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ABSTRACT
The knowledge of node positions is a core concept in any
Wireless Sensor Network context. Several localization algo-
rithms were devised, but secure localization of sensor nodes
is still a challenging task to achieve with a high level of per-
formance. In fact, location information might be the tar-
get of different kinds of malicious attacks and several secure
localization approaches were proposed. In this paper we
analyze the impact of false data in a secure localization al-
gorithm, known as Verifiable Multilateration. We found that
the strategy used to compute the positions of nodes might
have an impact both on the computational effort needed to
achieve acceptable measures and the precision of the detec-
tion of malicious nodes.

Categories and Subject Descriptors
K.6.5 [MANAGEMENT OF COMPUTING AND IN-
FORMATION SYSTEMS]: Security and Protection

General Terms
Wireless Sensor Networks, security

Keywords
WSN, security, localization

1. INTRODUCTION
Several researchers are proposing information systems based

Wireless Sensor Networks (WSNs), that provide a flexible
and effective means to monitor large and diverse geographi-
cal areas. However, WSNs are composed by individual nodes
with very limited capabilities and energy consumption is a
major concern, thus unorthodox solutions are required for
many situations, especially aimed at minimizing the commu-
nication overload. Moreover, the monitoring activity greatly
relies on data about the positions of nodes, which are often
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deployed randomly, thus a great challenge is represented by
localization at time of operations [12].

Various location services have been proposed. The Global
Positioning System (GPS) is the most well-known location
service in use today, but it is unsuitable for low-cost, ad-hoc
sensor networks since GPS is based on an extensive infras-
tructure (i.e. satellites) that requires frequent transmissions
and devices are still quite expensive and heavy. Likewise the
solutions developed in the area of robotics [1, 13, 24] and
ubiquitous computing [10] are generally not applicable for
sensor networks as they require too much processing power
and energy. Recently a number of localization systems have
been proposed specifically for sensor networks [3, 4, 7, 9,
23, 16, 19, 22]. Ideally, these approaches aim at large-scale
ad-hoc sensor networks (100+ nodes) and their design goals
are:

• to be as much as possible self-organizing, thus that
communication happens mostly locally, without the
need of a globally accessible infrastructure;

• to be tolerant to node failures and range errors;

• to require little computation and, especially, commu-
nication effort.

Unfortunately, most of the current approaches omit to
consider that WSNs could be deployed in an adversarial set-
ting, where hostile nodes under the control of an attacker
coexist with faithful ones. In fact, from a security point of
view, the wireless communications and the deployment in
uncontrolled environments rise several issues: the confiden-
tiality, the integrity, and the availability of data might be
put at risk by malicious tampering of sensors and/or traffic.

Node position is a really critical information due to the
strict relation with the quality of the provided services. In
fact, the location information is sometimes target of different
kinds of malicious attacks, classified in internal and external
attacks. So the trustworthiness of node position information
is a challenging task for wireless sensor networks since clas-
sical solutions based on access control and strong authenti-
cation, are problematic to implement with limited resources
and short battery life. Also, nodes are prone to physical
attacks and is pretty easy to clone a sensor device and its
on-board keys: thus cryptography provides only a partial
protection and should be used with care.

In this paper we analyzed an approach to the secure local-
ization of nodes known as Verifiable Multilateration (VM) [5].
VM potentially uses untrusted information to derive the po-
sitions of nodes, together with a measure of their trustwor-
thiness. VM relies on lateration to compute positions, a
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generalization of triangulation to multiple nodes: several
techniques to do lateration are known and VM is largely
independent from the choice of one of them. We found,
however, that the choice is not neutral. Lateration algo-
rithms can be computationally heavy in order to get very
precise results or very trivial if only gross data are needed.
One could legitimately ask if and when the additional efforts
are needed and at what level, since computation in WSNs
is a scarce resource. In this paper we try to answer to these
questions by analyzing three lateration algorithms and as-
sessing their impact on VM. We will show that in general
the precision is worth the computational price, but, under
some hypotheses, even a trivial solution can be acceptable.

The paper is organized as follows: Section 2 provides a
short state of art about the sensor node localization solu-
tions; Section 3 describes the reference scenario in which we
performed our analysis; Section 4 introduces the Verifiable
Multilateration for secure localization; Section 5 analyzes
three different approaches to lateration and their impact on
secure localization and finally, Section 6 draws some conclu-
sions and provides hints for future works.

2. RELATED WORK
All the proposed localization algorithms for wireless sen-

sor networks have to face the particular context in which
sensor nodes are deployed. More specifically, there is in gen-
eral no fine control over the placement of the sensor nodes
when the network is deployed (e.g., when nodes are dropped
from an airplane) and some self organization of the commu-
nication overlay is needed. Moreover, the connectivity of the
nodes in the network (i.e., the average number of neighbors)
is another important parameter that has a strong impact
on the accuracy of most localization algorithms. In fact,
the main node position approach is based on node density
and radio range, and in some cases it can be dynamically
adjusted by changing the transmit power of the RF radio.
So taking into account the domain constraints, any localiza-
tion algorithm has to address three main requirements: self
organizing, robustness and energy efficiency.

Existing localization schemes may be classified in range-
based methods, which use exact measurements of distances,
and range-free methods, which only need beacon signals.
Typical techniques to obtain the measurements between two
nodes include Received Signal Strength Indicator (RSSI),
Time of Arrive (ToA), Time Difference of Arrive (TDoA),
and Angle of Arrive (AoA). Range-based localization schemes
in sensor networks include those in [21, 22, 17, 15, 9]. Sav-
vides et al. developed an ad-hoc localization system local-
ization protocol based on TDoA [21]. Extension of this work
can be found in [22]. Doherty et al. presented a localization
scheme based on connectivity induced constraints and the
relative angle between neighbors [9]. AoA is also used to de-
velop localization schemes in [17] and [15]. Range-free based
schemes are proposed to provide location estimation services
for those applications with less required location precision
[3, 14, 23]. Estrin et al. proposed a simple range-free, coarse
grained localization scheme where each sensor estimated its
location by centering the locations contained in the received
signals [3]. All of the current localization schemes become
vulnerable when there are malicious attacks. In all these
schemes, the accuracy of location estimation depends on
the accuracy of the origins of the beacon signals and certain
measurements obtained from the beacon signals, including

distances and/or angles in range-based schemes, and the ex-
istence of beacon signals in range-free schemes. Though the
above measurements are directly obtained from the physical
signals, the locations of the beacon signals’ origins can be
easily forged. As a result, a malicious attacker may intro-
duce large errors when a node estimates its location. More
specifically, an attacker can introduce arbitrarily large errors
by declaring false locations in beacon packets, arbitrarily
introducing large errors into a non-beacon node’s location
estimation. Such attacks cannot be simply prevented by
cryptographic techniques due to the threat of compromised
nodes and replay attacks. In order to overcome such a limit
localization algorithms adopt some techniques able to reveal
malicious behavior.

We focus our attention on the secure localization algo-
rithm, named Verifiable Multilateration (VM) [5] that is a
range based approach using MMSE as one criterium for re-
vealing malicious behavior. Our choice of MMSE is due to
the robustness towards attacks and the capability to reveal
malicious behavior and then the accuracy of the obtained
results as we show in details in the following sections. We
aim at analyzing in some depth the computational effort of
minimization, by comparing MMSE with other available so-
lutions. Since a weak assessment of localization information
may damage service performance, our goal is to understand
the trade-off between the computational cost and the overall
trustworthiness of the obtained results.

3. REFERENCE SCENARIO
We consider a dense network composed of nodes ni, where

ni ∈ N, 0 < i ≤ |N | and a base station b in which all the
collected data sink. We consider two subsets of N :

• S, composed by nodes si, 0 < i ≤ |S|, which perform
sensing functions;

• V , composed by nodes vi, 0 < i ≤ |V |, which work as
verifiers in the secure localization protocol.

N = S ∪ V and V may overlap S (in principle every node
whose position can be taken for granted might be used as a
verifier).

Each si node senses a given type of data (e.g., tempera-
ture, pressure, brightness, position and so on). Each node (
sensing, and verifier) directly communicates with its closer
neighbours (at one hop distance).

4. SECURE LOCALIZATION
The node positions can be evaluated by using a multilat-

eration technique, which determines the node coordinates
by exploiting a set of landmark nodes, called anchor nodes,
whose positions are known. The position of the unknown
node u is computed by using an estimation of the distances
between the anchor nodes and the node itself. The distance
is not measured directly; instead, it can be computed by
knowing the speed of the signal in the medium used in the
transmission, and by measuring the time needed to get an
answer to a beacon message sent to u. If the computation
is carried on without any precaution, u might fool the an-
chors by delaying the beacon message. However, since a
malicious node can delay the answer beacon, but not speed
it up, under some conditions it is possible to spot malicious
behaviors. Verifiable Multilateration (VM) [5] uses three or
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Figure 1: Verifiable multilateration

more anchor nodes to detect misbehaving nodes. In VM
the anchor nodes work as verifiers of the localization data
and they send to the sink b the information needed to evalu-
ate the consistency of the coordinates computed for u. The
basic idea of VM is shown in Figure 1: each verifier vi com-
putes its distance bound [2] to u; any point u′ 6= u inside the
triangle formed by v1, v2, v3 has necessarily at least one of
the distance to the vi enlarged. This enlargement, however,
cannot be masked by u by sending a faster message to the
corresponding verifier. Therefore, if the verifiers are trusted
and they can securely communicate with b, the following
algorithm can be used to check the localization data:

1. Each verifier vi sends a beacon message to u and records
the time τi needed to get an answer;

2. Each verifier vi (whose coordinates < xi, yi > are
known) sends to b a message with its τi;

3. From τi, b derives the corresponding distance bound
dbi (that can be easily computed if the speed of the
signal is known) and it estimates u’s coordinates by
minimizing the mean square error

ε =
X

i

(dbi −
p

(xu − xi)2 + (yu − yi)2)2

where < xu, yu > are the (unknown) coordinates to be
estimated1.;

4. b can now check if < xu, yu > are feasible in the given
setting by two incremental tests:

(a) δ-test: For all verifiers vi, compute the distance
between the estimated u and vi: if it differs from
the measured distance bound by more than the
expected distance measurement error, the estima-
tion is affected by malicious tampering;

(b) Point in the triangle test: Distance bounds are
reliable only if the estimated u is within at least
one verification triangle formed by a triplet of ver-
ifiers, otherwise the estimation is considered un-
verified.

If both the δ and the point-in-the-triangle tests are posi-
tive, the distance bounds are consistent with the estimated
node position, which moreover falls in at least one verifica-
tion triangle. Thus, the sink can consider the estimated po-
sition of the node as Robust; else, the information at hands

1In an ideal situation where there are no measurement er-
rors and/or malicious delays this is equivalent to finding the
(unique) intersection of the circles defined by the distance
bounds and centered in the vi (see Figure 1) and ε = 0

is not sufficient to support the reliability of the data. An
estimation that does not pass the δ test is considered Mali-

cious. A sensible value of δ depends on the expected error
in time measurement and the number of available verifiers.
The simulation reported below should clarify the consider-
ations involved in the choice of δ. If the δ test is passed,
but the point-in-the-triangle one fails, the sink marks the
estimation as Unknown, meaning there is no sufficient infor-
mation for evaluating the trustworthiness of node position.
Thus, the localization phase ends up, for each unlocalized
node ui, with an estimation of the position of ui and a qual-
ity Wi ∈ Robust, Unknown,Malicious.

5. THE IMPACT OF LOCALIZATION IN-
FORMATION

Summing up, VM aims at assessing the trustworthiness
of a node position by checking the consistency of the data
received by the sink:

• the δ test establishes a threshold incompatible with
highly deceptive data;

• the point-in-the-triangle test rules out geometrically
infeasible deceptions.

As stated above, the original VM approach requires (step 3)
the minimization of the mean square error ε. This function,
however, is not linear and minimization is far from trivial. In
fact, no exact solution is possible and some approximation is
needed. In our experiments, we found that most of the com-
putational effort of the approach was in the minimization.
Thus, we considered three alternatives:

1. use a probabilistic heuristic to approximate the search
for the minimum ε (MMSE approach)

2. use a function easier to deal with (exact lateration ap-
proach)

3. use a trivial estimate of the position (min-max ap-
proach)

In order to analyze the feasibility of these simplifications
in an adversarial context, we used OMNet++ (ver. 3.3p1,
[8, 18]) to set up a simulation of the secure localization al-
gorithm. A claimant node u to be localized resides at the
center of a 100m×100m field, i.e., at point < 50, 50 >. Since
the best approach to lay out three verifiers is on the vertexes
of an equilateral triangle [5], we fixed their coordinates to be
the points < 1, 1 >,< 99, 1 >,< 50, 85 >. If u is faithful, it
answers to verifiers’ beacons without any delay. Otherwise,
if u is malicious it adds a variable delay to the answers, in
order to dissimulate a fake position u′: i.e., for each vi, if the
distance ¯viu′ is greater than ¯viu a proper delay is added by u
to the answer beacon to vi. We assumed that signals travel
at the speed of light and that time can be measured with an
error whose standard deviation is 2ns. As described above,
the timing information collected by verifiers vi can be used
by the base station to classify the claimant as Malicious,
Unknown, or Robust.

In a preliminary study, we discovered that the error intro-
duced by the localization heuristic is indeed critical, since it
could cause an unexpected behavior in the algorithm. Fig-
ure 2 shows a number of anchors vi and the distance bounds
they estimate in color. The actual position of the malicious
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Figure 4: Deception when a node is classified as
Unknown (δ = 35)

claimant node is u and the estimated position u′. In Fig-
ure 2(a), with three verifiers, the node results as Unknown

since it is outside the unique verification triangle. How-
ever, when a fourth verifier is added to the system (see Fig-
ure 2(b)) the estimation u′ falls inside at least one of the four
verification triangles and the node ends up to be Robust.

Thus, we decide to analyze the sensitivity of VM to the
localization heuristic used. In particular, we considered as
a quality metric the deception that can be induced by an
attacker, i.e., the distance between the actual node position
and the estimated one, when node are classified as Robust

or Unknown.

5.1 The MMSE approach
The original proposal of VM, relies on the minimization

of the mean square error (MMSE). In our simulation, we
used simulated annealing [11, 6] heuristic to approximate a
solution.

Figure 3(a) shows the effect of the choice of the δmax in
the δ-test on 10000 runs with 3 verifiers: the only sensible
value is about 35, since lower levels have an overwhelming
rate of false positives (i.e., faithful nodes classified as Mali-
cious), and a higher δ gives too much false negatives (i.e.,
malicious nodes classified as Robust) and unknowns. About
50% of malicious claimants and 90% of faithful ones were
classified as Unknown: the error in taking the estimated po-
sition instead of the real one is pretty high, as one can see
from Figure 4 that plots the density of deception: most of
the time by accepting an estimation classified as Unknown

one has to deal with a deception of about 35 m. The sit-
uation is clearly improved when a fourth verifier is added
(see Figure 3(b)): the setting is now with a verifier at each
corner of the field and all the values less than 2.5 give ac-
ceptable results; there are no Unknowns. It is worth noting
that the range of δ considered is different, since by increasing
the number of verifiers, the maximum acceptable error δmax

should decrease. There are still some false negatives, but
the deception induced by a malicious node taken as Robust

is always less than 1m with δ ≤ 1. Figure 5 plots the density
distribution of the deception — i.e., the distance between
the real position and the estimated one — at different values
of δ. Adding a fifth verifier randomly deployed significantly
decreases the rate of false negatives, as shown in Figure 3(c).

5.2 The exact lateration approach
An easier estimation to compute is exact lateration (used

for example by [16, 20]) that considers the system of equa-
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Figure 5: Deception when a malicious node is clas-
sified as Robust

tions

∀i, 1 ≤ i ≤ |V | : (xi − xu)2 + (yi − yu)2 = dbi (1)

The system (1) can be linearized by subtracting the last
equation (the one corresponding to verifier |V |) from the
other |V | − 1 ones.

∀i, i 6= |V | :
x2

i − x2
|V | − 2(xi − x|V |)xu + y2

i − y2
|V | − 2(yi − y|V |)yu

= db2i − d2
|V |

The system above can be expressed in the matrix form

A(|V |−1,2)x(2,1) = b(|V |−1,1)

where

A(|V |−1,2) = [2(xi − x|V |) 2(yi − y|V |)]
b(|V |−1,1) = [x2

i − x2
|V | + y2

i − y2
|V | + db2|V | − d2

i ]

The system can be solved by using a standard linear al-
gebra least-squares approach: x = (AT ·A)−1 ·AT · b. A
measure of the quality of the solution is then given by

rlat =

P
i(dbi −

p
(xu − xi)2 + (yu − yi)2)2

|V |
In order to evaluate this approach to localization with

respect to the MMSE one described in Section 5.1, we con-
sidered the relation between the residue rlat (analogous to ε
in the MMSE case) and the deception induced by assuming
< xu, yu > as the position. Figure 6 shows the correlation
between the quality of the estimation and deception for both
MMSE (Figure 6(a)) and exact lateration (Figure 6(b)): the
latter is more spread, thus indicating that MMSE ε is a bet-
ter proxy indicator for deception. In fact, deception by a ma-
licious claimant evaluated by an exact lateration approach
gives results fairly uncorrelated with the ones obtained with
MMSE (see Figure 7).

5.3 The min-max approach
Sometimes an even easier estimation used is the min-max

method ([21], the name is coined in [12]). Its computation
is almost trivial: for each verifier one considers the bound-
ing box defined by < xi − dbi, yi − dbi >–< xi + dbi, yi +
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Figure 3: Classification by secure localization
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Figure 6: Correlation between estimation quality and deception with 3,4, and 5 verifiers

Figure 7: Deception by a malicious node evaluated
by exact lateration with 3,4, and 5 verifiers

dbi >. The intersection of all bounding boxes is then com-
puted as < max(xi − dbi),max(yi − dbi) >–< min(xi +
dbi),min(yi + dbi) > and the final position estimated is
<max(xi−dbi)+<min(xi+dbi)

2
, <max(yi−dbi)+<min(yi+dbi)

2
>. We

measured the quality of the estimation as

rmm = |
max(xi − dbi) −min(xi + dbi) + max(yi − dbi) −min(yi + dbi)

2
|

Again, we found that MMSE ε is a much better proxy
for deception in an adversarial setting (see Figure 8(a)).
However, with four verifiers (posed on the vertexes of the
rectangular field) the results would be consistent with the
ones obtained via MMSE, but with a considerable saving in
computation (see Figure 8(b)). However, this result is not
confirmed in the 5-verifiers case: in fact, the fifth verifier
— randomly deployed — destroys the symmetry of bound-
ing boxes, and it has an unexpected detrimental effect. The
setting with four verifiers, instead, could be a good alterna-
tive to the MMSE corresponding solution since it can give
proportionally equivalent result with a much reduced com-
putational effort.

6. CONCLUSIONS
Reliability of node positions is a core requirement in most

Wireless Sensor Networks. Verifiable Multilateration uses
potentially untrusted information to derive the positions
of nodes, together with a measure of their trustworthiness.
However, VM itself relies on node positions deduced by lat-
eration. We analyzed different approaches to lateration in
order to understand when the computational effort needed
by the most sophisticated algorithms is really needed. Our
results show that in general the precision provided by the
most onerous algorithm (MMSE) is indeed needed. How-
ever, if a careful position of verifiers is possible, the much
simpler min-max method could be useful. The aim of secure
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(a) Correlation between estimation quality and de-
ception

(b) Deception with a malicious node via MMSE
and min-max

Figure 8: Estimation quality and deception in the min-max approach with 3,4, and 5 verifiers

localization algorithms is to define some criteria in order to
identify and remove malicious positions. False positive may
always occur, however, and one has to spend in verifiers and
communication to increase the quality of the collected infor-
mation. We are currently investigating the use of cross-layer
information to assess the overall quality of the monitoring
performed by the WSN and a game theoretical approach
to model malicious behavior, in order to reason about the
rational strategies open to the system designers.
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