
Time accurate integration of software prototypes with
event-based network simulations

Elias Weingärtner, Florian Schmidt, Tobias Heer, and Klaus Wehrle
Distributed Systems Group
RWTH Aachen University

{weingaertner, florian.schmidt, heer, wehrle} @ cs.rwth-aachen.de

ABSTRACT

The concept of network emulation brings together the flexi-
bility of network simulations and the accuracy of real-world
prototype implementations. However, this approach suffers
from the fundamental problem of simulation overload which
occurs if the simulation is not able to execute in real-time.
We tackle this problem with a concept we call Synchronized

Network Emulation. It enables the time accurate integration
of implementations with network simulations of any com-
plexity.

Categories and Subject Descriptors: C.2.2 [Computer-
Communication Networks]: Network Protocols; C.4 [Perfor-
mance of Systems]: Measurement

General Terms: Experimentation, Measurement, Per-
formance

1. INTRODUCTION

Network emulation is a hybrid methodology which com-
bines the flexibility of network simulations with the pre-
cision of evaluations carried out on physical systems. An
event-based simulation which models a computer network of
choice is connected to a physical system that executes a pro-
totype implementation. Traffic originating at the prototype
is inserted into the simulated network and passed through
it. The simulation provides simulated hosts that interact
with the prototype implementation. This concept was first
introduced by Kevin Fall [2] in 1999. Most notably, event-
based simulations and software prototypes differ greatly in
their underlying timing concepts. An event-based simula-
tion consists of a series of discrete events with an associated
event execution time. In contrast to that, software proto-
types progress continuously through wall-clock time. For
the integration of those timing domains, existing implemen-
tations of network emulation pin the execution of simulation
events to the corresponding wall-clock time. In his paper,
Fall already stated that this approach is only useful if the
simulation executes in real time, and that there was “no
simple solution to this issue”. If the simulation lags behind
in time, it is unable to deliver packets in a timely manner.
Such simulator overload may arise whenever complex net-
work simulations are used or if large amounts of packets
need to be processed by the simulator. Hence, simulator
overload must be prevented by all means because erroneous
protocol behavior, such as connection time-outs, unwanted
retransmissions, or the assumption of network congestion
are straight consequences, thus rendering measured results
unusable or at least questionable.

Physically speeding up the simulation hardware to make
it real-time capable is the first obvious option to deal with
simulation overload. This can be achieved by supplying the
simulation machine with sufficient computational resources
or a parallelization of the network simulation. This approach
is well elaborated by Kiddle in [3], where a ns-2 network sim-
ulation is partitioned using a 128 multiprocessor machine
in order to facilitate network emulations with thousands of
real-time simulated hosts. However, we argue that this ap-
proach lacks generality because parallel processing cannot
be applied to every kind of simulation and only scales to the
degree of possible parallelism within the simulation. More-
over, the amount of hardware needed for real-time execution
rapidly grows with the simulation complexity, making this
option inaccessible for many research institutes and individ-
uals.

So far, network emulation has merely been an arms race
between the complexity of the simulation model and the
computational power of the simulation hardware. Hence,
traditional approaches result in variable hardware require-

ments and fixed execution time (real time). We aim at re-
ducing the cost of precise network emulation by designing a
system with fixed hardware demands but with variable ex-

ecution time (real time or slower). In order to achieve this
goal, we recently proposed Synchronized Network Emula-
tion (SNE) [5], which uses throttling and synchronization
mechanisms to match the speed of the simulation to the
hosts attached.

2. SYNCHRONIZED NETWORK

EMULATION

A synchronized network emulation scenario contains three
different kinds of components.

An event-based network simulation models an arbi-
trary computer network that interconnects the software pro-
totypes. This requires an adequate message translation and
bridging between the “real world” software prototypes and
the network simulation model.

Instead of executing the software prototypes on physical
machines, we employ virtualized hosts for this purpose.
The use of virtualization enables us to modify the software
prototypes’ perception of time in order to have them execute
in virtual time instead of following wall-clock time. This
way, we are able to introduce artificial gaps in their continu-
ous execution progress. This allows the network simulation
to catch up with the execution of the virtualized hosts.

The actual synchronization is carried out by a central
synchronization component that assigns slices of vir-

49

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

c
o

u
n

t

ping RTT [ms]

(a) RTTs for two Linux PCs

 0

 5

 10

 15

 20

 25

0 5000 10000 15000 20000 25000 30000 35000 40000

c
o

u
n

t

ping RTT [ms]

(b) Unsynchronized execution leads
to corrupted results

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

c
o

u
n

t

ping RTT [ms]

(c) Synchronized execution of one
virtualized host and a simulation

Figure 1: Synchronized network emulation produces

precise timing results

tual time to the network simulation and the attached virtual
hosts. Synchronized peers notify the synchronization com-
ponent once they have finished the execution of the time
slice. Once all virtualized hosts and the network simulations
have signaled this completion, a new time slice is assigned.
This way, the time drift between virtualized hosts and the
network simulation is bounded by the size of a time slice.

3. IMPLEMENTATION

For the purpose of investigating the characteristics of syn-
chronized network emulation, we have implemented a cor-
responding tool set. Our virtualized host implementation
is based on the Xen [1] hypervisor. For the network emula-
tion, we utilize the OMNeT++ [4] and its INET framework.
The synchronization component is implemented as a stan-
dalone application. It implements a lightweight synchroniza-
tion protocol based on UDP to limit the overall messaging
complexity.

4. RESULTS

First, we investigated the effect of synchronization in a
scenario that suffers from simulation overload if no synchro-
nization is in place. Therefore, we measured the round trip
times of 3500 ICMP echo reply packets. The results depicted
in Figure 1 demonstrate that a synchronized network emula-
tion scenario is able to reproduce a timing behavior close to
one found in a real world. Second, we analyzed the overhead
which is caused by synchronization of the virtualized hosts
and the simulation. Figure 2 shows the total execution time
for a simulation scenario with a duration of 600 seconds,

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0.01 0.1 1 10 100

o
v
e
rh

e
a
d
 r

a
ti
o

slice size [ms]

2 VHs: paravirtualized Linux
2 VHs: hardware virtualized Linux

2 VHs: hardware virtualized Windows XP
1 VH: paravirtualized Linux

1 VH: hardware virtualized Linux
1 VH: hardware virtualized Windows XP

real time

Figure 2: Run-time overhead at different levels of

synchronization accuracy

given different levels of synchronization accuraccies. In ad-
dition, we measured the simulation overhead for two concur-
rent virtualized hosts running on one physical machine and
different types of executed operating systems. Our results
show that, for one synchronized virtualized host, the syn-
chronization imposes less than 10% of additional overhead
for time slices equal or greater than 1ms, which is sufficient
for most wide area network scenarios. Moreover, our imple-
mentation supports the synchronization of virtualized hosts
and network simulations with an accuracy of up to 10µs at
higher, but still moderate cost.

5. CONCLUSION AND OUTLOOK

We conclude that synchronized network emulation is a
feasible approach for the evaluation of large-scale network
systems. First, even closed-source binaries (e.g., operat-
ing systems, proprietary protocols, and applications) can
be analyzed with the versatility of a simulator without be-
ing limited to real-time capable simulations. Second, syn-
chronized network emulation facilitates evaluations based on
accurate end-host behavior without using static traces, sta-
tistical traffic patterns, or over-simplified models. In conclu-
sion, synchronized network emulation enables the convenient
investigation of protocol implementations in large simulated
environments at low additional cost. We therefore antici-
pate synchronized network emulation becoming a versatile
and powerful tool in network analysis.

6. REFERENCES
[1] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,

A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the art of virtualization. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles (SOSP’03),
Bolton Landing, NY, USA, Oct. 2003. ACM.

[2] K. R. Fall. Network emulation in the Vint/NS simulator. In
Proceedings of the 4th IEEE Symposium on Computers and
Communication. IEEE Computer Society, 1999.

[3] C. Kiddle. Scalable Network Emulation. PhD thesis,
Department of Computer Science, University of Calgary,
2004.

[4] A. Varga and R. Hornig. An overview of the OMNeT++
simulation environment. In Proceedings of the First
International Conference on Simulation Tools and
Techniques for Communications, Networks and Systems
(SIMUTools 2008’), Marseille, France, March 2008.

[5] E. Weingärtner, F. Schmidt, T. Heer, and K. Wehrle.
Synchronized network emulation: Matching prototypes with
complex simulations. In Proceedings of the First Workshop
on Hot Topics in Measurement & Modeling of Computer
Systems (HotMetrics’08), Annapolis, MD, June 2008.

50

