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Abstract— Discovery of large amounts of idle CPUs in fully
distributed and shared Grid systems is needed in relevant
applications and is still a challenging problem. In this paper we
present a fast, scalable and efficient discovery protocol founded
on a tree-based peer-to-peer (p2p) network with fault-tolerant
capabilities and locality features. Each system node stores a good
estimation of the number of CPUs that are available in its branch.
Each node notifies its father about changes in this value only
when it is meaningful enough. This allows low overhead and a
stable behavior with concurrent and dynamic allocation of CPUs.
This basic mechanism allows any node to launch a discovery
process, that needs only to follow the information of free CPUs
in each branch. Results from experiments and simulation tests,
using a simple allocation method, show discovery time scaling
logarithmically with the number of nodes.

I. INTRODUCTION

The design of a general system for scalable management of

computational resources is still an open challenge. Projects like

SETI@Home [1] and distributed.net [2] show that an approach

between Peer-to-Peer (P2P) and Grid Computing is a promis-

ing solution when dealing with networks of millions of nodes.

Nevertheless, they still maintain a master-slave model where

only one entity in the network generates the workload, and

the rest consume it, thus using a centralized management. To

introduce some kind of distribution, BOINC [3] allows the use

of different servers for different projects, but involving time-

consuming human administration of each server. While the

number of projects is low, this human-oriented distribution is

feasible. However, nowadays, the growing number of different

projects using the BOINC infrastructure is a meaningful trend,

most of them competing for public-resource computing. For

this reason, a more decentralized solution will be needed to be

able to deal with this increasing number of projects looking

for free CPUs.

In this paper, we propose an architecture where any partic-

ipant of the network may need a large pool of idle nodes

to complete its tasks. The idea is to bring distributed and

grid computing solutions to users with a lower profile than

research laboratories. Virtual machines, that limit the use of

local resources and protect hosts from the execution of foreign

code, make this posibility more feasible. The system manages

information about free CPUs so that when a node does not

have enough computing power to finish its work, it may divide

it into n independent tasks and ask the network to find n
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dle machines. We use a simple discovery mechanism

ploits locality and node availability information to find

ds of free CPUs in a fast and efficient way. Unlike

n P2P resource management systems, like data sharing

ks, in this project resources are consumible, meaning

y cannot be used by more than one client at the same

or this reason node availability information must be

to date.

system consists of a peer-to-peer network based on

ced tree structure that finds the nearest free CPUs

one that is demanding the execution of a number of

At any time, any node of the network may request

cution of n tasks; this request is routed by neighbour

o those available ones that are closer to the originating

ith a fast discovery protocol. The tree structure allows

g different constraints to the idle CPU search by using

rmation about existing free nodes, that is dynamically

d by an availability protocol. These funtionalities are

d with little state in nodes, and low communication and

verhead. A simple allocation policy has been designed

plemented to evaluate the architecture behavior.

paper takes some steps into a complete distributed

ting solution, thus we will impose some restrictions to

ironment: We assume that nodes execute batch tasks

not communicate between them, so we won’t be

ing the issues that arise from having dependencies.

e will suppose that there is low churn, that is, joins and

s are not frequent. And finally, we will only consider

concept of fairness in the allocation of free nodes.

rest of the article is structured as follows: In Sect.

xpose an overview of the system architecture and its

r. In Sect. 3 the hierarchical overlay topology and its

ment is detailed, followed by the protocols that allow

t and scalable discovery of free nodes in Sects. 4 and

lly, in Sect. 6 we show the experimental results and in

and 8 we explain what other work has been presented

ing distributed computing in peer-to-peer networks and

clusions of this investigation.

II. RELATED WORK

t has been pointed out in the introduction, the main

imation until now to a highly scalable distributed com-

environment is one entity harnessing the idle cycles of
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personal computers donated by volunteers, as in SETI@Home

project, the BOINC generic framework and distributed.net.

Those projects use the traditional client/server paradigm to

schedule tasks and return results, what soon leads to scalability

problems. For that reason, more elaborated network structures

and distributed algorithms have been adopted. One example

is Javelin++ [4], which extends the concepts of Javelin [5]

replacing the broker that scheduled the tasks with a network

of brokers. Recently, more strict peer-to-peer networks have

been used to select the nodes which would execute the

tasks. BOINC and similar projects adopt an application-driven

perspective, in which the existence of an element that is gener-

ating all the workload determines the structure of the network

and the management algorithms. XtremWeb [6] is a closer

idea to what we describe in this paper, but it implements a

centralized coordinator architecture, which discovers resources

and ties clients and workers together.

Following a more general view, another family of projects,

in which this paper is included, have proposed an architecture

where every participant can generate the workload, which is

better suited for this peer-to-peer philosophy. CompuP2P [7]

is one of the first works to use a decentralized peer-to-peer

network to manage processor cycles as a shared resource. It

arranges all the nodes in a Chord [8] ring and organizes them

into ’compute markets’, where idle cycles are traded with.

However, it presents a scalability problem because it has no

mechanism to limit the number of nodes in a market or to

balance load between markets. G2-P2P [9] takes an object-

oriented approach. It uses Pastry [10] to create a Distributed

Hash Table (DHT) where computation objects are stored.

Using an uniform hashing function they claim to achieve a

good load-balancing property, but there is no other criterion to

select the most appropriate free node. Reference [11] also uses

the Pastry DHT, but exploiting its locality awareness to dis-

cover near idle nodes. It announces availability with controlled

message floodings, what leads to inefficiency as far free nodes

are not discovered. Finally, [12] is a discovery mechanism

that uses the computational properties of each machine (CPU,

RAM, disk space, ...) to form a Chord identifier, what allows

searches by description. However, it forces exact queries, so

it cannot do more general and massive searches efficiently. In

contrast with these approximations, [13] proposes the use of

an unstructured overlay network, as it is easier to manage, and

it is traversed with random walks.

Some conclusions can be drawn from these projects.

1) The use of a DHT to organize computational resources

seems not suitable, as keys must be artificially created

to identify and differentiate machines that in fact look

the same for the client. An overlay structure that groups

nodes by one or more properties is preferable.

2) Most probably, clients will not query for an exact

resource, but for a great number of them with more

relaxed conditions. This can lead to faster and wider

searches.

For the overlay topology, other authors have proposed the

use of
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a virtual tree on top of a DHT, where each node

nly part of a tree index, mainly oriented to range

. Examples of this are P-Tree [14], P-Grid [15] and

ee [16]. However, they rely on a uniform distribution

shared resource; for example, using a uniform hashing

n for the DHT. For that reason, BATON [17] uses a

d binary tree. This type of organization is better suited

on-uniform resource distribution because the tree gets

d automatically when the insertions or deletions occur

the same zone. We adopt these ideas but with more

o children per node.

ther approach could be to use general distributed in-

on management systems, like Astrolab [18], where a

e way to track system state is proposed. But they show

dates propagate with latencies on the order of tens of

s. On the other hand, our simulations show that our

al has only a few seconds propagation delay.

III. SYSTEM ARCHITECTURE

system has a layered architecture that lets us stablish

ation between network topology and resource manage-

rom the lowest level:

e first layer defines the connectivity protocol that

aintains the overlay links in the network. It conforms a

e-based network overlay, derived from the B-Tree [19],

us it is a balanced tree where each node can have

tween m and 2m children and the height is always a

garithm of the number of nodes N . The protocol states

w nodes join and leave the network, how the tree is

pt balanced, and how node failures are dealt with to

build the structure.

e second layer is described by the availability protocol,
at distributes information relative to the number of

e nodes and computing power each time it changes.

ery node of the network stores the global state of the

anch that hangs below it in the B-Tree structure, and

mmunicates updates to its parent so it can recompute

e state of its own branch. This protocol uses a num-

r of techniques that prevent the upper levels of the

e from being flooded with update notifications, while

aintaining the information accurate enough to maximize

e network use. Also, the conservative approach of

tification updates yields to a more stable behavior of

is protocol.

nally, the discovery protocol uses the information stored

each branch by the availability protocol to route free

des requests up and down the tree. It tries to find those

e nodes that meet a trade-off between proximity to the

ient and computing power by distributing the requests

ong the appropriate branches at each level. Therefore

e search is performed in a number of network hops that

pends only on the height of the tree and, consequently,

the logarithm of the number of nodes of the network.

ver these three layers we can implement different re-

urce allocation methods. For the simulation tests we



have used a simple one, where each free node discovered

is automatically allocated to the client.

With this three-layered structure, the system can be easily

extended to other types of resources for the discovery protocol,

like memory or bandwidth, and other notification policies for

the availability protocol.

IV. B-TREE BASED TOPOLOGY

The overlay network topology is a hierarchy where every

node of the network is mapped to a node of the tree. Other

authors have proposed the use of a virtual tree on top of

a DHT, where each node store only part of a tree index,

mainly oriented to range queries. However, they rely on a

uniform distribution of the shared resource; for example,

using a uniform hashing function for the DHT. On the other

hand, using a balanced tree where each node of the network

maintains one node of the tree is better suited for a non-

uniform resource distribution because the tree gets balanced

automatically when the insertions or deletions occur within the

same zone. In our approximation we use a B-Tree variant; it

maintains the balance in every join and departure and allows

more than two child nodes, thus reducing the tree height.

The main objective of the tree is grouping nearby nodes.

In this way, a node can communicate with the nearest ones

to itself because they are its siblings or its descendants, and

it can reach other regions of the tree by means of its parent.

However, the concept of locality usually depends on many

variables, so it is actually an aproximation. We have decided

to use the simple yet effective way of organizing the nodes

in the tree by their phisical address, actually their IP address.

Based on the subnet partitioning of the IP address space and

the studies on geographic locality of IP addresses, like [20],

this method allows a fast and easy decision of where to insert

a node in the tree when it joins the network, while maintaining

good metrics (latency and bandwidth, mainly) between nodes

of the same branch, specially near the leaves.

Our tree has some differences with the original B-Tree.

First of all, as nodes in a B-Tree may hold more than one

value (in this case, values are IP addresses), those B-Tree

nodes are translated to a group of siblings where each node

of the network tree holds only one value; with this one-to-

one mapping, every node of the network participates in the

management of the tree structure. Also, every inner node

(a node with children) has a pair of values that represent

the interval of addresses of its descendats and itself. These

intervals are used to route messages along the tree, mainly in

the operations of insertion and deletion of nodes of the tree.

These two main differences can be observed in Figure 1.

Like B-Trees, there exist a constant m so that every node

not being the root of the hierarchy always has between m
and 2m siblings. If these limits are exceeded, then the tree

must be rebalanced. When a group of siblings has more than

2m nodes, it must be divided into two. On the other hand,

if it has less than m nodes it must take some from adjacent

groups or be joined with them, eventually. A high value of m
priorizes performance for search over network management,
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Fig. 1. Differences between B-Tree and network tree.

e the tree is lower, so this is usually preferred in this

.

erning fault-tolerance, every node knows the address

predecessors and k successors at the same level (they

”brothers” or ”cousins”). When a node fails, the tree

re can be repaired using these references, because they

he communication between a node and the brother of its

ther. Obviously, the value of k is an agreement between

lerance and an overload in the management of the tree.

ing and Leaving the Network

e are the two main operations that affect the structure

network; additionally, as a side effect, they can trigger

ance. Joining is usually easier: when a node requests

rtion, the request message is routed through the tree.

up the hierarchy looking for a node which interval

s the address of the new node, and then it goes down

reaches the node with the nearest address to the new

address. Finally they become brothers and the new node

its references to its neighbours.

n the father node is notified of the new node, it may

a group split to rebalance the tree if the number of

odes is greater than 2m. It stays as the father for one

new subgroups and asks the other one to designate a

de as the new father for that subgroup. This new father

ecomes a sibling of the old father, so that their group

ngs is incremented in one member and their respective

ust check if it has more than 2m child nodes, repeating

cess for the next level of the tree. Eventually, a group

ngs is splited in every level until the group of the root

ed, which operates differently.

n a node is added to the group of the root, each of

mbers checks the number of nodes in that group by

g the references in their successor and predecessor lists.

a root node has k references in both lists (they are full)

s for a descendant leaf node, which becomes the new

the tree. This method limits the size of the root to 2k
assuming that m is larger than k, but it is very simple

e creating a new root node is the decision of only one

higher limit would require communication between

mbers of the group. The high level algorithms can be

Fig. 2.

leaving the network we assume a voluntary action;

ise, when a node fails the structure must be rebuilt by

hbours. First of all, a leaving node must check if it has



insert(node) {
if is_my_brother(node) {
send_references(node);
if i_have_parent() {
parent.new_child(node);

} else
if num_pred == k and num_succ == k
look_for_new_root();

} else route(node);
}

new_child(node) {
add_child(node);
if num_children > 2*m {
new_parent = select_new_parent(children);
if my_ip < new_parent.ip {
i = num_children/2; j = num_children;

} else { i = 0; j = num_children/2; }
new_parent.set_children(children, i, j);
num_children = m;
// Turn new_parent into our brother
send_references(new_parent);
if i_have_parent() {
notify_parent(node);

} else if num_pred == k and num_succ == k
look_for_new_root();

}

Fig. 2. Insert algorithms

any child. If so it looks for a leaf node that becomes the new

father of all of them, similarly to the creation of a new root

node. Once done, or if it had no child nodes, it notifies its

siblings and its father that it is going to leave and then they

update their reference lists.

Similarly to the joining, when the father node is notified of

the node leaving, it must check if the number of child nodes is

less than m. In that case, it will ask its predecessor or successor

to send it child nodes until it has m again. If they both do not

sum up more than 2m nodes, then they are joined in only one

branch. One special case is when the father has no siblings

because it is the only one node in the root group. Then it will

check if it has less than 2k child nodes, in a similar way as it

was done in the insertion in the root. If it has so, it will insert

itself in the tree, leaving its children as the new root group.

All of this can be seen also in Fig. 3.

V. CPU AVAILABILITY MANAGEMENT

In order to allow the discovery protocol to find free nodes,

each inner node must store information about its descendants;

not exhaustive information, but more general information

about the branch as a whole. It knows the approximate number

of free CPUs of the branch, the maximum computing power

and the minimum number of hops to a free node. This way, the

management of this information becomes scalable as it does

not depend directly on the number of nodes.

The information each node stores about its branch must

be communicated to its parent so that it can efficiently route

requests to the idle nodes it has under itself. Therefore, each

node not only has information about its branch, but also about
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e() {
num_children > 0 {
ew_parent = look_for_new_parent();
= 0; j = num_children;

ew_parent.set_children(children, i, j);
um_children = 0;

ify_siblings();
ent.child_gone(this);

_gone(node) {
ove_child(node);
num_pred == 0 and num_succ == 0
and num_children < 2*k {
hildren[0].insert(this);
lse if num_children < m {
ibling.ask_for_children(num_children);

or_children(num) {
num_children + num < 2*m
oin();
e send_children(m - num);

Fig. 3. Delete algorithms

its sub-branches. The way this information propagates

al, because it must be kept up to date without flooding

work with notification messages, specially near the root

there are less nodes per level of the tree. This propaga-

performed by the availability protocol. Basically, when

receives a notification of change from one of its child

it must decide if it has to inform its parent, too. With the

um computing power and the minimum number of hops

e node, the process is simple. The inner node has to

te the new maximum and minimum values, respectively,

n its child nodes and itself, and if it changes, route the

formation to its parent immediately. Note that when a

tion goes up one level there is less probability of being

ximum or minimum because the branches are bigger at

op, so the traffic is self-limited and is unlikely that it

the top levels.

problems arise with the value of the number of free

because when a node gets ready (busy), the number

nodes of each of its ancestors increases (decreases)

. If the notification were sent with every change, the

ould get informed of all of them, what leads to an

ptably high traffic in the top levels. For this reason,

e designed a technique that delays the notification of

ber of free nodes at each level of the tree, reducing the

routed up to the root. The basis of this method lies on

a notification when the change is meaningful enough.

y, this means that the most significant bit set to one

s; that is, the number of free nodes crosses a boundary

er of two. For example, a notification would be sent if

ue changes from 7 to 8 (111b and 1000b in binary) or



update(child, free_nodes,
max_power, min_hops) {

children[child].free = free_nodes;
children[child].power = max_power;
children[child].hops = min_hops;
// Save old values
old_power = power;
old_hops = hops;
old_free = free;
// Update value of power, hops and free
update_values();
lbo = last_bit_one(free);
old_lbo = last_bit_one(old_free);
if power > old_power or

hops < old_hops or
lbo != old_lbo

parent.update(this, free, power, hops);
}

Fig. 4. Notification algorithm

from 32 to 31 (100000b and 11111b), but not when it changes

from 23 to 24 (10111b and 11000b). Although this yields to

a precision lack, there are three main reasons for using this

technique:

1) Trying to provide optimality based on exact information

is senseless when we are dealing with millions of nodes

that are continually and concurrently changing state.

2) The traffic of notifications in the top levels is reduced

because as a notification goes up the tree it is less

probable of being routed to the next level. This depends

also on the number of free nodes, as a high number has

also less probabilities of being routed.

3) When the number of free nodes is low, the precision of

this value is better. This is most relevant as the nodes of

the network get busy, because they are correctly well-

spent when there last only a few free nodes.

4) When the number of free nodes changes, this method

forces a stabilization mechanism in the propagation of

this value.

There are two policies deciding what availability value to

take as reference for a branch when a child node notifies a

change to its father: optimistic and conservative. An optimistic

policy would use the same value sent by the child. On one

hand, it has the advantage of having better precision in the

information each node stores about its branch, but on the other

hand the real number of free nodes of a branch could decrease

and be less than the number its father is using, making top level

nodes route requests to branches that cannot cope with them.

For this reason we have decided to adopt a conservative policy,

which would store a lower value, for example the higher power

of two less than or equal to the notified value. With such a

policy, the system has a better behavior against situations when

there last very few free nodes, as it delays too big requests,

although it does not make the most of the network. This helps

making the protocol stable and provides a gradual convergence

in the occupation of the network.
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ver(msg) {
i_am_ready {
tart_task; msg.num_tasks--;

le msg.n > 0 or branch_full {
or i in children {
if i.free > max.free or

(i.free == max.free and
(i.power > max.power or
(i.power == max.power and
i.hops < max.hops)))

max = i;

dd_task_to(max);
sg.num_tasks--;

msg.num_tasks > 0 {
f i_have_father
send_father(msg);
lse
send_client_node(msg);

Fig. 5. Discover protocol algorithm

VI. DISCOVERY OF FREE CPUS

t has been said, when a node has a number of tasks

one, it requests the network to find that number of

chines. This service is accomplished with the discovery

l, that uses the information collected by the availability

l. By applying heuristic rules, it will try to allocate

test and nearest free nodes, so that tasks execution is

tly done.

de that receives a message with n pending tasks will

eck if itself is ready to execute a new one. If so, it

ne of the tasks from the message. Then it distributes

aining tasks between its child nodes according to the

r of free nodes each branch has, giving priority to the

es having more computing power or less hops to a free

f it is not enough with the children branches to cope

l the tasks, then a new message with the last tasks will

to the father so that it can reach more distant branches.

the message arrives at the root of the tree and it cannot

to another branch, it is returned to the originating node

g that there are no free nodes left in the network. The

m for each node can be seen in Fig. 5, where each

n node has a free field for the number of free nodes

ub-branch, a power field for the maximum power and

field for the minimum number of hops to a free node.

worst case would be that of a leaf node that needs to

every node of the net. The request would have to go

he root and then down to the rest of the tree; that is

gest path a request would traverse. As discovery of idle

s done concurrently in every branch, that would be the

s reaching one idle leaf node in the opposite side of the

hich is done in O(2 logm N) hops, being N the number

es in the network, thus making the discovery protocol

scalable.
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Fig. 6. Discovery time for as many free nodes as requested tasks. The test
network has 50000 nodes and one hop is 200 ms.

This is a best effort network. That is, the intermediate nodes

make its best to route the message to the most suitable free

nodes, but the reception is not guaranteed. In fact, the failure

of nodes is frequent in a peer-to-peer network. For this reason,

both the originating node and the allocated ones must avoid

problems in the discovery phase and when sending the actual

work to execute using timeout mechanisms, acknowledge

messages and retransmissions.

VII. EXPERIMENTAL RESULTS

This architecture has been validated with a simulator, im-

plemented with the OMNeT++ simulation framework. The

allocation policy used in the tests has been a simple one, where

as soon as nodes are discovered they are allocated, because we

are focused on resource discovery performance.

Tests have been done aimed to measure free nodes discovery

time, control messages traffic and CPU load. Every test has

been issued with variations in the number of nodes, N , and

the B-Tree parameter, m, to study the impact of the size and

structure of the network in the performance of the protocols.

The simulations have been performed with up to 50000 nodes

and values of m from 6 to 10. Variations on the duration of the

tasks and the size of the data have also been applied to recreate

more realistic situations. There are three constants, though: the

latency of the network connections has been established to 200

ms, the mean continental value for Internet, to simulate a very

wide area network; 1 Mbps has been taken for the bandwidth,

a conservative value for a home Internet connection; and the

mean computing power of the nodes has been set to 2000

MIPS.

Time tests show that both the number of nodes and the

number of child nodes per parent affect the discovery of free

nodes. Just as expected, the last free node of the n requested

is reached in O(2 logm n) hops. For this reason, a network

with a higher value of m performs better, while an increasing

value of n is hardly appreciated. The results of the free nodes

discovery time tests can be seen in Fig. 6 as a logarithmic

growth. We can extrapolate the results to higher values of n.

For example, we calculate that, for the test network, requesting

the execution of 100,000 tasks would discover 100,000 free

nodes in 2 seconds, 1,000,000 in 2.4 seconds, 10,000,000 in

2.8 seconds, and so on.

Control traffic (traffic of non-data messages) and CPU load

tests have been done under two situations: participants have
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TABLE I

OAD AND CONTROL TRAFFIC UNDER NORMAL ACTIVITY. THE

AS 50000 NODES, WITH m = 10 AND A BANDWIDTH OF 1MBPS.

Tree Load (msg/s) Traffic (Bps)
m height mean max mean max
Root
4 7 0.08 2.87 24.10 519.98
6 6 0.09 5.64 24.98 1005.69
8 5 0.09 5.64 25.28 1005.35

10 5 0.09 5.62 25.43 999.48
Leaves
4 7 3.56 4.21 1235.89 1343.51
6 6 3.71 4.33 1293.18 1405.28
8 5 3.85 4.56 1330.41 1436.15

10 5 4.12 5.77 1435.08 1485.60

TABLE II

OAD AND CONTROL TRAFFIC UNDER HIGH ACTIVITY. THE NET

SO 50000 NODES, WITH m = 10 AND A BANDWIDTH OF 1MBPS.

Tree Load (msg/s) Traffic (Bps)
height mean max mean max

oot
7 0.13 28.20 38.19 4980.56
6 0.13 28.46 39.53 5021.05
5 0.14 27.65 39.75 4526.82

0 5 0.14 28.44 40.05 5018.49
eaves

7 39.68 41.62 14359.74 16031.69
6 44.20 50.55 15198.24 16205.83
5 54.15 59.85 17417.23 19256.67

0 5 63.72 65.29 19566.90 21947.28

al and high activity. Normal activity means that there

quent requests from randomly chosen nodes, but the

k does not get completely busy. Under high activity,

ode is busy and continuously receiving new requests.

has been measured in bytes per second. CPU load

e difficult to measure in a simulation, but as every

e is managed in nearly constant time (some hundreds

ructions) we have decided to express it in terms of

es per second. Tables I and II show the results of the

and high-activity behavior. They present the value of

tree height and the mean and maximum values of CPU

d control traffic for the root and leaves of a network

0 nodes.

ese tables it can be seen that while the discovery

l was positively affected by the value of m, the overall

load suffers when the tree is lower, thus a trade-off is

between them. Besides this, by using the availability

l, under normal behavior both control traffic and CPU

heavier at the leaves than at the root nodes. Also,

traffic hardly reaches 1KBps, what represents less than

the total bandwidth. However, under high activity rate

t suffers waves of very high CPU load and control

lts are promising. As we can see in Tables I and

trol overhead is very low. Under normal activity, the



control traffic is only 1485 Bps and the CPU load only reaches

5.77 messages per second, in the worst case. And under

heavy activity, which would be a very uncommon situation,

the control traffic is 21947 Bps and the CPU load is 65.29

messages per second.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a network architecture

that discovers the presence of idle machines with a scalable

(O(logmN)) and fast (1.8 seconds for 10000 requested tasks)

method. It organizes the nodes in a balanced tree structure

to efficiently distribute information about free nodes in a

per-branch basis, that is eventually used to route the request

from a client to the appropriate idle CPUs. The connectivity

protocol, discovery protocol and availability protocol are all

three designed in a totally distributed way, that provide high

scalability and fault-tolerance. Moreover, the experimental

simulation results show low overhead in the control traffic

and CPU load.
We envision to validate these results with a real prototype to

be implemented over the PlanetLab testbed. Also, a distributed

simulator in development could validate the model in the range

of millions of nodes. We believe this can be a valuable step

to develop system support for high performance computing

applications.

ACKNOWLEDGMENTS

This work has been partially supported by the GISED,

group of excellence recognised by the Diputación General de

Aragón.

REFERENCES

[1] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer,
“Seti@home: an experiment in public-resource computing,” Commun.
ACM, vol. 45, no. 11, pp. 56–61, 2002.

[2] Distributed.net, “http://www.distributed.net,” 2000.
[3] D. P. Anderson, “Boinc: A system for public-resource computing and

storage.” in GRID, 2004, pp. 4–10.
[4] M. O. Neary, S. P. Brydon, P. Kmiec, S. Rollins, and P. Cappello,

“Javelin++: scalability issues in global computing,” Concurrency: Prac-
tice and Experience, vol. 12, no. 8, pp. 727–753, 2000.

[5] B. O. Christiansen, P. R. Cappello, M. F. Ionescu, M. O. Neary, K. E.
Schauser, and D. Wu, “Javelin: Internet-based parallel computing using
java.” Concurrency - Practice and Experience, vol. 9, no. 11, pp. 1139–
1160, 1997.

[6] Fra
Ma
sca
sec
Sys

[7] R.
of
On
Pee

[8] I. S
F.
pro
no.

[9] R.
cyc

[10] A.
obj
Mi

[11] A.
acc
Ma

[12] A.
of
Wo

[13] A.
pee
Co

[14] A.
ing
the
NY

[15] M.
dis

[16] H.
to-
in
200

[17] H.
stru

[18] Ro
A R
Ma
tem

[19] R.
ord
Da
Ho
pp.

[20] M.
gra
(IM

55
nck Cappello, Samir Djilali, Gilles Fedak, Thomas Herault, Frederic
gniette, Vincent Neri, and Oleg Lodygensky, “Computing on large-
le distributed systems: XtremWeb architecture, programming models,
urity, tests and convergence with grid,” Future Generation Comp.
t., vol. 21, no. 3, pp. 417–437, 2005.
Gupta and A. K. Somani, “Compup2p: An architecture for sharing
computing resources in peer-to-peer networks with selfish nodes,” in
line Proceedings of Second Workshop on the Economics of Peer-to-
r Systems. Harvard University, June 2004.
toica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,

Dabek, and H. Balakrishnan, “Chord: a scalable peer-to-peer lookup
tocol for internet applications.” IEEE/ACM Trans. Netw., vol. 11,
1, pp. 17–32, 2003.

Mason and W. Kelly, “G2-p2p: A fully decentralised fault-tolerant
le-stealing framework.” in ACSW Frontiers, 2005, pp. 33–39.
I. T. Rowstron and P. Druschel, “Pastry: Scalable, decentralized
ect location, and routing for large-scale peer-to-peer systems.” in
ddleware, 2001, pp. 329–350.
R. Butt, X. Fang, Y. C. Hu, and S. P. Midkiff, “Java, peer-to-peer, and
ountability: Building blocks for distributed cycle sharing.” in Virtual
chine Research and Technology Symposium, 2004, pp. 163–176.
S. Cheema, M. Muhammad, and I. Gupta, “Peer-to-peer discovery
computational resources for grid applications.” in Proc. IEEE/ACM
rkshop on Grid Computing (GRID), 2005.
Awan, R. A. Ferreira, S. Jagannathan, and A. Grama, “Unstructured
r-to-peer networks for sharing processor cycles,” Journal Parallel
mputing (PARCO), vol. 32, no. 2, pp. 115–135, February 2006.
Crainiceanu, P. Linga, J. Gehrke, and J. Shanmugasundaram, “Query-
peer-to-peer networks using p-trees,” in WebDB ’04: Proceedings of
7th International Workshop on the Web and Databases. New York,
, USA: ACM Press, 2004, pp. 25–30.
Hauswirth and R. Schmidt, “An overlay network for resource

covery in grids.” in DEXA Workshops, 2005, pp. 343–348.
V. Jagadish, B. Ooi, Q. Vu, R. Zhang, and A. Zhou, “Vbi-tree: A peer-
peer framework for supporting multi-dimensional indexing schemes,”
22nd IEEE International Conference on Data Engineering (ICDE),
6 (to appear), 2006.
V. Jagadish, B. C. Ooi, and Q. H. Vu, “Baton: A balanced tree
cture for peer-to-peer networks.” in VLDB, 2005, pp. 661–672.

bbert van Renesse, Kenneth Birman, and Werner Vogels, “Astrolabe:
obust and Scalable Technology for Distributed System Monitoring,

nagement, and Data Mining,” ACM Transactions on Computer Sys-
s, vol. 21, no. 2, pp. 164–206, May 2003.
Bayer and E. M. McCreight, “Organization and maintenance of large
ered indexes,” in Record of the 1970 ACM SIGFIDET Workshop on
ta Description and Access, November 15-16, 1970, Rice University,
uston, Texas, USA (Second Edition with an Appendix). ACM, 1970,
107–141.
Freedman, M. Vutukuru, N. Feamster, and H. Balakrishnan, “Geo-
phic Locality of IP Prefixes,” in Internet Measurement Conference
C) 2005, Berkeley, CA, October 2005.


