value change = (3h:heC;:: 3, v:h €Ciq A
vERT2uK =M1t 10,1 3));
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Fig. 1. Query bounds and active configurations.

—neighbor change. the change in a host’s location impacts the logical connec-
tivity of the network; as a result, some host in the network will experience a
change in its set of logically connected neighbors. A neighbor change occurs
when a host is no longer connected to a previous neighbor (the pair of hosts
no longer belongs to the connectivity relation ) or becomes connected to a
new neighbor (the pair of hosts now belongs to the relation). We formally
describe this as:

neighbor _change = (hy,i:hy € C; ::
<h,1’ hg,l h/l € Ci+1 N hg (S Ci+1 o
Ki=Mhit1Lh12,DAl#h +3A
(A}, he) € K A (hy, ho) ¢ K)) v
(A, he) ¢ K A (hy, hg) € K)N)).

We can now define a configuration change as:
AC = (value_change & neighbor _change).

The exclusive-or notation @ indicates that we model one change at a time.
From a global perspective, system evolution can be viewed as a sequence of
configurations associated with successive transitions. For a reference host, this
evolution can be viewed as a sequence of effective configurations.

3.2 Defining Queries and Results

We use this model of an evolving system to reason about the results of a query
issued over a mobile ad hoc network. Consider the sequence of configurations
in Figure 1. A single query may span such a sequence, starting with the con-
figuration in which the query is issued (the query initiation bound, Cy) and
ending in the configuration that corresponds to the delivery of the result (the
query termination bound, C,). We define (Cy, C1, ... C,) as the set of configura-
tions over which a query is executed. No configuration outside these bounds
can impact the query’s result. Since there is processing delay associated with
issuing a query to, and returning results from, the network, we define a query’s
active configurations as the configurations within the sequence (Cy, C1, ...C,)
during which the query actually interacted with hosts in the network. Every
component of a query’s result must be a data element that is part of some
configuration belonging to the set of active configurations. In reality, only the
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Fig. 2. Effective active configurations. Circles are hosts; solid lines represent the logical connec-
tivity relation. Dashed lines show effective active configurations.

query issuer’s effective configurations (containing the reachable hosts) can con-
tribute to its active configurations. These are the effective active configurations,
bounded by the effective active initiation bound, Ey, and the effective active ter-
mination bound, E,,, as shown in Figure 2. Ey, E1, ... E,, is the sequence of
effective active configurations over which a query is evaluated.

A query can be viewed as a function from a sequence of effective active
configurations to a set of host tuples. Since a configuration is simply a set of
host tuples, this model lends itself to a straightforward expression of a query’s
result (p). In fact, the result itself is a configuration. This novel perspective
directly correlates the result with the environment in which the query was
executed, simplifying the expression of the consistency of those results.

The configuration comprising the results is subject to a set of constraints.
First, each element, r, in the result configuration, p, must be reachable from
the query issuer (A) in at least one of the effective active configurations. Second,
only one query result per host should be present in the result set. Formally:

hep = Fi:0<i<m:heE A
(Vr:rep—1{h}ht1#r1 1),

which states that any host tuple, &, in the result, p, must have existed in one
of the effective active configurations (E;) and that, for every host tuple in the
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result, there must not be another tuple in the result with the same unique id
(h 1 1).

Our goal is to define the degree of consistency for a query issued over a
dynamic ad hoc network. Given our model, we can achieve this by examining
the relationship between the result configuration, p, of a query and the effective
active configurations that contributed to the query’s evaluation. Next, we use
this model to formalize new notions of consistency that are useful to application
developers.

4. DEFINING QUERY CONSISTENCY

We wish to capture a range of consistency degrees that are desirable for appli-
cations in mobile ad hoc and sensor networks. In this section, we enumerate a
set of consistency guarantees that can be determined for queries that involve a
single request/reply exchange between the query sender and the other nodes in
the active configuration(s). For each of the semantics we provide, we give a pre-
cise formalization that conveys the relationship between the state of the ad hoc
network and the query’s returned result. To make such specifications useful to
application developers, the next section presents a single protocol that provides
different consistency guarantees, depending on the run-time environmental
characteristics. The protocol also communicates the resulting consistency of a
requested query to the application.

To demonstrate the usefulness of this new set of consistency guarantees,
we provide application examples from two domains and use these examples
to indicate how results for each semantic can be used. In the first domain, we
demonstrate how query consistency can prove useful in gathering information
from a construction site. We will look at a query that gathers information about
the amount of a material (e.g., palettes of bricks) on the site. We revisit examples
from construction sites in later sections to demonstrate the applicability of
our approach. We provide a second example from another application domain
to complement the intuition provided by the first. In the second example, the
mobile ad hoc network is made up of hosts that represent taxi shuttles entering
and leaving an airport. Each shuttle is periodically updated with information
such as price to different destinations. A user walking out of the airport may
query the system for this information, but since information is updated in real
time, the data stored at each host can change during query execution. We now
use these two examples to elucidate the range of consistency guarantees that
are desirable in a query processing system.

4.1 Guaranteed Availability: IMMEDIATE

The strongest consistency guarantee ensures that all of the results a query
returns were available at the same time and that they are still available when
the query returns. In the construction site example, a query with IMMEDIATE
semantics can give the construction site supervisor a complete and accurate
picture of his site at the instant his query returns, allowing him to know which
materials are currently present and to subsequently make future plans and
schedules based on the results. In the airport shuttle system, a query response
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with such strong semantics indicates that all of the returned potential fares
are competitive prices that can be purchased at the instant the query returns.

Formal specification. The IMMEDIATE consistency states that not only were all
of the results returned present in the same configuration but that the results
were available when the query started and were still available to the requester
when the query returned, that nothing changed while processing the query.
Formally, this is:

IMMEDIATE = p = Ey,

where p is the set of results returned.

4.2 Strong Guarantees: ATOMIC

Many applications require that a query result provides an exact view of the
surrounding environment but may not require the added component of the
IMMEDIATE guarantee that the results are still available. In our construction site
example, a sequence of results with ATomic semantics gives the construction
site supervisor a temporal picture of how materials are consumed across the
site. In an airport shuttle system, a query with such semantics gives the user
a guarantee that the prices quoted are comparable across different shuttles
since the results were all collected in the same configuration. In these cases,
the relationship among the items returned is important; all of the responses
returned should have been present in the same configuration to give an accurate
picture of the network state at a single point in time.

Formal specification. We capture the aATomic consistency level in our model by
stating that the query was performed on a single effective active configuration
(E;) and that it effectively returned a snapshot of that configuration. Formally,
this is simply:

ATOMIC=3i:0<i<mAp=E

where E; is an effective active configuration for a given reference host, A. Set-
ting p equal to the configuration does not necessarily signify that the appli-
cation uses all of the results, but that they are available. We believe this is
the strongest consistency semantic we can potentially provide, given data and
network dynamics.

4.3 Partial Results: ATOMIC SUBSET

In many instances, applications may only need a certain number of resources
to complete a task. A construction site supervisor may know that he requires
a certain amount of a given material for a particular task, and a query that
returns the subset of the available assets may be sufficient to complete a par-
ticular task. In the airport shuttle system, a query that has an ATomIC SUBSET
guarantee ensures that all the results that are returned are comparable (since
prices collected from different taxis were all collected in the same configura-
tion). It does not guarantee, however, that all possible prices were returned.
Formal specification. An AToMIC SUBSET consistency dictates that all of the
results that are returned should have been present in the same effective con-
figuration, but does not require that everything present in that configuration
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is returned. Formally, we express this as:
ATOMICSUBSET =3 :0<i<mAp CE,

which states that the result set, p, is exactly a subset of one of the effective
active configurations. That is, all of the results in p were present in a single
configuration, but the result set may not contain all of the values from that
configuration.

4.4 Degrees of Partial: QUALIFIED SUBSET

A slightly better picture for the airport shuttle system would provide the user
some information about what fraction of results the query potentially missed. If
the returned result represents a large sample of the possible results, the user
may have more confidence in the lowest fare reported being near the actual
lowest fare. We refer to this semantic as QUALIFIED SUBSET because the result
is qualified with respect to the potential result. In the construction scenario,
a query of materials on the site gives the site supervisor a view of a certain
percentage of the available materials, potentially allowing him to make some
worst-case plans.

Formal specification. The formalization of the QUALIFIED SUBSET consistency
level is a specialization of ATomIC SUBSET to constrain the results returned. It
requires that at least a percent of the results that were available in all of the
effective active configurations are returned. Formally:

QUALIFIED SUBSET =3i : 0 <i <mAp C Ein|p|> a | B,

where | p | is the cardinality of the set of results returned, and | E; | is the total
number of results that were present over all the effective active configurations.

4.5 Weak Guarantees: WEAK

The weakest guarantee our framework provides to applications simply ensures
that all of the results returned were present in at least one of the effective
active configurations. Our construction site supervisor may have no significant
use for weak semantics because they give him no reliable information about his
materials. It can only tell him that the quantity of materials returned in the
response existed at some point in the past. He may use this information for a
very basic spot check assigning no validity to it. In the airport shuttle system,
on the other hand, there is no guarantee that the fares are directly comparable
(since they may have been collected at different times), but they offer a view of
some of the options. This can give the user a quick idea of what the fare range
is, but it is not likely to be something a user will want to base a purchase on
unless pressed for time.

Formal specification. We capture the weakest form of guarantee by ensuring
that anything that was returned was at least present in one of the effective
active configurations:

WEAK =p C CJ E;.
1=0
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This semantic does not provide any information about the relationships among
the returned results and is the weakest meaningful consistency semantic we
can provide.

4.6 Degrees of Weak: WEAK QUALIFIED

The final consistency semantic our framework can provide is WEAK QUALIFIED.
In this case, the collected results may have come from across all effective con-
figurations (they may not have all existed at the same time), but the requester
is guaranteed to have received at least some fraction of the possible results. In
the construction site scenario, this gives the supervisor some information about
the relative recent availability of some materials. He can use this information
to make some worst-case plans, but he cannot base these plans on complete in-
formation, for example on relative locations of materials, since the information
comes from different configurations. In the airport shuttle system, the user is
again guaranteed to have received a certain percentage of the available fares,
but since these may have come from different configurations, they may not be
directly comparable.

Formal specification. As a slightly stronger version of the weak guarantee,
the WEAK QUALIFIED consistency specifies that the result contains at least
some minimum fraction of the results that were present over all the effective
active configurations. That is:

m
WEAK QUALIFIED = p C U E; A |hosts_in(p)| > « .
i=0

hostsin( U Ei>

=0

Here, hosts_in is a function that counts the number of unique hosts given a set
that may contain multiple results from a single given host.

5. A SELF-ASSESSING QUERY PROTOCOL

In this section, we present a protocol that can provide any of the consistency
semantics introduced in Section 4. The semantic achieved depends on the con-
ditions of the environment during query execution. The protocol dynamically
assesses which semantic is achieved and attaches this assessment to the re-
turned query results. By providing this protocol, we demonstrate the feasibility
of implementing the semantics and provide developers with a flexible mecha-
nism for query execution that has an underlying formal foundation for precise
reasoning about query results.

5.1 Protocol Overview

A typical approach to providing strong consistency relies on locking data items
that contribute to a query’s result. This solution may hinder concurrent execu-
tion; data items that are merely read and not changed by a query’s execution
are locked and therefore unavailable to others during query execution. Our
approach does not require data items to be locked during query execution and
instead maintains state about data values that will be accessed during query
evaluation and determines if the values remain accessible and unchanged
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Fig. 3. Protocol phases and waves.

throughout execution. Using this information, the protocol can compute the
semantic achieved by the query.

We rely on a controlled flooding approach to distribute and evaluate a query.
One can think of a message spreading throughout the reachable portion of
the network like a wave. Hosts that have received the message are behind the
wave, while hosts that have not yet received the message are in front of the
wave. We use these notions of behind and in front of to determine the impact of
environmental changes on the protocol’s execution and the semantic achieved.

Our protocol uses two flooding phases, shown pictorially in Figure 3. The first
phase precisely identifies the query initiation bound (as defined in Section 3),
while the second collects the data values to return. The first phase constructs
a tree of the query’s initial participants; every member in this tree knows
both its parent and its children. This phase completes when the reference host
has collected replies from all of its children, and the query initiation bound is
established. When a host in the tree receives the second phase of the query, it
passes the query to its children. When all of its children have replied, the host
replies. The query is complete when the reference host has received replies
from all of its children.

Each of these flooding phases comprises two waves: one that disseminates
the request and one that returns the response. Before a host sends its response
in the first phase, it sets a flag indicating that it is now a participant in query
processing. In Figure 3, a host is shaded, indicating that it has become a par-
ticipant. Similarly, it is filled with the straight line pattern after sending a
response in the second wave of the second phase. This indicates that it has
completed participating in the query. Each participating host monitors data
value changes and neighbor changes that occur between the time it is shaded
and when the line pattern appears. Such changes that occur behind and in
front of the second wave in each phase can impact the achievable consistency
semantic. For example, if a host that is established as a participant in the query
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during the first phase becomes disconnected before replying in the second phase
(in front of the second phase’s second wave), the ATomic guarantee cannot be
provided. The disconnected host’s parent logs the disconnection and passes this
information to the query issuer with the result. The reference host communi-
cates to the application the strongest possible semantic that the protocol can
guarantee was satisfied.

In practice, flooding an entire network can be prohibitively expensive and
may cause unreasonable response times. One way to control this cost is to
limit the query’s scope. In our approach, flooding is constrained by a query’s
logical connectivity relation, K. Previous work provides practical solutions for
scoping [Julien and Roman 2002; Kabadayi and Julien 2007; Roman et al.
2002]; these can easily be adapted to provide foundational execution support
for our protocol.

In Section 5.2, we provide a detailed description of this self-assessing query
execution protocol. We assume the use of a reliable message delivery mecha-
nism (research on reliability continues to advance, e.g., [Julien et al. 2008; Si
and Li 2004; Vellambi et al. 2007]). Also, we assume that each host can de-
tect connection and disconnection of its neighbors using one of the mentioned
scoping approaches.

5.2 Protocol Description

To define the protocol’s behavior, we use I/O Automata notation [Lynch and
Tuttle 1989]. We show the behaviors of a single host, A, indicated by the sub-
script A on each behavior. Each action (e.g., ParticipationRequestReceived 4(r)
in Figure 5) has an effect guarded by a precondition. Actions without precon-
ditions are input actions triggered by another host. Each action executes in
a single atomic step. We abuse notation slightly by using, for example, “send
ParticipationRequest(r) to Neighbors” to indicate a sequence of actions that
triggers ParticipationRequestReceived on each neighbor.

The state variables for each host are shown in Figure 4. Only the state for
a single query execution is shown; each query execution has a duplicate set of
variables. Each host uses two Boolean flags, membership and monitoring, to
aid in the determination of the consistency semantic. The membership flag is
used in the first flooding phase to identify participants in the query execution
protocol, while the monitoring flag is used in the second flooding phase to
identify data values that are being queried. The departed-flag, added-flag, and
data-flag variables are used to support the determination of the consistency
assessment; if either is non-zero, then atomic consistency cannot be provided.

5.2.1 Establishing the Query Initiation Bound. The first flooding phase of
the protocol constructs a spanning tree that consists of all hosts that are initial
participants in the query’s execution. In terms of the query model presented in
Section 3, the first flood defines the initial configuration members and estab-
lishes the query initiation bound. Two waves are used within this first flood:
one to disseminate the participation request, and one to return the responses
of participating hosts. The reference host is responsible for initiating the first
wave to receive acknowledgments of participation. The packet used in the first
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State characterization for host A

id — A’s unique host identifier

neighbors — A’s logically connected neighbors

results — set of (id, data value) pairs provided by A and its descendants.
membership — boolean, indicates A is in the query; used in first phase
monitoring — boolean, indicates A is preparing result; used in second phase
request — the request currently being processed

parent — A’s parent in the tree

replies-waiting — neighbors still to respond

participants — A’s descendants that are participating

initial-data — data value stored at A during the first phase of the flood

data — data value stored at A at any instant in time

departed-flag — true if one or more nodes below A in the tree has departed
added-flag — true if one or more nodes has been added below A in the tree
data-flag — true if one or more nodes has changed its data value below A in the tree

Fig. 4. State variables for protocol.

phase contains two fields— the identifier of the sender and a list of participants.
Initially, sender is the reference host initiating the query and participants is
empty. Figure 5 shows the action that occurs when a host receives this query
participation request in the first wave. The host sets its membership flag and
records its parent in the tree. The host then sends the request to its neighbor-
ing hosts and records them. The host must wait for all of its children to reply
before it can send its own reply. Once the initial wave of the first flood reaches
a host on the boundary of the network, the boundary host initiates the reply
process: the second wave in the first flood. If a host receives the same partic-
ipation request (along a second communication path), it cancels this request.
When this message is processed at the parent, the parent removes the host
from its replies-waiting variable (since another host is the parent). This action
is omitted for brevity.

Since the network is open and hosts may be mobile, the set of hosts that
participate in the query’s execution may change over time. These changes can
impact the consistency semantic achieved. Some changes to the set of partici-
pating hosts can be tolerated and the strongest form of consistency, ATomic, can
still be achieved. For instance, we can tolerate additions to, and deletions from,
the set of participating hosts until the members of the set are officially estab-
lished at the query issuer. The actions NeighborAdded and NeighborDeparted
in Figure 6 describe how our protocol handles these changes.

In both actions in Figure 6, the —monitoring A (replies-waiting # () condition
handles the neighbor change event between the first and second waves of the
first flood. In both cases, we can handle the neighbor change; we must simply
ensure that the request propagation is handled correctly. In the case of an added
neighbor, the new host is added to the participation request and becomes this
host’s child. For a departed neighbor, this host no longer waits for the host’s
reply. We will revisit the other cases in Figure 6 as we move through the flood
phases.

Once the initial wave of the first flood reaches a host on the boundary of the
network, the boundary host initiates the reply process, the second wave in the
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ParticipationRequestReceived ()
Effect:
if —~membership then
membership := true
parent := r.sender
request ;=T
if (neighbors — r.sender) # () then
for each B € (neighbors — r.sender)
send ParticipationRequest(r) to B
replies-waiting := neighbors — r.sender
end
else
r.participants := r.participants U id
initial-data := data
send ParticipationReply to parent
end
else
send CancelParticipationRequest to r.sender
end

Fig. 5. The ParticipationRequestReceived action.

first flood, by sending a ParticipationReply to its parent. Every host stores its
data value during the first phase of the query in a state variable called initial-
data before sending a ParticipationReply to its parent. This value is used to
determine if there has been any data change during query execution between
the two phases of the query. Before sending a ParticipationReply packet, the
host populates the participants field in the message with its id, thereby estab-
lishing itself as an active participant in the query. Figure 7 shows the action
handling the reception of this message.

When a host receives all of the participation replies it is waiting for, it
replies to its parent. When it does, it aggregates the participant information
it has received and passes to its parent a list of all participants in its subtree.
This information is updated in the packet’s participants list and propagated up
the tree.

The first phase of the protocol is complete when the reference host has col-
lected all replies from its children, and the query initiation bound is established.
The reference host’s participants variable contains the query’s established par-
ticipants. Any changes in connectivity that result in change of membership
after the completion of this phase will result in a semantic weaker than aromic.
At the end of the first phase, the reference host sends a Query to its participat-
ing neighbors to initiate the second flooding phase.

5.2.2 Establishing and Reporting Query Results. The protocol’s second
flood requests query results from hosts in the tree constructed in the first
phase. Once again, two waves are used: one to disseminate the query and
one to propagate results. The action performed by a host receiving a query is
shown in Figure 8. The host propagates the query to those neighbors that were
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NeighborAddeda(B)
Precondition:
connected(A, B) A\ B ¢ neighbors
Effect:
neighbors := neighbors U {B}
if membership then
if —=monitoring A (replies-waiting # () then
send request to B
replies-waiting := replies-waiting U{ B}
else
added-flag := true
end
end

NeighborDeparteda(B)
Precondition:
—connected(A, B) A B € neighbors
Effect:
neighbors := neighbors — { B}
if membership then
if B = parent then
[reset state]
else if ~monitoring A (replies-waiting # () then
replies-waiting := replies-waiting —{ B}
else if =“monitoring then
departed-flag := true
participants := participants — { B}
else if (replies-waiting # () then
departed-flag := true
replies-waiting := replies-waiting—{ B}
end
end

Fig. 6. Actions for handling neighbor changes.

established as participants at the end of the first phase. This information was
stored in the state variable participants. Each host receiving the query sets
its monitoring flag. As before, each parent in the tree must wait for responses
from its children before sending its own query results. Boundary hosts initiate
the second wave of the second flood to deliver query results. In constructing
a query result packet, a boundary node includes its own data value and its
departed-flag, added-flag, and data-flag variables. As these replies propagate
up the tree, parents aggregate the results and flags of their children, add their
own information, and send a summary further along. This allows the reference
host to assess the query consistency. In this flooding phase, the setting of the
monitoring flag and checking for changes in data during query execution is
analogous to the use of locks in traditional protocols, but is less restrictive.
Changes in the environment that occur in front of the second flood’s sec-
ond wave may impact the set of hosts participating in the query as well as
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ParticipationReplyReceiveda(r)
Effect:
replies-waiting := replies-waiting—r.sender
participants := participants U {r.participants}
if replies-waiting = () then
if r.requester # id
send ParticipationReply to parent
else
send Query to neighbors N participants
end
end

Fig. 7. The ParticipationReplyReceived action.

QueryReceived(q)
Effect:
if membership A ~monitoring
Agq.sender = parent then
monitoring := true
if participants # () then
replies-waiting := participants
send Query to neighbors N participants
else
data-flag := (data = initial-data)
send QueryReply to parent
[reset state]
end
end

Fig. 8. The QueryReceived action.

the available data, which will impact what consistency semantic the protocol
can achieve. As shown in Figure 6, in this phase of the protocol, if a parent
host detects the disconnection of a child, the parent alters its protocol-related
flags to reflect that change; The parent sets the departed-flag variable. Simi-
larly, if a new host becomes connected in front of the second wave, the parent
sets its added-flag variable. Recording this information allows the protocol to
determine what guarantee can be provided to the query issuer. For example,
when a neighbor departs in front of the second wave of the second flood, the
protocol can provide the atomic subset guarantee by discounting the departed
host(s) and reporting the remainder of the results. Any changes to the data
value at each host can be determined by comparing the data values sent in
the second waves of each phase. QueryReply messages propagate back to the
query issuer in a manner similar to ParticipationReply messages. The action
QueryReplyReceived is shown in Figure 9. In this protocol, changes that occur
behind the second wave of the first flood (after the query’s participants are set)
and before the second wave of the second flood (before the query’s results are
returned) can impact the query’s semantics. The following changes during this
period result in these semantics:
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QueryReplyReceiveda(r)
Effect:
replies-waiting := replies-waiting—r.sender
results := results U {r.results}
added-flag := added-flag V r.added-flag
departed-flag := departed-flag V r.departed-flag
data-flag := data-flag V r.data-flag
if replies-waiting = () then
if r.requester # id
send QueryReply to parent
[reset state]
else
[assess query consistency]
[deliver result to application]
end
end

Fig. 9. The QueryReplyReceived action.

—No changes. the AToMIC semantic can be provided.

—Only departing participants. the AToMIC SUBSET semantic can be provided. If
the number of departing participants can be determined (e.g., by comparing
the participants to the results), the QUALIFIED SUBSET semantic can be provided.

—Departing and adding participants. the WEAK semantic can be provided. If
the number of departing participants and the number of added participants
can be determined, then the WEAK QUALIFIED semantic can be provided.

—Data value changes. data value changes can be modeled as departing partic-
ipants; thus, the aAToMic SUBSET semantic can be provided. If the number of
data value changes is known, the QUALIFIED SUBSET semantic can be provided.

When the last QueryReply message that the query issuer is waiting for
arrives, the host extracts the departed-flag and added-flag values from the
messages it has received. It aggregates these values and determines the query
semantic that was achieved. For example, if the values of departed-flag and
added-flag are both false, then the query issuer can determine that the query
was executed with atomic semantics. After making this determination, the host
returns the query results and the achieved semantic to the application.

6. IMPLEMENTATION AND EVALUATION

We have implemented a prototype of the self-assessing protocol described in
Section 5 using the open source OMNeT++ discrete event simulator [Vargas
2008] and its mobility framework extension [Loebbers et al. 2008]. This pro-
tocol is capable of executing one-time queries and assessing their achieved
consistency semantics. In this section, we first provide a general-purpose eval-
uation of our self-assessing query protocol. We demonstrate the semantics
that our protocol can achieve in different situations and provide a perfor-
mance characterization for the protocol’s behavior. We then provide a more
thorough semantic evaluation grounded in a particular application example to
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demonstrate how the protocol and the consistency semantics it can achieve can
be used by domain programmers. The source code and settings details we used
to generate these results are available online.!

6.1 A General-Purpose Evaluation

The first of our two simulation scenarios is general purpose. We use generic
simulation settings to demonstrate the behavior of our self-assessing protocol
in different conditions. Because these conditions are not grounded in a specific
application scenario, we subsequently demonstrate the use of our self-assessing
protocol for a particular scenario: queries issued in the construction domain.

6.1.1 Simulation Settings. The following results below were obtained from
running our query execution protocol 50 times on varying numbers of nodes
within a 1000 x 900 m? rectangular area. Since the area size is constant, varying
the number of nodes in the network effectively changes the network’s density.
The nodes move according to the random waypoint mobility model [Broch et al.
1998], in which each node is initially placed randomly in the space, chooses
a random destination within that space, and moves in the direction of the
destination at a given speed. Once a node reaches the destination, it pauses for a
specified interval (the pause time) then repeats the process. Our simulations use
a pause time of 0 seconds to provide more dynamicity. We used the 802.11 MAC
protocol. When possible, 95% confidence intervals are shown on the graphs.

Variables. To demonstrate our protocol under different environmental and
application conditions, we varied three parameters. First, the number of nodes
in the network varied from 5 to 100 in multiples of 5. Second, the average
speed of nodes varied from Om/s (completely static) to 30m/s (the speed of a fast
moving vehicle on a highway). Finally, we varied a time-to-live (TTL) parameter
that restricts the scope of a query in terms of the number of hops it can travel.
A TTL value of 1 indicates that a query only contacts directly-connected hosts.
We varied the TTL from 1 to 3; with a TTL of 3, the queried nodes were between
85-100% of the total nodes in the network. We report results only for TTL values
of 3 but results for other TTL values follow the same general trend.

Metrics. We report results for several metrics. The first two categories (re-
ported in Sections 6.1.2 and 6.1.3) demonstrate the protocol’s capability for
assessing a query’s consistency after it has completed execution. These results
show which semantics from Section 4 can be achieved under which operat-
ing conditions. The results in Section 6.1.3 pertain to the qualified semantics
(QUALIFIED SUBSET and WEAK QUALIFIED), and show what percentage of the nodes
contributed to the subsets when those semantics were achieved. The final met-
rics, reported in Section 6.1.4, evaluate trends in the protocol’s performance
with respect to overhead (the number of bytes transmitted to evaluate a query)
and latency (the time between when a query is issued and when its result is
returned). These results serve as a sanity check to ensure that our protocol
does not incur significant overheads or delays in reporting the semantics with
the result.

Thttp://mpc.ece.utexas.edu/consistency/index.html
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Query Semantic vs. Number of Nodes (ttl3, Om/s)
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Fig. 10. Achieved query semantic vs. number of nodes in a static network.

6.1.2 Reporting Query Consistency. Because the goal of our protocol is to
execute a query and deliver the results along with a report of the consistency
with which the results match the execution environment, the most important
aspect of our evaluation demonstrates which query semantics can be achieved
under different conditions. In this section, we look at instances in which aTomic,
ATOMIC SUBSET, and WEAK semantics can be provided. The next section looks at
the qualified semantics: QUALIFIED SUBSET and WEAK QUALIFIED.

Figure 10 shows the query semantics achievable in a completely static net-
work as the number of nodes participating in the query varies from 5 to 100.
Two things are notable about this result. First, even if no mobility occurs, the
ATOMIC guarantee is not achievable in all situations, especially as the number
of nodes in the network grows. This is a result of increasing network density
and the fact that nodes must compete to access the shared wireless medium.
Second, in all cases, if AToMIC consistency cannot be achieved, at least aTomic
SUBSET consistency can be. This means that nodes only seem to have lost neigh-
bors; not added any new neighbors after the query began. In fact, nodes have
neither added nor lost neighbors (there is no mobility). Instead, the higher den-
sity networks suffer because nodes are competing to return their query results,
making it appear as though some did not respond at all. Consequently, all the
answers fall within the AToMmICc or ATOMIC SUBSET guarantees and there are no
instances of WEAK answers.

Figure 11 adds a small amount of mobility (5 m/s is approximately equivalent
to 11mph, or a very slow moving vehicle). In this case, given a query that spans
three network hops, the figure shows when each of the ATomIic, ATOMIC SUBSET,
and WEAK semantics can be achieved. Each data point represents 50 runs in
the simulation environment. The general trend is more important than the
numerical results, which can be smoothed out further by increasing the number
of runs.
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Query Semantic vs. Number of Nodes (ttI3, 5m/s)
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Fig. 11. Achieved query semantic vs. number of nodes in a low mobility network.

Query Semantic vs. Number of Nodes (ttI3, 20m/s)
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Fig. 12. Achieved query semantic vs. number of nodes in a highly dynamic network.

Figure 12 shows the same metric for a high degree of mobility (20 m/s). Here,
the percentage of time in which the ATomIic semantic can be achieved is even
further reduced. However, in comparison to other approaches that simply fail if
they cannot achieve the aTromic semantic, our approach can often (around 10%
of the time in the 20 m/s case) still achieve some degree of atomicity and report
a formal description of that degree of atomicity.

Figure 13 shows the effect of changing speed on the achievable query se-
mantic. In this case, we plotted the achievable semantic as the speed varied
from 5 to 30 m/s in a 30-node network. Again, the key observation is that,
even in highly dynamic situations, our protocol can provide a query semantic
better than best-effort more than 10% of the time. If an application developer
were choosing from existing protocols, in these instances he may be forced to
choose one with best-effort semantics. Using our self-assessing protocol, he can
achieve a better guarantee roughly 10% of the time.
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Query Semantic vs. Speed (ttl3, 30nodes)
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Fig. 13. Achieved query semantic vs. speed for a network of 30 nodes.
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Fig. 14. Percentage of nodes replying vs. number of queried nodes for a highly dynamic network.

6.1.3 Qualifying Query Results. The previous section shows results only
for the ATomIC, ATOMIC SUBSET, and WEAK semantics. The two additional semantics
presented in Section 4 qualified the ATomIic SUBSET and WEAK semantics to fur-
ther communicate to the application the degree with which the results match
the execution environment. QUALIFIED SUBSET and WEAK QUALIFIED both communi-
cate the percentage of the potential responders that successfully replied to the
query. Because of its design, any time our protocol can report the ATOMIC SUBSET
semantic, it also has enough information to report the qualification that is part
of the QUALIFIED SUBSET semantic. The same is true for the pair weak and WEAK
QUALIFIED. It does this by observing the number of hosts participating in each
phase of the query. The qualification can be obtained by simply comparing the
cardinality of the result set in each phase.

Figure 14 shows that, as the number of nodes increases, the percentage
successfully responding to a query decreases. In combination with Figure 12,
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Percentage of Replies vs. Speed (ttl3, 30nodes)
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Fig. 15. Percentage of nodes replying vs. speed for a 30 node network.

when the reported query result has the weak semantic (the dark gray space
in Figure 12), Figure 14 shows what percentage of the nodes it was possible
to contact actually responded. For example, in a network of 85 nodes, every
query had the weak semantic, and on average, the results represented approx-
imately 30% of the results that were available over all of the effective active
configurations. Figure 15 shows a similar result: as the speed of the nodes
increases, the percentage of results returned drops. The same exercise can be
performed with the combination of Figures 13 and 15. Figure 15 provides the
number of hosts replying regardless of whether the resulting semantic was
ATOMIC SUBSET or WEAK. Consequently, the resulting qualifications for QUALIFIED
ATOMIC SUBSET and QUALIFIED WEAK when using Figures 13 and 15 in conjunction
are just approximate values on average for each qualified semantic category.
However, any individual query receives the percentage value with its query re-
sponse, allowing the query issuer to reason about the quality of that particular
query.

While the qualified semantics do not provide consistency results that are
strictly stronger than the aromic suBser and WEAK semantics, the ability to
communicate the percentage of the potential query responders from which
results were received provides extra beneficial information to the application,
as discussed in Section 4.

6.1.4 Protocol Performance. Figures 16 and 17 show the performance of
our self-assessing protocol as it varies with both increasing numbers of nodes
and speed, respectively. We measured both the query latency (the amount of
time that elapses between the application issuing the query and the results
being returned to the application) and the overhead (the number of bytes sent
as part of issuing the query and in control packets to maintain the network).
Both the latency and overhead results show that our protocol scales well with
both increasing network density (number of nodes) and average node speed.
The leveling off experienced by the latency values for increased numbers of
network nodes is due to the fact that, at these increased densities, nodes begin
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Overhead and Latency vs. Number of Nodes (ttI3, 20m/s)
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Fig. 16. Performance vs. number of nodes for a highly dynamic network.
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Fig. 17. Performance vs. speed for a network of 30 nodes.

to have many different paths from the query issuer, and on average, the paths
become shorter, reducing the latency to complete the query.

Using the insights gained from the graphs in Figures 16 and 17, we can eas-
ily compare our protocol’s performance to one that provides strong consistency
semantics and to one that provides best-effort semantics. Our protocol effec-
tively runs the best-effort protocol twice. Therefore, the overhead and latency
is double the value of running just a best-effort protocol. However, our protocol
offers the ability to attach expressive semantic information to the results of
these queries, providing applications a benefit over a simple best-effort proto-
col. A protocol that guarantees strong consistency must have two phases. The
first phase locks the state variables and the second decides whether to commit
or abort. Consequently, the overhead and latency values are the same as the
values obtained when executing our protocol. However, protocols guaranteeing
strong consistency will abort and not produce an answer in the presence of
dynamics during query processing. One can infer the number of times such
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Fig. 18. Mock construction site used for scenario evaluations.

a protocol will abort by observing the percentage of results that are deemed
non-atomic in our protocol. As one can see in Figures 10-13, node density and
mobility render some fraction of the query results nonatomic. Our protocol
will produce a query response while adding a semantic tag to these nonatomic
responses.

6.2 Application-Driven Simulation

To further demonstrate how an application can use the self-assessing protocol
and the achieved consistency semantics, we deploy different queries in a specific
application domain.

Figure 18 shows the setup for our application-driven simulation. This sce-
nario models a construction site and components likely to be on that site.
Within the scenario, we modeled construction workers (who move at walking
speeds and carry handheld devices that can issue queries), mobile vehicles that
may be outfitted with communication devices, sensors scattered throughout the
construction site, and a crane, also outfitted with sensors. Devices in this sce-
nario move in application-specific manners depending on the type of device.
The majority of sensors scattered about the site are stationary. The device at-
tached to the vehicle (the dump truck in Figure 18) move at vehicular speeds
(in our experiments, these vehicles moved at approximately 30 mph). Devices
attached to the crane move within the circle defining the crane’s swing (the
dashed ellipse in Figure 18) and according to the physical movement allowed
by the components of the crane. Devices carried by workers move at reasonable
walking speeds (approximately 4 mph in our experiments). Devices attached
to materials rarely move.

Using this scenario, we created and evaluated the consistency of two dif-
ferent queries representative of those likely to be issued at a construction
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Fig. 19. Queries for hazardous conditions on the job site.

site. The first query is issued periodically from a worker’s handheld device and
queries nearby sensors for the strength of a gaseous VOC (volatile organic com-
pound) leak. The second query is issued from the fixed office computer, dissem-
inated to the entire site, and returns a count of the available bricks on the job-
site.

Figure 19 depicts the result of issuing a query in a local area requesting the
concentration of a hazardous gas. While the previous evaluations considered
how network dynamics impact the consistency of query results, this example
allows us to assess the impact of changing data. In this case, the data change
is exemplified by the dissipation and deterioration of the gaseous cloud. To get
a sense for how the rate of change of data impacts our self-assessing protocol,
we vary the sensitivity of our hazardous gas sensors. In the results shown in
Figure 19, we varied the sensitivity of our sensors from 0 to 10%. A sensitivity
of k% indicates that the concentration of the sensed gas would have to change
by k% for a sensor to detect a change in concentration. When the data change
threshold is lower (left of the graph), very small changes in the sensed concen-
tration are categorized as value changes during query execution. As the data
change threshold is increased, larger changes in concentration have to occur
during query processing for the protocol to deem the concentration change to
be a value change. As the figure shows, the percentage of atomically consistent
queries decreases as the tolerance for change decreases, but, even in highly
dynamic scenarios, our protocol can still achieve a good degree of consistent
queries.

Figure 20 shows the result of issuing queries from the office for available
materials (in this case bricks). The query is distributed over the entire site,
whose dynamics are as stated above. Because the rate of data change in this
case is much slower in comparison to the movement of the devices in the net-
work (in the depicted example, bricks are consumed at a rate of 10 per minute),
the x-axis in the figure shows changing network density. As can be seen in the
figure, even in this application-based example, increasing network density also
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Fig. 20. Queries for available bricks on the job site.

results in decreased consistency. This is because the query is more wide-
ranging, increasing the likelihood of network dynamics during query execution.

6.3 Applying Consistency Information to Decision-Making

An essential aspect of our self-assessing query execution protocol is the ability
to offer a range of query consistency semantics, providing the strongest se-
mantics achievable at run time and delivering information about the achieved
semantics with the query’s result. This flexible approach to query processing
can support the development of query-based applications in a way that has
not been possible until now, since it provides applications with information
about the query’s consistency semantics that can benefit application-level de-
cision processes. When using any other existing approach to supporting query
execution in dynamic networks, an application developer must decide in ad-
vance which kind of query semantics, transactional or best-effort, will suit the
application’s purpose and then must select a single query execution protocol
that provides results with those semantics. With our self-assessing protocol,
however, the application developer can avoid making an advance selection of
consistency semantics; instead the developer can use the results returned by
a self-assessing query as well as their reported semantics to determine what
action to take, whether it be to employ a different query strategy or to alter
other application-specific behavior.

Consider, as an example, a safety monitoring application for use in the in-
strumented construction site introduced in Figure 18. This application would
allow a construction site supervisor to check for the presence of a gaseous
volatile organic compound (VOC) leak; the application will take appropriate
action on behalf of the supervisor, ordering the evacuation of the construction
site if necessary and initiating VOC containment procedures if possible. To
implement this application, a developer can use a query to check chemical sen-
sors distributed across the construction site and use the results to determine
if there is a VOC leak present in the area. With our approach, this safety mon-
itoring application can be designed to be adaptive and autonomous, using a
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decision-making strategy that is based on the query results as well as their
associated semantics. In the following, we outline a possible decision-making
strategy for an adaptive construction safety-monitoring application.

Ideally, the construction site supervisor wants to check for the possibility
of a VOC leak across the entire construction site. In order to take actions
that are safety-critical (e.g., issuing an “all clear” signal or ordering an evac-
uation of the site), the supervisor must have high confidence in the results
that are returned by a query. When conditions are relatively stable in the con-
struction site network, our query execution protocol can achieve reasonably
strong consistency semantics. However, if the network is constantly changing
throughout execution of the initial query, the returned query results will likely
not be strongly consistent enough for use in making a sound decision. There-
fore, we design the application so that it uses a query execution protocol to
issue an initial query across the entire construction site, and if the result is
returned with weEak semantics, then we adapt the application’s query strategy
to attempt to elicit more strongly consistent results. We observe from the re-
sults presented in Section 6.1.2, that reducing the scope of a query in a highly
dynamic environment can lead to more strongly consistent results; therefore,
we design our application to use a divide-and-conquer strategy in which sev-
eral queries are reissued by the application, each with a reduced scope that
focuses on an area in the construction site that is at a high risk for VOC
leaks.

Given this general strategy for adaptation, let us explore this application
and its use of query results for adaptation in more detail. The supervisor’s
application will find one of two categories of query results: either there are no
dangerous VOC readings in the area or there are. Consider the first case, in
which the application finds that the query does not return any dangerous VOC
readings. If such a result is returned with reasonably strong semantics (i.e.,
ATOMIC, ATOMIC SUBSET, Or QUALIFIED SUBSET), the construction site supervisor can
be reasonably confident that no leak exists. Therefore, the application makes
the decision to generate an “all clear” report and deliver it to the supervisor.
However, if the supervisor’s query results are associated with wEAK semantics,
then he should not have a high level of confidence in the results; it is possible
that dangerous VOC readings exist, but were missed by the application’s query
due to the drift of the VOC leak into the surrounding atmosphere, the mobility
of network nodes, or rapid changes in the values of the VOC readings performed
by chemical sensors. Since the supervisor is concerned with the safety of every
person on the site, he wants more information to determine if a leak exists.
Therefore, the application will make the decision to issue another query on
the supervisor’s behalf, reducing the scope of the query to focus on areas that
are at high risk for chemical leaks in hopes of acquiring a result with stronger
consistency semantics.

The adaptive construction safety monitoring application also takes action
when a dangerous chemical reading is found. The application will always is-
sue an alert to evacuate the site when a dangerous chemical reading is found.
However, the consistency semantic associated with that result can also be used
to determine if additional action can be taken. If the query result containing
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ProrocoL API
void issueQuery(Query q, QueryListener ql, Scope s);

QUERYLISTENER INTERFACE
void queryCompleted(Result r, QuerySemantic gs);

Fig. 21. The self-assessing query protocol programming interface.

a dangerous chemical reading is associated with aToMmic semantics, then the
application can use the results returned by the query to determine the relative
locations of the dangerous chemical readings since they are directly compa-
rable; this location information can be used to begin VOC leak containment
procedures. However, if the semantic associated with the query’s result is not
atomic, then some chemical readings may have been missed and the results
are not directly comparable; more accurate information is needed to estimate
the severity and location of the leak to begin containment procedures. In this
case, the application will reissue the query over an area estimated to surround
the initial dangerous VOC readings.

This construction safety monitoring example demonstrates that the use of
query semantics associated with the query results can aid in an application’s
decision-making process, through adaption of the application’s query strategy
or its application-specific behavior. To promote the development of such appli-
cations, we provide a simple application programming interface (API) for our
query execution protocol. We believe that this API provides a simple way to in-
corporate the use of query results and their associated semantics in the design
of an adaptive application’s decision-making processes. We briefly describe the
programming interface applications can use to access our protocol and then
show by example how this interface is exercised using the construction safety
monitoring application example.

Figure 21 shows the two key elements of our API. Applications access the
protocol through the issueQuery method. Using this method, an application
can dispatch a request (encapsulated in a Query object whose details are omit-
ted for brevity). Upon issuing a query, an application designates a responsible
QueryListener, i.e., an object that has implemented the QueryListener inter-
face also shown in Figure 21. The final component of an application’s request
is a Scope. This object instructs the protocol as to how widely to distribute the
query. The initial implementation we have used for this article uses a simple
hop count scope restriction; more sophisticated implementations of scope re-
striction mechanisms [Julien et al. 2008; Kabadayi and Julien 2007] can be
easily integrated into the protocol.

When the two phases of the query complete, a result is returned to the
application that issued the query. This occurs through the queryCompleted
callback in the QueryListener interface. The application receives two pieces
of information. The first is the result of the query; in our simple initial
implementation, the result is just a set of all of the values collected from
the queried nodes. This could also be extended with more expressive aggre-
gation mechanisms. The application also receives an object that encapsu-
lates the consistency semantic associated with the query execution. To a first
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public class ConstructionSafetyMonitor implements ActionListener{

private Query q;
private ChemicalQueryListener cql;

ConstructionSafetyMonitor (){
q = ..new query object that requests VOC' sensor readings
cql = new ChemicalQueryListener(this);

}

...ConstructorSafteyMonitor builds a graphical user interface...
...a button click results in a searchForChemicals over the entire site

public void ActionPerformed(ActionEvent ae){
if (ae.getSource() == chemicalCheckButton) {
Scope site = ...new scope that defines entire construction site
searchForChemicals(site);

}
}

void searchForChemicals(Scope s){
issueQuery(q, cql, s);

}

Fig. 22. The construction safety monitoring application.

approximation, this query semantic is a simple enumeration; in the qualified
semantics cases, this enumeration is coupled with the fraction associated with
the subset semantic.

To demonstrate the use of this API, we return to our construction safety
monitoring example introduced earlier in this section, providing a simple and
straightforward implementation for the application. A code snippet highlight-
ing how the construction safety monitoring application uses the query API is
shown in Figure 22. The application constructs a Query object that asks for
VOC readings from chemical sensors. When the construction site supervisor
clicks a button to check for VOC leaks, the application submits this query to
be executed over the entire construction site using the issueQuery method.
A ChemicalQueryListener object, which embodies the strategy previously de-
scribed for handling the results of a query for VOC readings, is provided as a
parameter. As outlined previously, the application’s decision-making processes
use the query results and their associated semantics to decide whether to reis-
sue the query over a new scope (or scopes), issue an evacuation order, or contain
a VOC leak. The code snippet for the ChemicalQueryListener class in Figure 23
highlights how the query consistency semantic attached to the result of a query
is used to adapt the behavior of the construction safety monitoring application.
As this example demonstrates, the query protocol programming interface can
be used to facilitate the development of adaptive applications based on query
results and their associated semantics in a simple and straightforward manner.

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 12, Pub. date: April 2010.



12:32 . J. Payton et al.

public class ChemicalQueryListener implements QueryListener {
...variables and constructor omitted for brevity...

public void queryCompleted(Result r, QuerySemantic gs){
ChemicalResult cr = (ChemicalResult) r;
if (!cr.containsDangerReading()) {

//no danger found

if (gs.getSemantic() == WEAK){
//low confidence in result
//need to look more closely at high Tisk areas
Scope[] riskAreas = new scopes that focuses on risk areas
for(i=0; i<riskAreas.length; i++)
safetyMonitor.searchForChemicals (riskAreal[il);

} else {
//dangergous reading has been found
} if(gs.getSemantic() == ATOMIC){
//result yields exact knowledge of VOC' presence
//evacuate site and initiate containment
safetyMonitor.issueAlert();
safetyMonitor.startContainment(...);
} else{
//alert workers, find out more about VOC presence to aid in containment
csm.issueAlert();
Scope interestArea = new scope focusing on area where dangerous readings were foun
csm.searchForChemicals (interestArea);

Fig. 23. The ChemicalQuerylistener class.

7. CONCLUSIONS

This work offers a new perspective on query execution in pervasive environ-
ments. The novelty of our approach lies in the ability to formally express vary-
ing degrees of consistency semantics in a dynamic ad hoc network. We have
introduced several new notions of consistency and captured them using our for-
mal model. To realize these query semantics, we have developed a self-assessing
protocol that can determine the achievable consistency during query execution
and report the assessment. Our evaluation suggests that this protocol can in-
deed be useful in dynamic ad hoc networks to deliver a richer, more flexible
alternative to traditional transactional query processing. We have provided
a flexible API to facilitate the adoption of our protocol. In addition, we have
demonstrated that our approach is useful for real industrial applications and
can benefit their decision making processes.

REFERENCES

BarBARA, D. 1999. Mobile computing and databases: A survey. IEEE Trans. Knowl. Data En-
gin. 11, 1,108-117.

Bawa, M., Gionis, A., Garcia-MoLiNa, H., aND MoTtwant, R.  2004. The price of validity in dynamic
networks. In Proceedings of ACM SIGMOD. 515-526.

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 12, Pub. date: April 2010.



Semantic Self-Assesment of Query Results in Dynamic Environments . 12:33

BrocH, J., Marrz, D., Jounson, D., Hu, Y.-C., aND JETCHEVA, J. 1998. A performance compari-
son of multi-hop wireless ad hoc network routing protocols. In Proceedings of the 4th Annual
ACM//IEEE International Conference on Mobile Computing and Networking. 85-97.

DirckzE, R. AND GRUENWALD, L.  1998. A toggle transaction management technique for mobile mul-
tidatabases. In Proceedings of the 7th International Conference on Information and Knowledge
Management (CIKM’98). 371-377.

Dunnam, M., HELAL, A., AND BaLAKRISHNAN, S. 1997. A mobile transaction model that captures
both the data and movement behavior. ACM-Baltzer J. Mobile Netw. Appl. 2, 2, 149-161.

JULIEN, C. aND Roman, G.-C. 2002. Egocentric context-aware programming in ad hoc mobile en-
vironments. In Proceedings of the 10th International Symposium on the Foundations of Software
Engineering. 21-30.

Juuen, C., Roman, G.-C., anp Huang, Q. 2008. SICC: Source-initiated context construction in
mobile ad hoc networks. IEEE Trans. Mobile Comput. 7, 401-415.

KaBapavi, S. anD JULIEN, C. 2007. A local data abstraction and communication paradign for per-
vasive computing. In Proceedings of the 5th Annual IEEE International Conference on Pervasive
Computing and Communications. 57—66.

KISTLER, J. AND SATYANARAYANAN, M. 1992. Disconnected operation in the CODA file system. ACM
Trans. Comput. Syste. 10, 1, 3-25.

LoeBBers, M., WiLLkomym, D., anp Koepke, A. 2008. The Mobility Framework for OMNeT++.
http://mobility-fw.sourceforge.net.

Lu, Q. AND SATYANARAYANAN, M. 1994. Isolation-only transactions for mobile computing. Oper.
Syst. Rev. 28, 2, 81-87.

LyncH, N. anp TuttiE, M. 1989. An introduction to I/O automata. CWI-Quarterly 2, 3, 219-246.

MaDRIA, S. AND BHARGAVA, B. 1998. A transaction model for mobile computing. In Proceedings of
the International Database Engineering and Applications Symposium. 92—102.

Pavron, J., JULIEN, C., AND RomaN, G.-C. 2007. Automatic consistency assessment for query results
in dynamic environments. In Proceedings of the ACM SIGSOFT Symposium on the Foundations
of Software Engineering. 245-254.

Prroura, E. anD BHARGAVA, B.  1995. Maintaining consistency of data in mobile distributed envi-
ronments. In Proceedings of the 15th International Conference on Distributed Computing Sys-
tems.

Roman, G.-C., JuLikN, C., anD Huang, Q. 2002. Network abstractions for context-aware mobile
computing. In Proceedings of 24th International Conference on Software Engineering. 363—-373.

S1, W. anp L1, C. 2004. RMAC: A reliable multicast MAC protocol for wireless ad hoc networks.
In Proceedings of the International Conference on Parallel Processing. 494-501.

StstrA, A., Worrson, O., anp Huang, Y. 1998. Minimization of communication cost through
caching in mobile environments. IEEE Trans. Paral. Distrib. Syst. 9, 4, 378-390.

Varcas, A. 2008. OMNeT++. http://www.omnetpp.org.

VELLAMBI, B., SuBRAMANIAN, R., FEKRI, F., AND AMMAR, M. 2007. Reliable and efficient message
delivery in delay tolerant networks using rateless codes. In Proceedings of the 1st International
Workshop on Mobile Opportunistic Networking. 91-98.

WALBORN, G. AND CHRYSANTHIS, P.  1999. Transaction processing in PRO-MOTION. In Proceedings
of the ACM Symposium on Applied Computing (SAC). 389-398.

Received August 2008; revised November 2008, January 2009; accepted January 2009

ACM Transactions on Software Engineering and Methodology, Vol. 19, No. 4, Article 12, Pub. date: April 2010.



