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ABSTRACT

OPEDo is a software tool for the optimization of discrete
event systems according to performance or dependability
measures. The tool can be seen as an add on to various
tools for performance and dependability analysis. The goal
of OPEDo is to provide a wide variety of optimization algo-
rithms for complex black box functions as they are required
for the model based optimization of discrete event systems
using analytically tractable models or simulation models.

The paper introduces the software architecture of the tool,
gives a brief sketch of the integrated optimization algorithms
and presents several examples.

1. INTRODUCTION

Discrete event systems (DEDSs) can be found in various
application areas ranging from computer and communica-
tion systems to manufacturing or logistics systems. The
analysis of DEDSs is usually model based and different types
of models are available to describe and analyze the quantita-
tive behavior of DEDSs [8]. One can roughly distinguish be-
tween analytically or numerically tractable models and sim-
ulation models. Usually, models are applied to describe and
analyze the behavior of a DEDS but the final goal of model-
ing is often to find an optimal or at least good configuration
of the DEDS by optimizing its structure and parameters.
The latter requires the availability of adequate algorithms
to find parameter settings resulting in an optimal model
configuration which is in general an optimization problem
where the goal function is given by the model of the DEDS.
OPEDo, the Optimization and Performance Evaluation tool
from the TU Dortmund, is a software tool which includes
a wide variety of optimization algorithms that can be ap-
plied to models of DEDSs. The idea behind OPEDo is to
provide a set of optimization algorithms and define an inter-
face that allows one to use models from different modeling
tools as goal functions of optimization problems. The goal
functions are evaluated during the optimization process by
the solvers of the used modeling tools. Since the internal
structure of the models is not visible to the optimization
algorithms, models have to be taken as black boxes.

Although model based optimization is an important add
on to performance and dependability modeling, optimiza-
tion techniques are usually not part of performance modeling
tools and even the number of theoretical and methodologi-
cal papers in the area is limited to very specific problems.
There is a long history in control theory and its applica-
tion to queuing systems [4]. However, these techniques are
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restricted to specific types of optimization problems which
in particular do not contain discrete optimization problems
that naturally arise from optimizing resources like the num-
ber of processors or buffer spaces. An active area of research
is the optimization of discrete event simulation models [10]
which is still seen as a hard problem although recently some
progress has been made in developing efficient optimiza-
tion methods for stochastic simulation problems [11] and
also for real systems using measurements [19]. Additionally,
some work has been done in optimizing product form models
(e.g., [7]) which can be solved analytically such that algo-
rithms from nonlinear optimization may be applied. Some
commercial optimization tools are available which are usu-
ally add ons to simulation environments [17]. The most
widespread tool in this area seems to be OptQest [16] which
can be combined with several simulation tools and includes
an efficient optimization algorithm. However, all these op-
timization tools usually include one or very few heuristic
optimization algorithms which are hidden from the user. Al-
though the algorithms often work surprisingly good for most
examples, one can usually easily find models where the op-
timization fails. Thus, from a practical perspective it seems
to be important to have several optimization algorithms in a
tool and to combine the optimization algorithms with differ-
ent model types to support the whole design process starting
with abstract queuing models and possibly ending with a
very detailed simulation model. Furthermore, a tool should
be open and easily extendable to new model types and new
optimization algorithms. The mentioned points motivated
the development of OPEDo.

From a mathematical point of view the goal of OPEDo is
to find minyey (f(x)) where i C R™ x N™. Thus, we have n
real and m integer parameters. Set U is defined by intervals
x; € [li,us] with I;,u; € R and possibly ¢ additional linear
constraints Ax < b where A € R7”*™*™) and b € RY.
Parameters are denoted as factors in optimization. For the
optimization of system performance or dependability f(x)
is given by the model of a DEDS defined in some of the
modeling tools supported by OPEDo. We denote the result
f(x) as the response at x which could be a random variable,
e.g., if f(x) is realized by a stochastic model analyzed via
simulation.

The current paper is structured as follows. In the next sec-
tion we present the structure and architecture of the tool.
Afterwards, section 3 gives a very brief overview of the in-
tegrated optimization algorithms. Then we present three
example models. The paper ends with the conclusions and
an outlook on future extensions of the tool.
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Figure 1: Overview of OPEDo

2. TOOL ARCHITECTURE

The overall architecture of the tool and connected tools
are presented in Figure 1. OPEDo consists of three main
parts. The corresponding modules can be identified as the
darker green boxes of the figure where each part has its own
shade of green. The modules communicate via files, pipes
or other interfaces presented as dashed boxes. The left col-
umn contains the graphical user interface (GUI) which al-
lows the user to manage the optimization process and which
also presents the intermediate and final results. The right
column describes the black box model. In black box eval-
uation the evaluator is only aware of an interface to define
parameters and to read result values. In case of a stochastic
models, additionally the seed value of the random number
generator has to be set to run several replications at one
point.

In the middle we have modules to manage the evaluation
of the black box model. The major goal is optimization
which is realized by the optimizer including several opti-
mization algorithms that are presented in section 3. OPEDo
allows optimization according to a single result measure.
Factors are real values and integers, qualitative factors like
scheduling strategies may be coded as integers which, how-
ever, might result in a bad performance of the optimization
algorithm. For each factor an interval has to be defined,
linear constraints may be defined as well. The optimization
algorithm tries to find an optimal value with all parame-
ters in the predefined intervals and all constraints satisfied.
Since black box optimization algorithms compute results by
an intelligent search strategy, all algorithms compute inter-
mediate results which may be presented in the GUI.

Apart from optimization, OPEDo allows the evaluation of
user defined configurations and the generation of response
surfaces. If the user has some information about the possible
location of the optimum, he or she may evaluate the model
at this point and compare the response with other responses
found by one of the optimization algorithms. Additionally,
good responses can be used as initial points for one of the
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optimization algorithms. Furthermore the response surface
can be computed as a multi dimensional grid. The user
defines for each parameters an interval and a step length
and the response surface generator evaluates the model at
every point.

OPEDo uses functions from the GNU Scientific Library
[13] for statistical evaluations and random number gener-
ation. Additional libraries are used for GUI and graphics
generation. A complete list can be found on the OPEDo
homepage.

2.1 Black Box Models

The goal of OPEDo is twofold. First, it is an optimiza-
tion environment for performance and dependability models.
Second, it is an environment for new algorithms for the op-
timization of black box functions. Since optimization of
black box functions is mainly done by heuristic methods,
a lot of experimental evaluation is necessary to find effi-
cient and reliable algorithms. In particular, new algorithms
have to be compared with available methods. It is imprac-
tical to do such comparisons by means of complex simula-
tion models which require a huge evaluation effort. There-
fore, benchmark functions have been defined in the opti-
mization literature [9]. These functions, which have been
used in many studies on the comparison of optimization
algorithms, are also built in OPEDo. Since a major goal
of OPEDo is the optimization of stochastic functions and
the benchmark functions are deterministic, it is possible to
add a N(0,0) distributed random variable to the function
value such that the resulting optimization problem becomes
a stochastic problem. Apart from the benchmark functions
some basic models of DEDSs are also included, namely a
(s,S) inventory system [17] and a simple tandem queuing
network with Poisson arrivals and exponential service times.

To use models from some modeling tool in OPEDo, one
has to define the interface between the optimizer and the
modeling tool. Different levels of integration are supported.
The minimal requirements to integrate a tool are the pos-
sibility to define factor values and necessary parameters for



the solver and to start an analysis run and to read the result.
A loose connection between OPEDo and a modeling tool is
realized by a Perl script. The parameters are identified by
name and are substituted by the Perl script in the model
file. Of course, this implies that the model contains param-
eters with the right name and of the right type. In a similar
way, the seed of the random number generator is set and the
result is identified by name in the output file of the model-
ing tool. Basic Perl scripts are available for the connection
to the tools HIT [3] and OMNeT++ [12]. It is relatively
straightforward to integrate other tools in a loose form by
modifying the available generic Perl scripts. However, for
a loosely coupled modeling tool the user has to build his
or her model carefully since OPEDo cannot interpret the
model structure.

The optimization process is much more convenient for
models defined in tightly coupled tools. In this case, OPEDo
parses the model file and presents the model parameters and
possible values to the user. From the GUI the user can
choose the model parameters that are used as factors in the
optimization and he or she can also define the result mea-
sure to be optimized. The result measure is defined using
an arithmetic expression over the results of the model. Cur-
rently, three modeling tools are tightly coupled to OPEDo,
namely the APNN toolbox [2], the ProC/B toolset [1] and
JMVA from the Java Modeling Tools (see M. Bertoli, G.
Casale and G. Serazzi, this issue).

The APNN toolbox is a Petri net tool which allows the
definition of colored generalized stochastic Petri nets. The
Models can be analyzed via discrete event simulation and
exact or approximate numerical analysis of the underlying
Markov chain if the state space is finite and not too large.
Possible parameters for the optimization are initial markings
of places and firing rates or weights of transitions. The re-
sponse is defined by a combination of the token distribution
at the places and the firing frequency of transitions.

ProC/B is a toolset to describe hierarchical process chain
models as they are particularly applied in logistics. Models
are usually analyzed via simulation by mapping the pro-
cess chain model onto a simulation model in one of the
tools OMNeT++ or HIT, analyzing the simulation model
and mapping the results to ProC/B. Factors for optimiza-
tion are selected from the parameters of the ProC/B model
that specify the number of resources, the speed of resources
and branching probabilities. ProC/B allows the definition
of very sophisticated measurement streams which can be
accessed from OPEDo such that the mean values of those
streams can be used to define the response.

JMVA is an analysis tool for simple multi-class queuing
networks which are solved with mean value analysis. The
parameters are the service rates and the number of servers.
For definition of the response the standard result measures
of JMVA, namely throughputs, mean populations or mean
sojourn times at class or station level can be combined in
an arithmetic expression.

2.2 Graphical User Interface

Optimization runs are defined in OPEDo using four steps
in the GUIL. The interface is shown in Figure 2. The left
column contains the buttons to select different steps to set
up optimization runs. According to the selection in the left
column, the menu in the right column is selected. In a first
step the number and types of parameters and the linear
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Figure 3: Search path of an optimization algorithm

constraints are defined. Figure 2 shows the screen for the
parameter definition of a JMVA based optimization. The
user has to relate the factors for optimization to parameters
of the JMVA model and the response has to be defined in
terms of the result values of the JMVA model. Furthermore,
the number of replications may be defined. For an analyt-
ical solver like JMVA the number of replications is set to
1. For simulation models the number of replications should
be set to some value > 1. Optimization methods which
treat stochastic models like deterministic models perform for
each point the selected number of replications and use the
mean value of the response in the optimization algorithm.
Optimization algorithms that are specifically developed for
stochastic models determine the number of replications dy-
namically during optimization such that the fixed value is
not used (see section 3).

In the third step the parameters of the optimization algo-
rithm are selected and in the fourth step the optimization
is started. Since OPEDo is intended to compare different
optimization algorithms, it is possible to replicate the opti-
mization process several times with different seeds for the
models and for the optimization algorithm, if random vari-
ables are part of the model and algorithm, respectively.

The fifth selection Utilities allows one to start the response
surface generator or to evaluate the model at a user defined
point. At the last point Console out, the output of the op-



timization run can be observed. The value of the currently
best solution is presented and for problems with only two
factors, additionally, the path of the algorithm in the search
space is plotted. Figure 3 shows an example using RSM but
similar plots are presented for all implemented algorithms.
The green dot is the starting point, the red dot the final
result and black dots are intermediate results of the algo-
rithm. The blue boxes mark the local regions during each
step of the algorithm.

3. OPTIMIZATION ALGORITHMS

Since OPEDo does not have any knowledge about the
goal function f(x), the optimization methods are restricted
to black box optimization methods which often means some
sort of intelligent search heuristics. Search heuristics can be
subdivided into global and local techniques that in general
differ with respect to the quality of solutions and compu-
tation time. While global optimization techniques are sup-
posed to find global optima they often need a large number
of model evaluations. On the other hand, local techniques
require less evaluations but tend to stop in local optima. The
characteristics of global (resp. local techniques) make them
especially applicable to multi-modal (resp. to uni-modal) ob-
jective functions. Of course, also this characterization is in
case of black-box models not obvious in advance.

OPEDo contains as local search algorithms the well known
Nelder-Mead Simplex algorithm (NM) [18], Pattern Search
(PS) [21] and the Response Surface Method (RSM) [15].
They have been implemented such that they can deal with
stochastic models. As global optimization methods, a ran-
dom search method, Kriging-models (KM) [15], and Evolu-
tionary strategies (ES) [20] have been integrated.

Although the integrated algorithms are rather general,
they usually have been developed for problems where the
evaluation of f(x) is cheap or for problems where f(x) is
determined by physical experiments which implies that it is
much more costly to perform an experiment with new factor
values than to repeat the experiment at the same point. The
situation is somehow different when DEDS are analyzed. At
least for simulation or for the numerical analysis of Markov
chains, the effort to evaluate f(x) is high but it does not
matter whether an experiment is made at the same or at
another point.

It turns out that the basic algorithms are often not ef-
ficient enough for the optimization of DEDSs with many
factors or a complex response surface. Therefore, one of our
goals is to improve optimization algorithms for the analysis
of DEDSs. For the lack of space we can only highlight some
of the ideas resulting in improved algorithms.

The first idea is to combine a global and a local search
heuristic. In OPEDo we use a combination of KM and PS
which is denoted as KMPS. The hybrid KMPS basically
works like the standard KM (see [15]) but dynamically adds
a PS step to find local and global optima. The introduction
of PS steps usually reduces the number of model evalua-
tions such that the approach becomes useful whenever model
evaluation is expensive which is the case for simulation or
numerical analysis of Markov chains. A second approach de-
fines some new version of Kriging models which are denoted
as hierarchical Kriging (HKM). The detailed description of
the corresponding algorithm is currently underway.

For Markov models that are analyzed numerically, a new
version of RSM has been proposed in [14]. The idea of the
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approach is to use imprecise results at the beginning of the
optimization process and to start the solution process at one
point with the solution of some point in the neighborhood, if
available. It has been shown that with these improvements
the effort can be significantly reduced and similar optima
are computed compared with the standard RSM approach.

Often several alternatives exist to analyze DEDSs. Ap-
proximation methods yield approximate results in an effi-
cient way, whereas exact methods require much more effort
but compute the precise result. Sometimes approximate and
exact analysis are performed on the same model, sometimes
two different models have to be defined, an abstract one for
approximate analysis and a detailed one for exact analysis.
If approximate and exact analysis can be used, this can be
exploited in optimization algorithms. In [5] a variant of ES
is described that uses both solution methods and tries to
reduce the number of exact evaluations as much as possible.
The quality of the approximate solution algorithm is evalu-
ated during the optimization process and depending on the
quality, it is determined whether a point is evaluated exactly
or approximately. Several examples show that the use of two
methods reduces the solution time drastically and results in
similar optima.

A last observation which can be exploited to improve op-
timization algorithms is that the computation of precise re-
sults via simulation is very costly since the reduction of con-
fidence intervals by a factor of 2 requires roughly 4 times
more replications [17]. Thus, it should be avoided to com-
pute precise results where it is not necessary. In [6] a variant
of ES is developed which uses a two phase selection process
and statistical ranking and selection procedures to find op-
timal solutions. Ranking and selection assures that enough
but not too many replications are performed to select the
best solutions from a set of solutions according to a given
significance probability. The two phase approach avoids the
decision between points with a similar response at the begin-
ning since later much better configurations may be found.

4. EXAMPLES

We briefly present three small examples using OPEDo in
combination with the modeling tools JMVA, APNN toolbox
and ProC/B toolset. The first example is a simple tandem
queuing network with two types/classes of customers. The
service demands of class ¢ customers at station k are expo-
nentially distributed with mean m; , as m;1 = (oc,')f1 and
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mi2 = (1—x;) ! with i = 1,2. The subject of the optimiza-
tion problem is to determine parameters z1,z2 € [0.01,0.99]
such that they maximize the following objective function

Zl(xl,xg) = (2151(331,1’2) —+ 2.2t2(m1,x2))
1 (min(z1,1.3(1 — z1)) + min(z2, 1.3(1 — 22)))

where t; is the throughput of class ¢ customers and depends
on x1 and z2. The model can be analyzed efficiently with
JMVA. Since the evaluation is fast, a detailed response sur-
face can be computed which is shown in Figure 4. Figure 5
shows the results of six different optimization algorithms
applied to the model. Observes that the number of model
evaluations which determine the runtime of the algorithms
is presented on a logarithmic scale. The light gray bars in-
dicate the optimal solution with a 90% confidence interval
according to 20 replications of the optimization runs and
the dark gray bars describe the mean number of model eval-
uations to find the optima. We configured RSM, PS and
KM to require about the same number of evaluations. Due
to the nature of ES more evaluations are allowed for this
algorithm. The results show that RSM should not be used
for multi modal functions. PS which is also a local search
technique behaves much better since it seems to take advan-
tage of the big search steps at the beginning and its greedy
nature. Thus, PS identifies the region of the global opti-
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mum in most cases. KM provides good results which can
be slightly improved using KMPS. Due to the conception
of KMPS it typically requires more evaluations than KM.
HKM outperforms KM and KMPS in this example and it is
comparable to PS with respect to the quality of results and
the number of evaluations.

In the second example we consider the application of OPE-
Do to the optimization of a Petri Net model. It represents
two machines in series whereby for each machine i (i = 1,2)
the buffer space b; and the number of servers n; (n; < b;)
is configurable. Our goal is to maximize the throughput ¢
(that depends on n1, na, b1 and by) with respect to the costs
for servers and buffers as follows:

Zg(nl,nz,bl,bz)z t(nl,n2,b1,b2)
_i(nl + ng) — %(bl + b2)

The response surface of Z2 is unimodal and therefore the
local algorithms RSM and PS are expected to find results
close to the optimum with a reasonable number of evalua-
tions. As presented in Figure 6 RSM yields higher accuracy
but needs more evaluations compared to PS. KM provides a
lower accuracy but as in the previous model the results can
be improved by using HKM or KMPS. In this example ES
yields the best results but the number of evaluations exceeds
that of the other algorithms by an order of magnitude.

The ProC/B-Model in Figure 7 represents a simple pro-
cess chain that in a first step produces two different parts
within two different stations concurrently and finally assem-
bles two siblings in a third station. Process instances are
generated according to negative exponentially distributed
time intervals. The number of machines n;, i = 1,2 avail-
able in the stations 1 and 2 satisfies na = 30 — ni1, n1 €
{10,...,25}. Machine 3 in station 3 assembles up to ten sib-
lings in parallel and its speed z € [0.1,0.5] is configurable.
Our goal is to minimize the turnaround time ¢t (that de-
pends on ni resp. nz and x) of the production processes
taking into account costs of machine 3. Thus, we have a
mixed integer optimization problem that is reflected by the
following goal function:

Z3(TL1, CIZ) = tt(nl, :L’) + (10:13)2

The results of OPEDo are displayed in Figure 8. Since Z3
is a unimodal function almost all heuristics provide results
that are very close to the optimum. Only RSM differs due
to fact that the response surface of Z3 in a region close to
the optimum cannot adequately be approximated by a first
order linear regression model. Along with the basic opti-
mization algorithms considered so far OPEDo also incorpo-
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rates variants that apply statistical ranking and selection
methods mentioned in Sect. 3 and described in more detail
in [6]. Currently, PS and KM adopt this methods and the
corresponding results (PSs, KMsl and KMs2) are also dis-
played in Figure 8. KMsl differs from KMs2 that it applies
statistical ranking only in the final step and KMs2 applies
statistical ranking after each Kriging step. It can be noticed
that by the introduction of ranking and selection methods
the variance of the results is reduced.

5. CONCLUSIONS

The paper gives a brief overview of OPEDo, an open
tool including optimization algorithms for models of DEDS.
OPEDo contains a large number of different optimization
algorithms and can be connected to different analysis tools.

OPEDo is part of our ongoing research work on optimiza-
tion algorithms for DEDSs. It will be further developed and
extended by integration of new optimization algorithms and
possibly also by combining it with further analysis tools.
Additional information about the tool is available on the
Web-page http://1ls4-wuw.cs.uni-dortmund.de/Opedo.
The tool is available for research purposes upon request.
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