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ABSTRACT 
Ad hoc network consists of a set of identical nodes that move 
freely and independently and communicate among themselves via 
wireless links. The most interesting feature of this network is 
that they do not require any existing infrastructure of central 
administration and hence it is very suitable for temporary 
communication links in an emergency situation. This flexibility 
however is achieved at a price of communication hazard induced 
due to frequent topology changes. In this article we have tried to 
identify the system dynamics using the proven concepts of time 
series modeling. Here we have analyzed variation of the number 
of neighbor nodes of a particular node over a fixed area and for a 
fixed number of nodes (i) for different values of speed of nodes,  
(ii) the transmission power, (iii) for different sampling period 
(iv) for different mobility patterns. We have considered three 
different mobility models - (i) Gaussian mobility model, (ii) 
Random Walk mobility model and (iii) Random Way Point 
mobility model. The number of neighbor nodes of a particular 
node behaves as a random variable for any mobility pattern. 
Through our analysis we found that this variation can be well 
modeled by an autoregressive AR(p) model. The values of p are 
evaluated for different scenario and we found that the value is in 
the range of 1 to 5. Moreover we also investigated the 
relationship between the speed and the time of measurement, and 
transmission range of a specific node under various mobility 
patterns.   

Keywords 
Ad hoc network, mobility modeling, time series analysis, 
autoregressive modeling. 

1. INTRODUCTION 
A Multi-hop wireless network [12], commonly referred to as 

ad hoc wireless networks do not require a fixed infrastructure 
because the mobile node can relay packets to another node 
without using base stations. The nodes are mobile and changing 
locations regularly. A node in Mobile Ad hoc Network (MANET) 

is moving and its neighborhood is changing constantly with time 
and place. The number of neighbor nodes of a node is an 
important information for several applications like routing, 
congestion control, topology construction etc. Let N = { Ni  | 1 ≤ I 
≤ n } represents the collection of nodes in the system. The 
neighbor count NC of a node Ni is changing constantly. At every 
instant some new nodes are coming into the transmission range 
of Ni and some old neighbor nodes are leaving the transmission 
range of Ni. Say node Ni has NCi number of nodes at t instant of 
time. After a small amount of time say δt seconds i.e. at t+δt, this 
number has become NCt+δt. NCt+δt is basically a function of the 

previous neighbor counts NCt, NCt-δt, and so on down to some 
lags. The reason is that some old nodes have left, some new 
nodes have come into the transmission range with some old 
nodes still remaining.  How may nodes leave and come is surely 
a random phenomenon but is dependent on (i) the speed with 
which node Ni and its surrounding is moving, (ii) the 
transmission range of nodes Ni and its neighbors, (iii) the time 
interval after which we are taking the readings and (iv) the 
mobility pattern [18] followed by node Ni and its surrounding. 
The number of neighbor nodes of a particular node behaves as a 
random variable [15] for any mobility pattern. If the nodes are 
moving very slowly or almost stationary then the correlation 
between old and new value of Neighbor count NC will be very 
high. In other words, we can define NCt+δt as a function of NCt, 

NCt-δt, NCt-2δt and so  on.  

NCt+δt = f(NCt, NCt-δt, .. NCt-pδt) for some integer p such that 
1 ≤ p < ∞. The autocorrelation of NC also depends on speed, 
sampling time, transmission range and mobility patterns. If the 
speed is low, the nodes cover a short distance during a given 
duration. Most nodes which were neighbor in earlier instant are 
expected to remain neighbor again for a fixed transmission 
range. Very few nodes moves out of transmission range and very 
few new nodes come in. If the speed is increased, during that 
interval, the node covers a long distance and may be out of the 
transmission range. Similarly, several other new nodes may come 
in the range of the node Ni becoming its neighbor. Since large 
number of nodes are leaving and joining, with very few old 
neighbors remaining, the correlation between the old neighbor 
count value NCold and new neighbor count value NCnew does not 
remain as strong as it used to be in case nodes were moving 
slowly. 

The transmission range defines the area with in which the 
packet sent by a node can be received correctly by another node. 
This area usually represented by a circle around the sending 
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node. The radius of this circle is proportional to the square root 
of the power used to send the packet. If the transmission power 
of a node is low, i.e. the transmission range is quite small then 
the neighbor count will vary dramatically. The reason is that if 
this node moves to a dense region, momentarily its neighbor 
count will be very high, but a small change in location at next 
instant may leave this node with very less or even no neighbors. 
In simple words, we can say that the autocorrelation between NC 
values will be very low if the transmission power (and hence 
transmission range) happens to be low. The autocorrelation 
between NC values increases with increase in the transmission 
power.  

The time after which readings are taken is termed as 
sampling time in this article. The variation in neighbor count 
value NC happens due to change of locations by nodes. The 
distance a node will cover depends on two factors (i) speed and 
(ii) time. Even for a moderate speed, if the sampling time is 
increased, several nodes move out of the range of Ni and several 
other nodes come in the range of Ni. Due to large number of node 
movement, the correlation with the previous value of NC does 
not remain very strong. So autocorrelation among NC decreases, 
as we increase the sampling time.  

Currently we have considered three mobility models [1, 5, 
9, 18] - (i) Gaussian, (ii) Random Walk and (iii) Random Way 
Point for our experiment. Surprisingly we found that the effect of 
mobility pattern is insignificant on the autocorrelation of 
neighbor count NC values of a node Ni across different time 
periods. The random walk and random way point mobility 
models are found to show stronger autocorrelation between NC 
values at higher speed than Gaussian mobility model. But even 
that difference is quite low and may be neglected most of the 
time. 

The rest of this paper is organized as follows. Section 2 
contains a brief survey of the relevant works. Section 3 covers 
our proposal for using autoregressive of order p (AR (p)) model 
and some discussion on that. In Section 4, we present the 
simulation results to support our proposal of modeling the 
network dynamics using AR(p) model. In Section 5 describes the 
techniques to find the order p of AR(p) model. The forecast 
values using the said model are also described in that section. In 
section 6 we conclude and sum up the future directions. 

2. RELATED WORKS 
Time series [7, 10] modeling has been drawing a lot of 

attention in the modeling of internet traffic, wireless sensor and 
ad hoc network traffic. Basu and Mukherjee [4] modeled the 
internet traffic using the AutoRegressive Moving Average Model 
of order p and q (ARMA(p,q)) model. Using the model they 
forecast the traffic which was generated by a TCP source using 
FDDI protocol. They also did develop a system to generate 
synthetic traffic which can be useful for simulation studies of 
internet traffic and in resource management algorithms.  

C. You and K. Chandra [17] have shown using statistical 
tests that the aggregate TCP packet arrival process exhibits both 
non-stationary and nonlinear features. They derived a stationary 
traffic stream by filtering a subset of the applications exhibiting 
non-stationary features from the aggregate process. They 

modeled this filtered traffic process using non-linear threshold 
autoregressive processes. Their traffic model was found to be in 
good agreement with real traffic in the packet loss statistics. The 
model was used in the design of traffic shapers and provided a 
simple and accurate approach for simulating internet data traffic 
patterns. Liu et. al. [14] proposed the energy efficiency 
information collection in sensor nodes. They kept a sensor node 
from transmitting redundant data. According to them, data is 
redundant if it can be predicted by the sink node. For prediction, 
they utilized ARIMA [7] model due to its outstanding 
performance in model fitting and lightweight computational cost 
on forecasting. The samples from a specific sensor node arriving 
at sink node are treated as a time series and the sink maintains a 
time series for each sensor node. Based on this historical data, 
prediction is done by sink node for each sensor node. If the 
difference between the actual data and the predicted data within 
a pre-defined threshold, then that data is not send from the 
sensor node resulting in energy savings. Herbert et. al. [13] used 
ARIMA model to fit the data collected by sensor node. The 
LEACH [11] protocol was extended to add a verification step at 
the cluster head. Each member node transmits the ARIMA 
parameters to its clusterhead which verifies the accuracy of the 
model by generating a time series with each set of parameters 
and calculating the mean squared error between them. If the 
mean squared error is above a fixed tolerance value, the 
clusterhead request all member nodes to recalculate their 
respective parameters repeatedly until all models are within 
tolerance.  

Borgne et. al. [6] used a set of Time series models to predict 
the sensors reading at regular interval of time by the sink node. 
The sink node transmits this data to every sensor. If sensor nodes 
find that their reading is different form the sink's prediction by a 
value greater than a threshold, then sensors send their reading to 
sink. This approach has shown a great saving in communication 
cost in sensor networks. Banerjee et. al. [2, 3] modeled the 
system dynamics using birth and death model. When a node 
enters in the transmission range of a source node say Ni, that was 
treated as the birth of that the particular node in the Radio Range 
of the source node. Similarly when a node was going out of the 
transmission range, it was identified as the death from the Radio 
Range of the source node.  

3. PROPOSED MODEL 
As we pointed out in section 1 that the neighbor count NC 

of a node Ni number is changing with time and is a function of 
the values of NC at previous instances. In this article we have 
tried to identify the system dynamics [16] using the proven 
concepts of time series. A time series [7, 10] is a sequence of 
observations that are arranged according to the time of their 
outcome. By recording and analyzing the data of a time series, 
we can gain a better understanding of the data generating 
mechanism and make a prediction of future values. The main 
characteristic of a time series is that the data are often governed 
by a trend and they have cyclic components. An important part of 
the analysis of a time series [7, 10] is the selection of a suitable 
model (or class of models) fitting that data. Naturally, more 
appropriate is the model selection, better expected is the 
prediction. The neighbor count NC of a node Ni is a parameter 
varying with time and are a suitable candidate to be considered 
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for such modeling. The relation of NC with the previous values is 
also supported with the corrlelogram of nodes. The plot of 
experimental data confirms that the autocorrelation is very high 
at initial lags and is constantly decreasing with higher lags. This 
implies that the current neighbor count NC is a function of values 
of NC on previous instances with a white noise with mean zero 
and variance σ

2. This behavior of data can be represented well 
with the help of an AR(p) model [7, 10].  An AR(p) model can 
be defined as  

tptpttt arrrr +⋅⋅⋅+++=
−−−

φφφφ 22110  

where p is a non-negative integer and {at} is assumed to be 
a white noise series with mean zero and variance σ2. This model 
suggests that the past p values r{t-1} (i = 1.. p) jointly determine 
the conditional expectation of  given the past data. The series, we 
obtained through our experiment is stationary since it fulfills the 
requirements of stationarity [10] which are given below.  
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The associated polynomial equation of the model, called 
characteristic equation, is given by  
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The other condition of stationarity is that if all the 
characteristic roots of this equation are less than unity in 
modulus, then the series rt is stationary. The characteristic 
equation indicates that the plot of the autocorrelations, known as  
autocorrelation function, (ACF) of AR(p) model would show a 
mixture of damping sine and cosine patterns and exponential 
decays depending on the nature of its characteristic roots. This is 
totally in conformity with our experimental data.  One major 
hurdle in representing data using AR(p) model is finding the 
proper value of p. In our case we have used the partial 
autocorrelation function (PACF) to find an idea about the order 
of AR and then Akeike Information Criterion (AIC) [7] is used to 
confirm that value of p. 

4. SIMULATION AND RESULTS 
We have used Omnet++ for node mobility simulation while 

Minitab is used for the analysis of the results. 

4.1 Simulation Setup 
The node mobility and traffic generations are simulated using 
Omnet++ 3.3 discrete event system simulator considering 131 
mobile nodes. We have analyzed the neighbor count for three 
mobility models [1, 18, 5, 8, 9] (i) Gaussian, (ii) Random walk 
and (iii) Random way point. The nodes are distributed over an 
area of 600 X 600 m2. The speed of the node movement is varied 
between 10 to 170 m/sec. The transmission power is varied from 
1000 m to 90000m. The actual coverage area is square root of the 
transmission power. The number of neighbors of each node is 
studied at 0.5 sec, 1 sec, 1.5 sec for each speed variation. No 

standard network protocol has been used for the total simulation. 
The results are then taken to Minitab version 14 for carrying out 
necessary statistical analysis. 

4.2 Analysis under varying speed for a fixed 

sampling rate 
Our first experiment deals with finding the relationship between 
the autocorrelation of NC and speed of moving nodes. For our 
experiment, we have assumed that all nodes are moving with the 
equal speed and readings are taken after 1 sec. At low speed, NC 

 
Figure 1. Variation of autocorrelation between NC values 

with speed 

for j=1, 2, 3…p 

for j = 0  
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shows a nice autocorrelation with several previous lagged values. 
But as the speed is increased, the nodes starts leaving and 
joining region rapidly and so the autocorrelation with the 
previous values starts diminishing.  

We calculated the autocorrelations among NC data for nodes 
moving with the speed of 10. The speed was varied from 10 to 
120 with an increment of 10. The sample is taken after 1 sec in 
each case. Some of the sample correlations at speed 10 m/sec, 50 
m/sec, 80 m/sec, and 120 m/sec are shown in figure 1. As 
evident from figure 1.a, the NC values for nodes moving with the 
speed of 10m/sec have shown nice autocorrelation with high 
peaks at initial lags but decreasing at higher lags. But when the 
speed has gone to 120 m/sec, then no significant autocorrelation 
exists as evident from figure 1.d. Figure 1 shows a snapshot of 
autocorrelation of nodes following Gaussian mobility model. For 
other two models the results are very similar. The autocorrelation 
become insignificant at a speed of 130 m/sec for Random Way 
Point mobility pattern whereas for Random Walk mobility 
pattern, it remains significant up to the speed of 200 m/sec. So 

Random Walk mobility model shows strong autocorrelation 
between NC values at higher speed than other two considered 
mobility models. 

4.3 Analysis under constant speed for varying 

sampling rate 
Our second experiment is concerned with the variation of 
number of neighbors with the time at which we are recording the 
data, called as sampling time. Since the nodes are moving very 
slowly at low speed, the neighborhood is also undergoing change 
very slowly. In this case if we sample data very frequently, we 
ought to get nearly similar number of neighborhood. For this 
experiment, we have sampled the network for a time period of 
0.5sec to 5sec with a sampling period of 0.5sec. For our data we 
have fixed the speed to 50m/sec and the sampling time was 
varied from 0.5 sec to 5 sec in increments of 0.5sec. The 
autocorrelation diagram ACF for nodes following Gaussian 
movement is shown in figure 2 for each case. With sampling 
time of 0.5 sec, we get an ACF which is sinusoidal in nature 
having higher autocorrelation value at initial lags. But for 
sampling time of more than 3.5, no autocorrelation value is 
significant enough as evident from ACF shown in figure 2.d. The 
autocorrelation appears significant up to 4 sec for Random Walk 
mobility model and 6 sec for Random Way Point mobility models 
respectively. 

4.4 Analysis under varying radio range 
The radio range is determined by the transmitting power of a 
node. For our experiment, we have defined the range as the 
square root of the transmitting power. We have varied the 
transmitting power form 1000 to 90000.  

 
Figure 2. Variation of autocorrelation between NC values 

with sampling time 
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For low transmitting power, no significant autocorrelation is 
observed among nodes because few nodes are expected in the 
transmission range. A node moving very slowly will also change 
neighborhood rapidly. So no correlation exists. But as we 
increase the transmitting power, the autocorrelation between the 
nodes starts exhibiting a sinusoidal pattern with high peaks at 
the start as shown in figure 3. From figure 3.a, we can see that 
the autocorrelation is not significant for neighbor count NC data 
when the transmission power is 1000 for Gaussian node 
mobility. It becomes significant only after the transmission power 
is beyond 9000. The autocorrelation becomes significant beyond 
the transmission range of 6000 for random walk and beyond 
7000 for random way point respectively. 

4.5 Analysis under varying speed and varying 

sampling rate 
Our next experiment was conducted with the combined effect of 
speed and sampling time on the autocorrelation of neighbor count 
NC values for Gaussian mobility model.  The speed was varied 
from 10m/sec to 100m/sec in increments of 10m/sec and the 
sampling time was varied from 0.5sec to 5sec in increment of 
0.5sec. The findings are enlisted in table 1. Due to space 
limitation, we are not listing the table for other two mobility 
models. As evident from table 1 that the neighbor count NC data 
moving with speed of 10m/sec has significant autocorrelation for 
each sampling period i.e. from 0.5 sec to 5 sec. When the speed 
becomes 50m/sec, the autocorrelations are significant only up to 
the sampling period of 3.5 but after that interval, no significant 
autocorrelation is found. This behavior is expected because the 
distance covered by a node is product of speed and time. So for a 
moderate speed, if the time is allowed to increase, several nodes 
move out of range and similarly several nodes move in thereby 
manifesting lower autocorrelation with the values at previous 
lags. 

Table 1. Changes in autocorrelation with time and speed 
                      Sampling Time 

  0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

10 Y Y Y Y Y Y Y Y Y Y 

20 Y Y Y Y Y Y Y Y Y Y 

30 Y Y Y Y Y Y Y Y Y Y 

40 Y Y Y Y Y Y Y Y Y Y 

50 Y Y Y Y Y N N N N N 

60 Y Y Y N N N N N N N 

70 Y Y Y N N N N N N N 

80 Y Y N N N N N N N N 

90 Y Y N N N N N N N N 

10
0 

Y Y N N N N N N N N 

11
0 

Y N N N N N N N N N 

S
peed 

12
0 

N N N N N N N N N N 

 

5. RESULTS 
As evident from the previous simulation that within a threshold 
value of speed, sampling period, and transmission power, the 
neighbor count NC data shows a nice autocorrelation with high 
peaks at initial lags and decreases at higher lags. This property of 
data confirms that within that threshold, it is justified to model 
the neighbor count NC data with Autoregressive model. 
Autoregressive modeling requires the order p of the model to be 
specified. In the next section we outline the process of 
ascertaining the order of AR. The chosen AR(p) model is then 
used to forecast the next value of neighbor count. 

5.1 Finding the order of AR 
To calculate the order of AR process, we have to find the PACF, 
which gives us an indication of probable value of p. Then we 
have used AIC to confirm on that. PACF and table 2 of AIC [7] 
values are given below. The PACF in figure 4 tells us that this 
data can be modeled with an AR(2) process. When we find the 
AIC values, the value is smaller for 3, but the difference is very 
low. So we may stick with 2 for p value. 

 
Figure 3. Variation of autocorrelation between NC values 

with transmission power 
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Figure 4. PACF of sample data values of neighbor counts 

 

5.2 Forecasting with AR(2) 
We have used our model to forecast the next NC value. For 
forecasting we have used an AR(2) model. The comparison of 
forecast and original data obtained from our experiment is shown 
in figure 5. It is evident from the figure 5 that the actual data and 
the forecast data value are very close to each other. The chi-
square test confirms the above statement. 
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Figure 5. Forecast offered by AR(2) model 

 

6. CONCLUSION 
In this article, we have modeled the temporal neighbor 
distribution of a node using a popular Time series model 
Autoregressive AR(p) model. We found through our experiment 
that node distribution under a threshold value of speed, range 
and sampling time for all three mobility models considered in 
this article are well correlated and can be represented by AR(p) 
model for suitable choice of p. But above a threshold value, the 
autocorrelation of node distribution does not remain significant 
enough. The thresholds for different parameters are also 
determined in this article. The threshold value of speed is 
170m/sec or 612 km/hr and range is 77 m for random walk 
mobility model and very similar for other mobility models. The 
threshold obtained is surely very suitable for any practical 
deployment for ad hoc network. We have also predicated the 
number of neighbor nodes in future time frames and found that 
the prediction is close enough to the real value. These predicated 

values of neighbor nodes can be used for different application 
which relies on number of neighbor nodes like multi-path 
routing, topology construction, congestion control, traffic 
prediction etc.  

7. REFERENCES 
[1] Alparslan, N. D., and Khosrow, S. 2007. A generalized 

random mobility model for wireless ad hoc networks and its 
analysis: One dimensional case. IEEE/ACM Transactions on 
Networking (TON) 15, 3 (June 2007), 602--615. 

[2] Banerjee, A., and Dutta, P. 2004. A birth and death based 
mathematical model for tracking mobile nodes in a multihop 
environment. In Proceedings of the BIG 04. 

[3] Banerjee, A., Majumder, K., Dutta, P., and Mondal, K. 
2004.  Implementation of the behavior and structure of the 
multihop mobile environment as a pushdown automata and 
birth-and-death based statistical model. In Proceedings of 
the Mobile Computing and Networking (MOBICOMNET) 
(2004), 45--51. 

[4] Basu, S., Mukherjee, A., and Klivansky, S. 1996. Time 
series models for internet traffic. In Proceedings of the IEEE 
INFOCOM ’96, vol. 2, 611--620. 

[5] Bettstetter, C. 2003. Topology properties of ad hoc networks 
with random waypoint mobility. ACM SIGMOBILE Mobile 
Computing and Communication Review 7, 3, (2003), 50--
52. 

[6] Borgne, Y., Santini, S., and Bontempi, G. 2007. Adaptive 
model selection for time series prediction in wireless sensor 
networks. International Journal for Signal Processing 87, 12, 
(2007), 3010--3020. 

[7] Brockwell, P. J., and Davis, R. 1987. Time Series: Theory 
and Methods Springer-Verlag, New York. 

[8] Camp, T., Boleng, J., and Davies, V. 2002. A survey of 
mobility models for ad hoc network research. Wireless 
Communications and Mobile Computing (WCMC): Special   
issue on Mobile Ad Hoc Networking: Research, Trends and 
Applications 2, 5, (2002), 483--502. 

[9] Gowrishankar, S., Basavraju, T., and Sarkar, S.K. 2007. 
Effect of random mobility models pattern in mobile ad hoc 
networks. International Journal of Computer Science and 
Network Security 7, 6, (2007). 

[10] Hamilton, J. 1994. Time Series Analysis Princeton 
University Press, Princeton, New Jersy. 

[11] Heinzelman, W., Chandrakasan, A., and Balakrishnan, H. 
2002. An application-specific protocol architecture for 
wireless   micro-sensor networks. IEEE Transactions on 
Wireless Communications 1, 4, (2002), 660--670. 

[12] Hekmat, R. 2006. Ad-hoc Networks:Fundamental Properties 
and Network Topologies Springer, AA Dordrecht, The 
Netherlands. 

[13] Herbert, D., Modelo-Howard, G., Perez-Toro, C., and 
Bagchi, S. 2007. Fault tolerant ARIMA-based aggregation 
of data in sensor networks. In Proceedings of IEEE 
International Conference on Dependable Systems and 
Networks (June 2007). 

701



International Conference on Advances in Computing, Communication and Control (ICAC3’09) 

[14] Liu, C., Wu, K., and Tsao, M. 2005. Energy efficient 
information collection with the ARIMA model in wireless 
sensor networks  In Proceedings of the IEEE Global 
Telecommunications Conference GLOBECOM-05, 
volume~5, pages 2470--2474, 2005. 

[15] Soong, T. 2004. Fundamentals of probablilty and statistics 
for engineers, John Wiley and Sons Ltd., Sussex, England. 

[16] Syrotiuk, V., Shaukat, K., Kwon, Y., Kreatzl, M., and 
Arnold, J. 2006. Application of a network dynamics analysis 
tool to mobile ad hoc networks. In Proceedings of the 
International Symposium on Modeling analysis and 
simulation of wireless and mobile systems (2006), pp. 36--
43. 

[17] You, C., and Chandra, K. 1999. Time series models for 
internet data traffic. Local Computer Networks (LCN) 
(1999), 164--171. 

[18] Zheng, Q., Hong, X., and Ray, S. Recent advances in 
mobility modeling for mobile ad hoc network research. In 
Proceedings of the ACM Southeast Regional Conference 
(2004), ACM New York,  NY, USA, 70--75. 

702




