
Protocol Design and Analysis of a HIP-based
Per-Application Mobility Management Platform

László Bokor László Tamás Zeke Szabolcs Nováczki Gábor Jeney
Budapest University of Technology and Economics, Department of Telecommunications

Magyar Tudósok krt.2., H-1117 Budapest, Hungary
Tel: (+ 36 1) 463-3261, Fax: (+ 36 1) 463-3263
{goodzi, koci, nszabi, jeneyg}@mcl.hu

ABSTRACT
Rapid evolution of wireless networking has provided wide-scale
of different wireless access technologies like Bluetooth, ZigBee,
802.11a/b/g, DSRC, 3G UMTS, LTE, WiMAX, etc. The
complementary characteristic of the above architectures motivates
next generation network operators to integrate them in a
supplementary and overlapping manner. Recent wireless devices
are equipped with multiple interfaces, thus enabling concurrent
communication sessions. With the advance of such heterogeneous
structures – and considering that users are often running
applications simultaneously – the traditional per-host mobility
management approach cannot be the optimal solution for handling
connection changes. Instead, the concept of per-application
mobility management is to be introduced, where a dedicated
interface (i.e. access network) is selected by each application
according to its QoS prerequisites and the actual networking
conditions. Aiming to benefit from this novel concept in practice,
in this paper we designed and evaluated a HIP-based per-
application mobility management platform founded on the
promising Host Identity Protocol (HIP) and the cross-layer
building blocks closely incorporating with it.

Categories and Subject Descriptors
C.2.1[Network Architecture and Design]: Wireless communication
C.4 [Performance of Systems]: Reliability, availability, and serviceability
I.6.4 [Simulation and Modeling]: Model Validation and Analysis
I.6.5 [Simulation and Modeling]: Model Development - Modeling
methodologies
I.6.6 [Simulation and Modeling]: Simulation Output Analysis
I.6.8 [Simulation and Modeling]: Types of Simulation – Discrete event

General Terms: Algorithms, Management, Measurement,
Performance, Design, Experimentation, Security.
Keywords: Per-application mobility management, Host Identity
Protocol (HIP), Application-specific handover management, Cross-
layer protocol design, Protocol simulation, INET/OMNeT++,
HIPSim++ simulation framework, Performance evaluation and
analysis.
1. INTRODUCTION
Current trends in the telecommunication world show rapid growth
of Internet related services and ever growing demand for them.
More and more users are willing to access the Internet from their
portable devices. People want seamless, ubiquitous Internet
access anytime and anywhere. To satisfy the demands, operators

must use heterogeneous access technologies: WiFi, WiMAX,
UTRAN, HSPA, LTE and GERAN coexist in most European
countries. Moreover, they usually provide overlapping coverage:
users can choose from a set of available access technologies based
on their preferences, policy, or QoS requirements.

When multiple networks are available for accessing the Internet,
the user can dynamically change between them. The first solution
was to use only one interface, and switch, if the signal quality
drops below a given threshold. A self-explanatory improvement
can be reached if all available interfaces are used simultaneously.
This is the so-called multihoming. However, using such solution
raise the question of how packets should be distributed among
available interfaces: what is the policy the user wants to follow. If
the user runs several applications (e.g. file downloading, voice
communication, video streaming, e-mail), each application has its
own criteria which usually contradict each other. A further
improvement can be achieved, if multihoming is not controlled by
the whole terminal/host (this is called per-host, or per-terminal
mobility), but the connection of each application is handled
independently (this is called per-application mobility). For
instance, e-mails do not require huge bandwidth, basic GSM can
do the job. However, if the user downloads files, they are hardly
going to use basic GSM: high-speed connection is required. In the
case of per-application mobility management, several connections
exist and they can use completely different interfaces. Each
application can be described by their QoS requirements, and thus
the best access technologies can be bundled to them. Section 2
describes the per-application mobility concept, and refers those
publications where it has been introduced.

IP was designed in the 1970's, when all Internet hosts were
connected using wires: they were fix hosts, not changing their
locations. In contrast, nowadays users are rarely connected using
wires: most users are mobile, thus changing continuously their
point of network attachment. The shortcomings of the Internet
Protocol (IP) come from the early days. Although IPv6 was
designed to address all open problems of IP, due to the fact that
designers wanted to keep the original concept, there are still many
strange issues.

The most spectacular one is the double role of IP addresses. An IP
address identifies the host on the Internet: all communication
starting from or ending at a given entity is identified by its IP
address. On the other hand, IP address has a topological locator
role too: IP address consists of a subnet identifier (called prefix in
IPv6), which tells the position of the entity on the Internet. These
two roles (identifier and locator) make things complicated when
the node starts to move. Changing the network yields different IP
address. However, changing the IP address results in loss of
already established connections.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
MobiWac’09, October 26–27, 2009, Tenerife, Canary Islands, Spain.
Copyright 2009 ACM 978-1-60558-617-5/09/10...$10.00

7

Obviously there are many solutions for the above mentioned
problem. One of them is a brand new protocol, which is called
Host Identity Protocol (HIP). HIP is a new approach which
decouples IP addresses from applications by proposing a new,
cryptographic namespace for host identities such providing
sophisticated and secure mobility/multihoming support, and
making it a powerful toolset as the basis of a prosperous per-
application mobility implementation. Using HIP, hosts can
communicate seamlessly, even if the access network changes.
Some details of the signaling and the fundamentals of HIP are
described in Section 3. Section 4 presents our proposal on how
HIP is used for per-application mobility.

In order to evaluate the proposed platform we created a simulation
framework for HIP and our HIP-based per-application mobility
scheme in INET/OMNeT++. Our analysis shows that the
presented platform provides enhanced QoS provision as it
optimally utilizes the available access networks based on
application profiles and networking conditions. Section 5 shows
the simulation environment which we used to evaluate our
solution. The simulation scenario is described in Section 6. The
results obtained from the simulations are included in Section 7.
Finally, Section 8 concludes the document with some general
thoughts on some possible extensions of the method.

2. RELATED WORK
Per-application mobility is quite a new mobility concept which
refers to scenarios when a host is multihomed with more than one
wireless interfaces and wants to control mobility decisions in an
application-wise manner. Note that application mobility or
process migration and per-application mobility are different
concepts. The goal of application mobility solutions [1][2][3][4]
is to move an already running application from a source host to a
destination host during its execution. This improves load share
management, fault tolerance and enables data access locality. The
most important challenge here is to achieve mobility transparent
to the applications moved.
On the other hand per-application mobility focuses on
multihomed hosts with multiple wireless interfaces and on the
ability to switch the traffic of each application running on the host
independently between these interfaces. This research area is not
much discovered yet thus only a few related work can be found in
the literature. The most important effort made in the field of per-
application mobility is the work of Moonjeong Chang et al.
presented in [5] and [6]. Here the authors define a per-application
mobility framework with a network-level handover management
subsystem. The solution uses cross layer techniques to collect
dynamic measurement results from the entire protocol stack.
These results are used to trigger vertical handover decisions in a
per-application manner. The proposed platform consists of the
following main elements (Figure 1). There is a Monitoring agent
(MA) for every protocol layer as an interface towards those
layers. MAs collect dynamic status information in the different
layers and forward them to the profile database (PDB). MAs are
the way to send control information to the correspondent layer.
The PDB stores and updates static and dynamic information,
which is necessary for the decision engine (DE) to make vertical
handover decisions on a per-application basis. The DE works
according to policies to decide when to trigger a handover. Finally
there is an IP Agent, which is responsible to map the actually used
IP address to the address used by the ongoing session. This

network-level component is also responsible of managing
handover scenarios.

Figure 1. Per-application mobility platform proposed in [5]

Our per-application mobility management solution adapts the
basic ideas captured in [5][6] and implements them in a HIP-
based environment. We defined the details how to handle per-
application mobility in a HIP environment, simulated and
evaluated it. The basic protocol standards of HIP had to be
modified to be able to handle per-application mobility. First
concept of the node level HIP sessions had to be refined into
application level sessions. Second the end-to-end readdressing
mechanism was aligned to this concept change. Finally the ideas
described in [5][6] were adapted into a HIP-aware environment. A
Monitoring/Mediator Agent (MMA) is collecting information and
handling control duties all through the stack, which is forwarded
to the Decision Engine (DE). The DE is making application-wise
handover decisions based on that information and according to the
Application Profile DataBase (APDB). The APDB stores the QoS
preference of applications running on the host. This can be
considered as our contribution to per-application mobility
management research activities. This work will be presented in
the following sections.

3. FUNDAMENTALS OF HIP
This section is to give a short overview of Host Identity Protocol
(HIP) [7], which lies as a basic framework for our per-application
mobility solution. Our goal here is to show the key concepts of
HIP first than highlight the most relevant protocol details to
improve the intelligibility of the rest of the paper.

The main design goal of HIP is to implement the locator-identifier
split concept that separates the dual roles of IP addresses. The
core idea was to assign at least one globally unique identifier to
every HIP-aware node. This is the namespace of Host Identifiers
(HIs). With HIs HIP provides node identification while IP
addresses remain pure locators. All the new functionalities to
handle this idea form a protocol layer, which resides between the
transport and IP layers and is called the Host Identity Layer. This
is not only for locator-identifier split but also for a kind of
demarcation of those layers. Using HIP transport layer sessions
are bound to HIs not to IP addresses. Thus dynamic changes of IP
addresses have no effect on higher layer connections any more.
This enables HIP to be very powerful in handling mobility
scenarios. To further empower the protocol the elements of the
namespace were chosen to be cryptographic in nature. The goal of
HIP design was to accouter the protocol with strong, built-in
security mechanisms. This led HIs to be public-private key pairs.
Thus HIP can benefit from all the advances of asymmetric
cryptography and can use strong security mechanisms as a generic
feature. HIs are usually variable length depending on the key
generation method used to create them. Thus HIs are rarely

8

appear in protocol messages. Instead a 128 bit fixed length
representation of HIs called the Host Identity Tag (HIT) appears
to refer to the correspondent HIP entity. HITs are created by
taking a one-way cryptographic hash function over a HI.

Figure 2. The HIP Base Exchange sequence

A four-way security handshake is used to build up a HIP session
between two nodes, the Initiator and the Responder. This is the
Base Exchange (BE), which results an IPSec Encapsulating
Security Payload (ESP) Security Association (SA) pair [8].
Furthermore the BE implements a Diffie-Hellman key exchange
to create shared symmetric key at the peers. This key is used to
encrypt payload in ESP packets. The Initiator (I) starts the BE by
sending the I1 message, which is not more than a HIP header with
source and destination HITs. The aim is to trigger the exchange.
The Responder (R) replies with an R1 message containing a HIP
header and some additional HIP parameters. One of these
parameters is the PUZZLE (P), which is a cryptographic
challenge and must be solved by I. This is to force I to consume
resources and time to solve it, which protects R against certain
kinds of Denial-of-Service (DoS) attacks. Further parameters are
the Diffie-Hellman (DH) parameters of R, the
HIP_TRANSFORM (HT) parameter for the encryption and
integrity algorithms supported by R to protect the exchange, the
HOST_ID (HI) parameter for the HI of R and finally a signature
(S). In the third packet, I2, I sends the SOLUTION (So) of the
puzzle. The rest of the parameters (DH, HT, HI and S) were
already defined except HMAC (HM) which is a message
authentication code protecting I against reply attacks. Finally the
R2 message concludes the exchange (see Figure 2 for the message
sequence).

Figure 3. ESP BEET mode transport format

After the BE hosts can forward data to each other on the IPSec
ESP SA pair. [9] Note that while HIP control packets (e.g. packets
used during the BE) have a HIP header attached, the payload
packets are not holding HIP header. Instead the Security
Parameter Index (SPI) of the ESP header is used to map incoming
messages to the correspondent security association. While HIP
can be used by any ESP transport modes [9] defines a new ESP
transport mode that is optimized for usage with HIP. This is called

the Bound-End-to-End-Tunnel (BEET) mode. Figure 3 shows the
form of packets sent in this mode.

In case of mobility scenarios the HIP association between hosts
has to be updated. This is handled by the UPDATE mechanism of
HIP (Figure 4) [10]. In the simplest case the mobile host upon IP
address change sends an UPDATE packet to its peers. This packet
holds a LOCATOR (L) parameter that is used to indicate the new
address to be used and a sequence number (Seq). The SA to be
updated is indicated in the ESP_INFO (EI) parameter. This
parameter has special importance when the SA itself is being
replaced during the update procedure as well as in case of
multihoming scenarios. The peers must verify the new address to
avoid being victims of security attacks. The peers send an
UPDATE packet to the new address with an ECHO_REQUEST
(ERq) parameter. This includes a nonce that the mobile must echo
back to the peer in a third UPDATE packet. The packet also
contains a sequence and an acknowledgement number. Finally
there is an ESP_INFO parameter, which indicates the SA to be
updated. When the SAs are to be replaced and in case of
multihoming this parameter contains the new and old SPI values.
The packet may be signed (S). The mobile host replies with a
third UPDATE packet including an ECHO_RESPONSE (ERs)
parameter. This is to echo back the nonce received in the previous
packet and to make the new address being verified at the peer
host. The packet also holds an acknowledgement number. Note
that unverified addresses can be used to send only a limited
amount of data. A Credit-Based Authentication method is used to
control the communication on unverified addresses [10].

There are some scenarios when the end-to-end readdressing
functionality is not sufficient. Initial reachability and
simultaneous movement of mobile hosts are handled by the
Rendezvous mechanism of the protocol [11]. In these situations a
special HIP-aware network entity, the Rendezvous Server (RVS)
assists the communication by forwarding the I1 packet of the BE
to R, whose actual location is not known by I. Mobile hosts
should register to one of these RVSs and update their location
information upon mobility. Note that considering per-application
mobility management HIPs main advantage is its effective end-to-
end update mechanism. This enables to update the sessions
application-wise between the communication endpoints. On the
other hand RVS mechanism still needed to establish HIP contexts
when it comes to mobile endpoints.
As it was expressed already, HIP was designed to be able to work
on multihomed hosts [10]. In this case the host has more than one
physical interfaces or global addresses. It is recommended to use
different SAs for different interfaces or addresses. To do this, the
multihomed host creates a new inbound SA and a corresponding
SPI. The host can notify its peers about additional interfaces or
addresses by using a bit modified UPDATE mechanism. The first
UPDATE packet should hold an ESP_INFO parameter having the
NEW SPI field set to the newly created SPI value and setting the
OLD SPI field set to zero. The packet also contains a LOCATOR
parameter that indicates the new address-SPI mapping and the old
one as well. One step closer to per-application mobility is another
way of grouping SAs. One can assign different SAs to every
transport layer socket. However this might lead to scalability
problems when having lots of applications all of which using
possibly more than one transport layer socket. To reduce this
overhead another way is to assign one SA application-wise. In
this case all the sockets used by one application are assigned to
one SA and all applications will use different SAs for

9

communication. This latter case is very important when
considering per-application mobility and will be detailed later in
the next sections.

Figure 4. HIP update procedure without rekeying

In this section we have given a short introduction to HIP. We
have shown the core concepts and highlighted some details
significant for per-application mobility management. HIP turned
out to be effective in end-to-end readdressing and provides strong
generic security services both of which are very important in our
case. These properties address the main shortcomings of the
current TCP/IP architecture thus HIP can be considered as a base
technology candidate in the next generation Internet era.

4. HIP-BASED PER-APPLICATION
MOBILITY MANAGEMENT PLATFORM
The main goal of our HIP-based per-application mobility
management platform is to adapt the paradigm of per-application
mobility to HIP at protocol-level by introducing as few changes in
the existing HIP standards and recommendations as possible.

4.1 Main architecture
The architecture of our HIP-based per-application mobility
management platform relies on the module structure and design
proposed by Moonjeong Chang et al. in [5][6] but extends their
IP-level per-application solution with the advanced mechanisms
of the promising Host Identity Protocol aiming to introduce a
more effective and secure solution for per-application mobility
management. Figure 5 shows the details of our platform and the
following subsections contain the details of the particular
modules.

Figure 5. The proposed management platform

4.1.1 Monitoring/Mediator Agent
The Monitoring/Mediator Agent (MMA) collects protocol
specific information from different layers of the TCP/IP hierarchy
in order to provide information for cross-layer optimization
decisions of per-application mobility. Passive and active
measurements are both allowed for monitoring purposes. The
crucial data pieces to be collected by the MMA for decision
support are the following:
- Availability and basic information on the interfaces;
- Actual IPv6 addresses of available interfaces;
- Information of running applications/sockets.
Control of different layers is also an important task of this
module: intervention into different protocol layers can be
performed after decisions in order to extend the possibilities of
cross-layer optimization.

4.1.2 Application Profile DataBase
The Application Profile DataBase (APDB) stores and maintains
profile attributes of ongoing application sessions in order to relay
user preferences and QoS requirements of applications to the
Decision Engine. Profile attributes can be originated from static
database (e.g. filled with pre-defined minimum requirements or
user preferences) or can be gathered in a dynamic way directly
from the applications. The latter case requires API changes in
existing codes but provides more precise profile information and
better results.

4.1.3 Decision Engine
The Decision Engine (DE) processes cross-layer information
provided by the MMA and application profile data originated
from the APDB. The main task of this module is to assign active
applications to interfaces and to make handover decisions in a
per-application manner. In order to achieve this, DE stores all the
actual details of running applications (e.g. assigned interfaces,
SAs, etc.) and in case of incoming updates from the MMA it
recalculates the optimal interface for every affected application. If
handover is needed, the DE instructs HIP Agent to initiate the
appropriate HIP mechanisms (Figure 6).

Figure 6. Mechanism of handover decision

4.1.4 HIP Agent
In our HIP-based per-application mobility framework the HIP
Agent is responsible to initialize mobility procedures in the HIP
layer based on the control information sent by the DE, and also to
maintain per-application bindings between the host machine and
its partners. The HIP Agent is not completely separated from the
Host Identity Layer: it can be considered as a collection of

10

administrative and control functions required for HIP-based per-
application mobility management. These functions are detailed in
Section 4.2.

4.2 Operation of HIP extensions
From the HIP point of view, multihomed Security Associations
are the protocol entities which can make a HIP system to be able
to handle mobility in an application-wise manner. In
consequence, a certain SA grouping scheme and a modified
UPDATE mechanism are the keys to the HIP-based per-
application mobility management framework. Because our
approach is end-to-end based and uses spanned SAs between
communicating peers as basis for operation, therefore standards of
HIP DNS and RVS extensions can remain intact and only SA
handling, packet processing and UPDATE procedure needs to be
slightly modified.

4.2.1 SA grouping and LOCATOR extension
In the proposed SA grouping scheme we create and manage
exclusive SAs for every running application between two HIP
hosts and distinguish them with a quintet of Source HIT,
Destination HIT, Source port, Destination port and Transport
type. Such a quintet can be assigned even to smaller entities than
applications (e.g. to sockets) but in that case scalability easily
becomes a serious issue: applications may own a considerably big
number of sockets resulting in unwanted signaling overhead of
SA management and related HIP messages. We assume that every
host in the communication supports the proposed SA grouping
method otherwise separation of packets belonging to different
applications can not be possible.

Figure 7. Processing incoming first UPDATE messages

Since we can not presume on that applications transact bi-
directional sessions, there is a need to unambiguously represent
which SA belongs to which application. An evident way to
achieve that is using the above defined quintet in LOCATOR
parameters for marking applications and SAs. HIP signaling
messages already contain Source and Destination HITs, thus
LOCATOR parameters must be extended only with fields of
Source and Destination port and Transport type. These extensions
can be easily derived from the existing type 1 LOCATORs: a new
16 bit Source port, a 16 bit Destination port and a 4 bit Transport
type descriptor field are to be introduced.

4.2.2 Modified UPDATE mechanism
In our per-application mobility management framework HIP
UPDATE procedure is initiated in two distinct cases:
- If a new application is to be introduced in an existing HIP

association (requires setup of a new SA);

- If an already running application is to be handed over (i.e. a
new interface was chosen for the application and handover is to
be performed).

In order to support the above cases no significant modifications
are needed in the standard HIP UPDATE: the sequence itself and
its main parameters are not changed except by the appearance of
the new LOCATOR type and the extension of processing
mechanism of incoming UPDATE messages.
The new type of LOCATOR parameter was introduced in
Section 4.2.1, while the extended processing mechanism of
incoming HIP UPDATE packets is shown in Figure 7.
At the reception of an incoming packet first it has to be decided
whether a new SA is to be created or readdressing and rekeying of
an existing one is to be performed. This decision can be made by
parsing the ESP_INFO parameter of the incoming message. If the
latter is the case, the SA will be updated and the second UPDATE
message of the standard sequence will be sent. If a new SA has to
be set up, then one of the LOCATOR parameters of the incoming
UPDATE message pertains to the association to be created, and
contains information (e.g. SPI value) helping to compile the
quintet which identifies the application and the relating socket. If
the application can not be found (i.e. the socket is not active) then
we build up the HIP connection and let the upper layers to handle
the exception. If the application is running, then we first
determine the optimal interface for that application (see
Section 4.1.3 for further details on interface selection and decision
mechanisms) and check whether the UPDATE message arrived
from the optimal interface or not (i.e. whether the SA is to be built
through the optimal interface or not). If the incoming interface is
the optimal one, then we continue the UPDATE procedure by
setting up the SA and sending out the second UPDATE packet
according to the standard message sequence. If the inbound
interface of the first UPDATE packet is not optimal for the
application, then we create the SA over the sup-optimal route but
simultaneously schedule a secondary update for the SA’s local
endpoint in order to redirect the communication path of that
particular application to the optimal interface.

Figure 8. Processing packets arriving from the transport layer

4.2.3 Processing transport layer packets
In our framework the processing scheme of packets arriving from
the network does not bring considerable changes to the existing
HIP RFCs: signaling messages are processed in the normal way
with the extensions introduced above, while incoming data
packets are treated completely according to the standards (SPI

11

values are used to identify the appropriate SA). However, in case
of packets arriving from the transport layer (originated by the
applications) the standard way of operation changes because the
fitting SA has to be selected for the outbound communication
(Figure 8). In order to do this, every transport packet has to be
inspected and the originating application and its corresponding
SA has to be determined. If no associated SA exists, and then HIP
UPDATE or BE procedures are initiated and the packet will be
temporarily stored or sent out through an existing – but not yet
optimized – interface, as long as the BE/UPDATE finishes and
the optimized path (i.e. SA) gets ready.

5. Simulation Framework
In order to provide an extensible and precise simulation model for
our HIP-based per-application mobility management platform,
first we developed an IPv6-based Host Identity Protocol model
called HIPSim++1. The model is built on the top of the 20081128
version of INETwithMIPv6 [12] which is an extension and
TCP/IP model collection of the component based, modular
OMNeT++ discrete event simulation environment [13][14].
Despite the fact that HIP relies on the functions of IPSec, a full
implementation of IPSec and relating algorithms is not part of our
simulation model: HIPSim++ does not possess properly realized
Diffie–Hellman mechanisms, RSA engine, cryptographic hash
functions and puzzles because precise mapping of all the security
algorithms is out of scope of our current efforts. The main design
goal of HIPSim++ was to provide a basis for our HIP-based
application-specific mobility management proposal by accurately
simulating core HIP instruments focusing on the advanced
mobility and multihoming capabilities and wireless behavior of
the protocol and providing only skeleton implementation of the
above mentioned mathematical apparatus.
Our implemented HIP layer registers HIT-IP bonds for every
communication session, and when packets from the transport
layer arrive, destination and source HITs are replaced by
destination and source IP addresses. Higher layers know only
about HITs and Port numbers: applications are not aware of that
they are using HITs instead of IP addresses. By realizing this
scenario, all the advantages and benefits of applying HIP can be
exploited and also HIPSim++ can be easily used in the existing
INET-based simulation models.

5.1 Main Modules of HIPSim++
The core of our HIPSim++ implementation is the HIP layer
module named as HIP module which creates a daemon instance
called HIPSM for every new HIP session. This daemon is
responsible for all mechanisms of the HIP State Machine (HIP
SM) described in [8], e.g. for handling HIP Base Exchange and
HIP mobility functions. One such daemon instance cares of one
SA, which will be identified by the local SPI. HIP SM daemons
are registered by destination and source HITs (and SPIs) in the
HIP module. HITs have to be provided by the applications (or
rather the transport layer), therefore HIP-capable DNS extensions
[15] are also integrated into HIPSim++. The HIP module is also
responsible for managing changes of states and/or addresses of
host interfaces. Main methods of the module are the following:

1 HIPSim++: A Host Identity Protocol (HIP) Simulation

Framework for INET/OMNeT++, Official homepage:
http://www.ict-optimix.eu/index.php/HIPSim

- handleMessage: Leads the incoming packets towards the
appropriate methods (packets can be arrived from the transport
and the network layers).

- handleMsgFromTransport: Checks whether there is an
existing HIP SM for the packet’s destination HIT and forwards
the packet towards the appropriate HIP SM.

- handleMsgFromNetwork: If the arrived packet is a HIP I1
(see Figure 2), then creates a new SM. If another HIP signaling
packet has arrived, then searches for the appropriate SM and
forwards the packet to it. If a HIP data message comes in, then
the method gets the packet out from the ESP and forwards it to
the appropriate SM based on the SPI value.

- handleAddressChange: This method is applied by the HIP
module in order to gather information about lower layer events
(like IP address changes) using the capabilities of the INET’s
NotificationBoard object. After processing such lower layer
information, HIP UPDATE mechanisms can be initiated at the
relevant SMs.

5.1.1 HIPSM module
The HIPSM module implements the main functions of the HIP
State Machine. In our model transitions of HIP State Machine
assumes that packets are successfully authenticated and
processed. This behavior is in consistence with the standards,
therefore our skeleton implementation of security algorithms do
not hamper our model to accurately simulate HIP mechanisms.
One instance of HIPSM represents and manages one HIP
connection with one Security Association. HIPSM handles
transitions occurring during HIP Base Exchange, RVS
registration, UPDATE mechanism, etc. and generates HIP
messages according to the state transitions. HIPSM module also
handles changes in partner IP addresses (sets the locators by
receiving and processing UDPATEs), but the actual storage
happens in the main HIP module. Main methods of the module:
- handleAddressChange: If an ADDRESS_CHANGED

message is received from the HIP module, HIPSM starts the
UPDATE procedure in which an UPDATE message containing
the current local locators will be sent towards the partners.

- handleMessageLocalIn: Handles packets received from the
upper layers. If no HIP connection has been set up for a
destination HIT of an incoming packet, then the method starts
the HIP BE and stores this first message (triggermsg). If a
packet arrives for a ”BE in progress” HIP connection, then this
packet will be discarded. After a successful BE every
corresponding packet will be extended with an ESP header
containing the appropriate SPI value.

- handleMessageRemoteIn: Deals with packets coming from
the network. If a corresponding BE or UPDATE procedure is in
progress, then this method will generate the appropriate answer
messages. If no BE or UPDATE procedures are running for that
particular packet, then the ESP packet will be decapsulated and
the result will be passed to the HIP module for further
processing.

- handleCreditAging: Implements the basic procedures of the
HIP’s Credit-Based Authorization (CBA) approach designed to
prevent redirection-based flooding attacks. The method is called
after receiving creditMsg periodical self messages and uses
CBA CreditAgingFactor and CreditAgingInterval parameter
values proposed in [10].

12

- createEspMessage: Searches for appropriate SA for
transport layer packets and encapsulates them into ESP
messages marked with SPI. If no SA can be found for the
application belonging to the arriving transport layer packet, then
an UPDATE procedure will be started using the
handleAddressChange method.

5.1.2 RvsHIP module
The RvsHIP module is derived from the HIP module in order to
extend the basic HIP capabilities with the RVS functions by
handling the incoming registration messages according to [16]
and by forwarding I1 messages [11] to the appropriate HIP
responder chosen from the registered ones. Main methods of the
module:
- handleMsgFromNetwork: If the destination HIT of an

arrived HIP I1 packet is the RVS's own HIT, then registration
mechanisms are to be initiated and a new HIP SM is to be
created. HIP SM daemons in the RVS are responsible for
handling HIP UPDATE messages and corresponding
procedures for registered HIP nodes. If the destination HIT of
an incoming I1 differs from the RVS's own HIT, then it must be
modified and forwarded towards the appropriate HIP node in
the registration list according to [11].

- alterHipPacketAndSend: This method modifies the assigned
I1 packet: a FROM parameter containing the original source IP
address of the HIP packet will be added and the source IP
address in the original IP header will be overwritten with the IP
of the registered HIP node owning the destination HIT.

5.1.3 DnsBase module
The DnsBase module is a simple UDP application which realizes
basic DNS server functionality for name resolution of HIP hosts
and implements the new Resource Record (DNS HIP RR) defined
in [15]. The module resolves domain names to HITs and IP
addresses and in case of mobile HIP hosts also provides RVS
information. Note that reverse DNS lookups are not supported in
the current version of HIPSim++. Main methods of the module:
- LoadDataFromXML: Reads initial DNS database containing

Resource Records of every host in the simulation from an .xml
configuration file. Resource Records of a particular HIP host
are within the <DNSEntry> tag where <Address>, <HIT>,
<NAME>, <RVS>, etc. tags contain the different fields of a DNS
HIP RR.

- handleMessage: Processes incoming DNS query messages
and answers them by sending DNS responses with the
appropriate Resource Records of the queried hosts.

5.1.4 PerappDecisionEngine module
The PerappDecisionEngine module implements the main
functions of our per-application mobility scheme designed to
operate in HIP environments. This module marks application
sockets with quintets of Source HIT, Destination HIT, Source
port, Destination port and Transport type, such providing the
basic toolset for handling mobility in an application-wise manner.
Main methods of the module:
- calculateBestInterface: Calculates the optimal interface for

a given application profile based on the actual conditions. This
interface will be used as the outbound interface for every packet
of the application. Two application profiles (FTP, VoIP) are
implemented (see Section 6 for further details).

- recieveChangeNotification: This method implements the
Monitoring/Mediator Agent by handling INET's
NotificationBoard messages coming from different protocol
layers. In the current state of our simulation model socket
information from the transport layer, IPv6 prefix information
from the networking layer and link information from the link
layer is handled. However control of different layers is also an
important task of this method, current implementation does not
take into consideration the possibility of such a behavior: no
intervention into different protocol layers is performed after
decisions.

- PerappProfileDatabase: This method implements APDB
functions by reading and processing the initial profile data from
.xml file.

5.2 Special Nodes in HIPSim++
HIP RFCs and Internet Drafts define three main types of nodes,
namely the Initiator, the Responder and the Rendezvous Server.
For introducing name resolution functions, also DNS server entity
is to be used in a HIP architecture. All the above HIP nodes have
been realized in HIPSim++ based on the existing INET modules
and the newly introduced HIP, HIPSM, RvsHIP, and DNSBase
modules. Functions of our HIP-based per-application mobility
management scheme are implemented in the nodes by introducing
the PerappDecisionEngine module.

5.2.1 Wired HIP Initiator/Responder (HipHosts6)
Wired hosts implementing HIP Initiator and/or Responder
functions (i.e. HIP hosts) are derived from the INET’s existing
StandardHost6 compound module by inserting the HIP module
between the transport and the network layers. This node
represents a basic HIP host with HIP mechanisms, HIP-based
UDP/TCP applications but without support of mobility. The
physical network interface is one Ethernet card, but in general any
kind of network interface model can be used. HIP hosts contain a
single instance of the HIP layer compound module which
executes HIP procedures and creates HIP SM daemon instances
for every HIP connection.

5.2.2 Wireless HIP Initiator/Responder with
multiple interfaces
In order to exploit the multihoming capabilities of Host Identity
Protocol, the number of physical interfaces of a HIP host can be
increased freely in HIPSim++. WirelessMultihomeHipHost6 is
implementing HIP hosts with multihoming capabilities, where
communication partners are continuously updated about the
locator (i.e. IPv6 address) changes of all the active interfaces, and
the most appropriate interface is used for data transmission. With
a PerappDecisionEngine module introduced, per-application
mobility management can be used in the node.

5.2.3 DNS Server (StandardHost6 with DNS)
A DNS Server node in HIPSim++ is responsible to provide name
resolution for HIP hosts by implementing the basic functions
described in [15]. DNS Server node is basically a StandardHost6
compound INET module comprising also our DNS
implementation called DnsBase, which runs appropriate DNS
mechanisms. The DNS database used by our DnsBase module is
an .xml file containing resource records of every node in the
simulation topology. DNS queries are handled by the Host
Identity Layer: the first transport packet initiates the query
process based on the destination HIT (and the pre-set DNS IP

13

address), and the Basic Exchange starts right after the response
provides with the locator belonging to that destination HIT.

5.2.4 HIP Rendezvous Server (RvsHost6)
RvsHost6 nodes implementing HIP rendezvous functions in our
simulation framework are also derived from the StandardHost6
compound module by interposing the modified HIP module
prepared to handle RVS tasks (i.e. the RvsHIP module). RvsHost6
node forwards I1 messages originated by (wired or wireless) HIP
Initiators to the appropriate (wired or wireless) HIP Responder
signed in the RVS. Therefore potential Responders must register
themselves in the RVS and in place of their own IP address,
Responders must use their RVS’s IP address in the Domain Name
System. Wireless HIP nodes must continuously inform their RVSs
about events of locator changes.

5.3 HIPSim++ Messages
In this section we introduce the most important message
constructions of our HIPSim++ HIP simulation framework.

5.3.1 HIP signaling messages
In accordance to [8], different HIP messages start with a fixed
header. The HIP header is logically an IPv6 extension header such
in HIPSim++ all HIP messages are implemented as additions to
the INET’s Ipv6ExtensionHeader. Almost all the already
standardized HIP message types and parameters are defined in our
framework, including also the Locator parameter which is
realized as an array of HIPLocator structures. An important
exception is the ESP_INFO parameter which is missing due to the
simplified management of IPSec SPIs in our simulation model.

5.3.2 HIP data messages
In HIPSim++ we currently use the Encapsulated Security Payload
(ESP) based mechanism for transmission of user data packets [3].
As proper implementation of all the cryptographic mechanisms in
HIP is outside of the scope of our researches, we use only
simplified Encapsulating Security Payload Header [18]
mechanisms for distinguish HIP data packets based on SPIs.
Every HIP data message travels in ESP: packets coming from the
transport layer will be encapsulated in an ESPHeaderMessage
labeled with the appropriate SPI value. Every
ESPHeaderMessage has a special object per header to carry the
SPI value as parameter. This object is derived from the
IPv6ExtensionHeader class of INET in order to overcome some
inflexibility issues of the existing IPv6 implementation and
making the ESP packets to pass through the networking layer
towards the HIP module.

5.3.3 DNS messages
The basic HIP namespace resolution functions are implemented
using a simple query/response message pair called DnsQuery and
DnsResponse.

5.3.4 Per-application messages
Five different messages are defined for realizing inboard signaling
functions of our HIP-based per-application mobility management
platform. PERAPP_NEWAPP indicates the appearance of a new
application. Changes in socket descriptors of running applications
are signaled with PERAPP_CHANGEDAPP. Exiting of a running
application is indicated by PERAPP_DELETEAPP. If source
address or interface of a running application changes,
PERAPP_UPDATE is sent. PERAPP_LAST_IF_DOWN message
stands for the event when the last usable interface was

disappeared. All the above messages contain the ID of the default
interface, and the affected applications and their assigned
interfaces.

6. The Simulation Scenario
We used the above introduced INET/OMNeT++ model to
construct a simulation scenario aiming to evaluate the proposed
HIP-based per-application mobility management platform against
the standard per-host multihoming mechanisms where only one
SA is built-up between endpoints and only one interface is chosen
for every application based on static priority. During our
evaluation we only considered pre-defined QoS parameters of
applications / access networks (i.e. static profiles) and dynamic
connection discovery as inputs of handover decision. It means
that no active measurements of available networks and actual
application performances were used as decision supporting data
during the simulated communication process. Two different
applications with different QoS characteristics (i.e. QoS profiles)
were specified with two different decision policies in our defined
simulation scenario:
- FTP (based on INET’s TCPSessionApp): The profile of FTP

aims to receive as much data from the source as possible;
therefore the policy of this application was defined to maximize
the TCP throughput. In order to achieve this, the policy sets the
FTP application to always use the network with the highest
bandwidth among the available connections. The FTP
application is a TCP Reno session of a downlink data
transmission.

- VoIP (based on INET’s UDPEchoStream): The main goal
of the profile defined for VoIP is to minimize the handover
latency, packet loss and end-to-end packet delay variation.
Hence the policy of VoIP was specified to use the network with
the lowest number of possible handovers and simultaneously
communicating applications. The application itself is a 15
Kbyte/sec CBR stream with packet size of 80 byte.

Besides the above described two applications a third one was also
introduced in order to generate background traffic for comparison
purposes. The decision profile of this application is the same as
the FTP's but here an UDP CBR stream is transmitted (also based
on UDPEchoStream) with adjustable bandwidth and 1024 Kbyte
packet size.
Figure 9 introduces the network topology used during our
simulations. Communication was performed between the mobile
HIP Initiator owning two interfaces for WLAN and UTMS and
the wired HIP Responder on an Ethernet network. The simulated
wireless environment consists of a 3G UMTS coverage providing
2.6 Mbps (downlink) bandwidth with 80 ms average RTT and two
802.11b WLAN access areas offering 11 Mbps maximum
bandwidth and 30 ms average RTT. DNS and RVS nodes are
operating in full compliance with the corresponding HIP RFCs.
The HIP mobile travels on a fixed route signed by the white arrow
and it takes 140 sec to get to the end of the path (i.e. the length of
a complete mobile communication session is 140 sec). The first
20 sec is for the initiation (WLAN MAC association, IPv6
configuration, HIP RVS registration and BE, starting the
applications, etc.) thus 120 sec can be considered as the
measurement interval. For every measured parameter 25
simulations were run, each with different random seeds meaning
that every plotted dot in our graphs was created as an average of
25 simulations. In our graphs “No perapp” signs the results gained
by applying the standard HIP per-host multihoming procedures in

14

the introduced scenario (WLAN was prioritized before UMTS)
while “Perapp” stands for the results of running our HIP-based
per-application mobility management platform (with the
introduced application and network profiles and policies).

Figure 9. The used simulation topology

7. Results
Several performance measures were compared from every defined
application profile's point of view. This section contains the
results of the simulations. Standard HIP per-host multihoming is
compared against our HIP-based per-application mobility
management proposal.
Figure 10 and 11 shows the Jitter and RTT values of the VoIP
application during a whole simulation run. The colored segments
of the graphs are marking the actually used network(s).
Figures show that in cases of single network coverage (sole
WLAN or UMTS) no big difference occurs between the two
methods, but our HIP-based per-application mobility management
platform overcomes the standard scheme when overlapping access
networks are available. According to the pre-defined application
policies and the dynamic network discovery our HIP extension
assigns applications to interfaces in an optimal way resulting in
low jitter and low congestion.
In Figure 12 results of total FTP throughput are depicted in the
function of the background traffic. Every column stands for the
average FTP throughput value of 25 complete simulation runs. It
is shown, that the throughput decreases as the background traffic
increases because of the congestion and the lost available
bandwidth. However, the measured throughput is always higher
when per-application mobility management is used, and the gain
is getting more significant as the background traffic increases.
We have also analyzed the total amount of lost UDP packets of
the VoIP application during a complete mobile communication
session. Figure 13 presents that in cases of low background traffic
no significant advantage of per-application mobility paradigm can
be pointed out, but when high background traffic is injected in the
network, the method shows its power. Thanks to the defined
application policies VoIP always uses the network with less
congestion and HO (here the UMTS) thus its cumulated UDP
packet loss decreases compared to the standard HIP per-host
multihoming (where WLAN is used when available).

Figure 10. Graph of the measured jitter on VoIP

Figure 11. Graph of the measured RTT on VoIP

Figure 12. Cumulated TCP throughput of FTP

This behavior can be recognized also in Figure 14. where the
average Jitter of the VoIP application is plotted. If per-application
mobility management is employed, the variation of RTT values is
smaller thanks to the optimally chosen and dedicated UMTS
access network. This advantage expands with increasing
background traffic.

However the dedicated UMTS connection of VoIP provides more
stable communication in means of packet loss and Jitter, it also
has some drawbacks. Due to the characteristics of UMTS the RTT
of the VoIP application is higher in the per-application case than
it is observable when standard HIP multihoming is applied and
low background traffic is presented (Figure 15). Nevertheless, the
Figure also shows that our HIP-based per-application mobility
management platform still overcomes standard HIP multihoming
performance if the network is loaded with higher volume of
background traffic and the network (here the WLAN segment)
gets more congested.

15

Figure 13. Cumulated UDP packet loss of VoIP

Figure 14. Average jitter of VoIP

Figure 15. Average RTT of VoIP

8. CONCLUSIONS AND FUTURE WORK
In this paper we presented the design and evaluation of a HIP-
based per-application mobility management platform which aims
to be a comprehensive handover decision architecture founded on
the promising Host Identity Protocol (HIP) and the cross-layer
building blocks closely incorporating with it. In order to assess
our platform against standard per-host HIP multihoming
performance, we modeled HIP and the proposed per-application
handover mechanisms in the INET/OMNeT++ simulation
environment. Simulation results show that our HIP-based
application-wise mobility system overcomes standard HIP
mobility solutions in the most cases, even if the current protocol
model does not comprise active network measurements and
complex profiles and policies.

As a part of our future activities we will further extend our HIP-
based scheme with more advanced cross-layer extensions, like

dynamic application profiling; active, on-the-fly intervention into
protocol layers’ operation; and active measurements based
interface selection.

9. ACKNOWLEDGMENTS
This work is supported by the ICT-OPTIMIX project which is
partly funded by the 7th Framework Programme (FP7) of the
European Committee. The authors would like to thank all
participants and contributors who take part in the studies.

10. REFERENCES
[1] T. Koponen, A. Gurtov, P. Nikander, Application Mobility with HIP,

in Proc. of ICT'05, May 2005

[2] T. Koponen, A. Gurtov, P. Nikander, Application mobility with Host
Identity Protocol, Extended Abstract in Proc. of NDSS'05 Workshop,
February 2005

[3] Vasantha Kumar, B.P.; Manjunath, D., Tunnel-accessed NATs for
always-best-connected and application mobility, 6th International
Conference on Information, Communications & Signal Processing,
10-13 Dec. 2007 pp: 1–5

[4] Ping Yu, Jiannong Cao, Weidong Wen and Jian Lu, Mobile Agent
Enabled Application Mobility for Pervasive Computing, Ubiquitous
Intelligence and Computing, Volume 4159/2006, pp: 648–657

[5] Moonjeong Chang, Hyunjeong Lee, Meejeong Lee: “A per-
application mobility management platform for application-specific
handover decision in overlay networks,” Comput. Netw. (2009),
doi:10.1016/j.comnet.2009.02.018

[6] Moonjeong Chang, Meejeong Lee, Hyunjeong Lee: “Per-Application
Mobility Management with Cross-Layer Based Performance
Enhancement,” IEEE WCNC 2008., March 31 2008-April 3 2008
pp: 2822–2827

[7] R. Moskowitz, P. Nikander: “Identity Protocol (HIP) Architecture”,
RFC 4423, May 2006

[8] R. Moskowitz, P. Nikander, P. Jokela, T. Henderson: ”Host Identity
Protocol”, RFC 5201, April 2008

[9] P. Jokela, R. Moskowitz, P. Nikander: ”Using the Encapsulating
Security Payload (ESP) Transport Format with the Host Identity
Protocol (HIP)”, RFC 5202, April 2008

[10] P. Nikander, T. Henderson, C. Vogt, J. Arkko: ”End-Host Mobility
and Multihoming with the Host Identity Protocol”, RFC 5206, 2008

[11] J. Laganier, L. Eggert: “Host Identity Protocol (HIP) Rendezvous
Extension”, RFC 5204, April 2008

[12] F. Z. Yousaf; C. Bauer; C. Wietfeld: “An Accurate and Extensible
Mobile IPv6 (xMIPV6) Simulation Model for OMNeT++”, in the
Proc. 1st Int. Conf. on Simulation tools and techniques for
communications, networks and systems (SIMUTools2008), ISBN:
978-963-9799-20-2, Marseille, France, 2008

[13] Andras Varga, Rudolf Hornig: “An Overview of the OMNeT++
Simulation Environment”, in Proc. 1st Int. Conf. on Simulation tools
and techniques for communications, networks and systems
(SIMUTools'08), ISBN:978-963-9799-20-2, Marseille, France, 2008

[14] OMNeT++: A public-source, component-based, modular and open-
architecture discrete event simulation environment. Official
homepage: http://www.omnetpp.org/

[15] P. Nikander, J. Laganier: “Host Identity Protocol (HIP) Domain
Name System (DNS) Extension”, RFC 5205, April 2008

[16] J. Laganier, T. Koponen, L. Eggert: “Host Identity Protocol (HIP)
Registration Extension”, RFC 5203, April 2008

16

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

