
Clustering Players for
Load Balancing in Virtual Worlds

Simon Rieche, Klaus Wehrle
Distributed Systems Group
RWTH Aachen University

{rieche,wehrle}@cs.rwth-aachen.de

Marc Fouquet, Heiko Niedermayer, Timo Teifel, Georg Carle
Computer Networks and Internet

University of Tübingen
{fouquet,niedermayer,carle}@informatik.uni-tuebingen.de

Abstract—Massively Multiplayer Online Games (MMOGs)
have become increasingly popular in the last years. So far the
distribution of load, caused by the players in these games, is
not distributed dynamically. After the launch of a new game,
the introduction of new content, during special ingame events,
or also during normal operations, players tend to concentrate in
certain regions of the game worlds and cause overload conditions.
Therefore we propose the use of structured P2P technology for
the server infrastructure of the MMOGs to improve the reliability
and scalability. Previous work segmented the game work into
rectangular areas; however this approach often split a group of
players to different servers, causing additional overhead.

This work presents a cluster-based Peer-to-Peer approach,
which can be used for load balancing in MMOGs or in other
virtual worlds. The system is able to dynamically adapt to the
current state of the game and handle uneven distributions of
the players in the game world. We show through simulation,
also with traces from real online games, that the cluster-based
approach performs better than the previous P2P-based systems,
which split the world in rectangular areas.

I. INTRODUCTION

Computer games have changed in the last years due to the
constantly rising speed and decreasing costs of internet con-
nections. Ever more games offer the possibility, to play with
other players together over the internet. Particularly in Mas-
sively Multiplayer Online Role-Playing Game (MMORPGs) a
virtual world is created, in which thousands of players “live”.
For the players the shared virtual world offers the possibility
that they can talk with other human players, build groups,
friendships and fight together.

Traditionally, a cluster of servers contains one virtual world
of a Massively Multiplayer Online Game (MMOG). But such
an infrastructure is inflexible and error-prone. One would
rather like to have a system that allows disconnecting a
node at runtime while others take over its tasks. Also server-
based MMOGs can have performance problems if players
concentrate in parts of the game world or if some worlds
are overpopulated. Thus, there is a need for load balancing
mechanisms, which Peer-to-Peer (P2P) systems quite naturally
support.

In previous work we showed how such a game can be hosted
on a P2P-based infrastructure [1]. By using the structured
P2P System Content Addressable Network (CAN) [2] as a
basis, we split the game world into disjunctive zones and
distribute them on different nodes of the P2P network. This

happens automatically in such a way that all existing servers
have nearly the same load. But the load balancing separates
the world in a quad tree-like fashion and does not take the
structure of the map into account, which may lead to many
changes of players between the servers. In this case the old
server has to transfer all the state information of the player
to the new server, which is now responsible for this person.
So a main task is to minimize the handovers of players from
one server to another. Another problem are players who are
located close to the border of the area that one server controls.
These players can see parts of the game world on the other
side of the border, therefore they need to be informed about
all updates of dynamic content, i.e. player movements that
happen there.

In MMORPGs it can be frequently observed that players
form groups and walk over the map together. This particularly
becomes problematic, if a whole group of players moves
over a border and thus a large number of players have to
be transferred to the new server. Thus we propose a P2P
infrastructure for MMOGs which takes this behavior into
account.

The distribution of load on the existing servers is thereby
not done by dividing the map into different areas, but via
dividing the players into clusters. Each server receives a group
of players, who are close together. This group is one cluster. If
the group moves on the map, the responsible area of the server
moves with this group. If individual players depart from the
group, they are handed over to another group as soon as they
are closer to the new group than to the previous one. Figure
1 shows as an example several clusters in a virtual world.

The rest of this paper is organized as follows: First we
discuss related work in Section II. Section III shows our

Fig. 1. Several clusters on the map of the virtual world.

approach to use structured P2P Systems for MMOGs, Section
IV how the clusters are build, and Section V how to find
clusters in the neighborhood of the map. In Section VI the load
balancing of the cluster is described. Section VII describes the
evaluation, including simulations that use player traces from a
real MMOG, and finally, Section VIII provides conclusions.

II. RELATED WORK

Some efforts have been undertaken to design a MMOG
on a P2P basis, with the server tasks being shared among
the player’s PCs. In [3] and [4] the game world is divided
into zones. Then some peers become zone owners that take
responsibility for computing the server tasks for such a zone.
While this approach is fascinating on one hand, it suffers from
a number of practical problems. Players constantly connect to
and disconnect from the game, often without warning if the
PC crashes or suddenly gets disconnected from the network.
This means that always backup machines are needed to replace
disconnected zone owners. Allowing player’s computers to
calculate parts of the game mechanics makes it harder to
avoid cheating. Another problem is that persistent player data,
for example the progress of the player’s characters in a role-
playing game, need to be saved in a way that makes sure that
no information is lost, as players may have invested a lot of
work into the game. At the same time one has to prevent
players from cheating by modifying data, which would be
possible if it was stored on the player’s local hard drives. This
suggests that some kind of infrastructure provided by the game
manufacturer would still be needed; a full P2P approach does
not appear practical, so we focus on a hybrid P2P approach.
Another challenge is the low upstream bandwidth of most
current Internet connections, probably only peers with a good
connectivity could be considered for becoming zone owners.

Solipsis [5] uses a different approach, as it tries to build a
pure P2P network-based on the neighbourship relations of the
player’s avatars. Each peer has direct connections to all other
peers that are in visible range of the player’s avatar. There is
a real implementation of Solipsis, however currently it is little
more than a distributed chat client. If one wanted to make
it a “real” MMOG, one would be confronted with the same
problems as described above. It is especially difficult to make
such an approach cheat-proof [6].

In our previous work [1] a structured P2P technology is
used for the organization of the underlying infrastructure and
thus for the reduction of downtimes in MMOGs. By using a
CAN-based approach we split the game world in disjunctive
zones and distribute them on different nodes in the P2P
network. Thus, we get the possibility to dynamically connect
and disconnect machines to and from the peer-cluster and to
load-balance the game according to the actions of the players.

The P2P technology makes it possible to run multiple game
worlds on a pool of servers. The physical location of these
servers is of minor importance, they do not have to run in
the same data center. Placing the servers of a single game
world at different locations introduces additional overhead;
however this may be justified by enhanced reliability or maybe

by an improved locality. Even if one whole location should be
disconnected from the network, the servers at other locations
could take over seamlessly and without loss of data.

But it can be observed that players act in groups in most
online games. Since those players can see all players in the
same group on the virtual map, many messages have to be sent
over the server to inform where the other players are. If there
is a border between these players in the map the additional
data has to be exchanged between the two servers, which are
responsible for the different areas.

Many algorithms exist for load balancing in structured P2P
systems [7]–[9]. However, most of these systems are not
applicable for online games. Our approach is based on the
virtual server (VS) approach [7] where multiple partitions of
a Distributed Hash Table’s (DHT) address space are managed
in one node. Thus, one physical node may act as several
independent logical nodes. So each VS will be considered by
the underlying DHT as an independent node.

III. CLUSTER-BASED P2P INFRASTRUCTURE SUPPORT
FOR MMOGS

In our approach, the game world is defined by a map,
which is managed by servers. Each server is responsible
for the region, where the players of its group are located.
Conceptually areas without players don’t need a responsible
server. Non-player characters and other objects with a state can
be handled as players. So the game world is distributed on an
infrastructure of different peers or servers. This infrastructure
is not necessarily located in a single data center. However in
most cases it makes sense to locate the peers that are respon-
sible for adjacent regions in the same network to minimize
delay and costs for internal traffic between the peers. But our
approach could also be used for a super-peer network in a
more distributed setting for more delay-tolerant games.

As in the virtual server (VS) approach multiple peers can
be run on one physical server to better distribute the load.
Since no central server should be used for the whole game, the
movement of players from one cluster to another is done only
by the two participating (virtual) servers. Each VS knows the
coordinates of the players of its own group and the positions of
some players of neighbouring groups which can be seen by the
players of its group. Neighbouring virtual servers periodically
exchange this information, to make sure that the positions of
all players are rendered correctly on the player’s computer.

IV. BUILDING CLUSTERS

For building the clusters, we measure the distance between
the players. Simply measuring each player’s distance to the
centroid of a cluster (cf. Figure 2) leads to a suboptimal
solution since groups may be split in the middle of two virtual
servers. So this approach is not flexible enough to handle large
or deformed clusters.

Figure 3 shows how the mapping of players to groups should
be determined. Players belong to the same group, if they have
a small distance to each other. The form of the group can
be arbitrary, since the distance is not computed to a central

point, but to each player’s neighbours. The required minimum
distance to separate two players into different clusters is
variable, so the size of the groups can be changed e.g. when
adding new nodes. Therefore this parameter can also be used
for the load distribution. Players, who have the same distance
to two large groups, can be taken by any of these groups. A
VS is not assigned to a fixed location on the map - as players
move around, the VS assignment follows them.

V. FINDING NEIGHBOURING CLUSTERS

Since there is no central server, each VS must be able
to decide, which other virtual servers of the P2P structure
are direct neighbours on the virtual map. Direct neighbours
of a VS A are those servers, which have players in their
groups, who can move to the players of group A without being
transferred to another group of a VS B before arriving at A.
In many cases these players are also close together, however
there may also bigger areas on the map without any players.
A cluster needs connections to all direct neighbours and all
clusters are connected in one graph.

It is not sufficient to simply use the distance to a neighbour’s
centroid to test if two groups are direct neighbours since the
groups do not necessarily have to be circular. Also groups,
which are far from each other, may be direct neighbours, if
no other group is between them.

So in order to test whether a VS A is a direct neighbour to
B, the canonical approach would be to compare the positions
of all players. For the players, with minimal distance, it must
be tested if no players of another VS C lie between them. The
test for the neighbourship relation can be optimized, as it is
sufficient to test the players that form the convex hulls of the
two groups instead of comparing all players.

VI. LOAD BALANCING USING CLUSTERS

As mentioned before, our proposed system works with a
VS approach. A cluster of players is equivalent to one virtual
server. When the load of a physical server exceeds a threshold,
for example when too many players are in its clusters, the load
is reduced by three mechanisms:

• Moving whole clusters from one node to another.
• Moving one or some players from one cluster to another.
• Splitting a cluster into two parts, and moving one of them

to another physical server.

Fig. 2. Building clusters using the distance from the centroid.

Fig. 3. Building clusters using the distance between players in a group. For
illustration the centroids of the groups are also shown.

Fig. 4. Moving one player from one cluster to another.

A. Moving Clusters

The virtual server approach [7] is based on the idea of
managing multiple partitions of a structured P2P address space
in one node. Thus, one physical node may act as several
independent logical nodes. Each VS will be considered as an
independent node by the underlying structured P2P System.
Within a CAN system, one VS is responsible for a zone of the
address space, whereas the corresponding physical node may
be responsible for several different and independent zones. The
basic advantage of this approach is the simplicity of placing
and transferring virtual servers among arbitrary nodes. This
operation is similar to the standard join or leave procedure
in a structured P2P system. Every participating node manages
many virtual servers so load can be moved between nodes by
moving a whole VS to another node.

B. Moving Players

Another simple operation to balance the load of the clusters
is to move some players from one group to another. Figure 4
shows a player in the middle of two clusters. So depending on
the load of each cluster the player can be moved to the group
with the lower number of players. If some players move away
from a cluster together, also all of them can be moved to the
new cluster together (cf. Figure 5).

C. Splitting Clusters

Additionally, clusters with too many players can be split
and one part can be sent to another server. This is done by

Fig. 5. Moving a part of a group to another cluster.

Fig. 6. The virtual server tests six possibilities for splitting a group based
on four points. The two points, which are used as starting points to calculate
the groups in each round, are connected with a line (blue). The perpendicular
bisector of the side drawn in addition isolates the two groups. Each player
belongs to the group of the starting point where he is nearer to. So the
perpendicular bisector of the side splits the two groups, since after this line
the player would be nearer to the other staring point.

first selecting the – usually four – players with minimal and
maximal X- and Y-coordinates in the map.

For every one of the six combinations, two players p and
q are selected and a split is calculated by simply assigning
each other player r either to p’s or q’s group depending on
r’s distance to p and q.

At the end the combination of those two nodes p and q is
chosen, which has the maximal distance between the two new
groups. This is done to minimize the possibility that players
will move from one group to the other in the future. Figure 6
shows as an example all six possibilities to split a group.

Also, adjacent clusters with low numbers of players can be
merged for a lower number of internal messages.

VII. EVALUATION

We focus in this evaluation part, due to space limitations, on
the comparison of the cluster-based approach and the CAN-
based approach with rectangular areas. In [1] we showed
already that a P2P approach for a MMOG is practicable.

A. Traces

We evaluated our approach using a simulation with artifi-
cially generated as well as real traces of user-movement:

• Random walk trace data is a collection of generic data
representing movement of users according to the Random
Walk Mobility Model.

• Random waypoint trace data has been generated using
the Random Waypoint Mobility Model.

• Freewar trace data consists of real player-movements
traced in the online game Freewar [10] over a period of up
to five hours. Approximately 400 players were online in
this period of time, but the number of concurrent players
varies over time since users join or leave the game. Also
the Freewar traces show an extremely uneven distribution
of the players over the world with some hotspots in cities.

B. Comparison

We compare the two approaches based on the following
criteria using the Omnet++ network simulator:

• The number of ForeignPositionChange (FPC) messages,
sent during the simulation. These are sent, whenever a
player moves to the peripheral area of his group and
can be seen by players of a neighbouring group. A FPC
causes the transmission of one message per player and
movement (time step) between the neighbouring virtual
servers. So the number of FPC messages indicates how
well the clusters were separated in the simulation. In a
real game this number of FPC messages is one of the most
important factors, since many FPC messages between the
clusters will delay the response to the users.

• The number of players moved from one VS to another.
The counter of handovers is increased with each handover
of a single player. When parts of a group are transferred
between two virtual servers at once, this counter is
increased by the number of moved players. Besides the
used bandwidth, the transfer of a player may cause a
short delay for the customer. Therefore the number of
handovers should be minimized.

• The number of players moved when complete virtual
servers are moved between two nodes. This is separately
counted in the counter handoversOnMove.

Figure 7 shows the number of handovers of players for a
random walk trace. It shows that the cluster-based approach
performs better than the CAN-based approach with rectan-
gular areas. Additional, less FPC messages are sent in this
simulation (cf. Figure 8). This random walk trace consists of
219,828 movement actions by 500 different players. All graphs
are cumulative, i.e. they show the number of messages since
the start of the simulation run.

We also simulated a scenario with random waypoint trace
data. This trace again consists of 500 players, which move
around in the game world for about five hours. Again, the
cluster-based method performs better than the CAN-based
method. The number of handovers using cluster-based method
is 14,889 compared to 28,198 with the CAN-based method.
The number of FPC messages is 79,492 for the cluster-based
method, compared to 379,392 for the CAN-based method.

In a simulation with the Freewar traces there are less
FPC messages sent by the cluster-based method than by the

Handovers, Cluster−based Method

Handovers on VServer move, Cluster−based Method

Handovers, CAN−based Method

Handovers on VServer move, CAN−based Method

Simulation Time [s]
5000 10000 15000

H
an

do
ve

rs
 o

f P
la

ye
rs

0

10000

20000

Fig. 7. Comparison of player handovers from one cluster to another with the
CAN-based rectangular areas approach and the cluster-based approach with
random walk trace data.

ForeignPC, Cluster−based Method

ForeignPC, CAN−based Method

Simulation Time [s]
5000 10000 15000

M
e

s
s

a
g

e
s

0

100000

200000

Fig. 8. The number of FPC messages with the CAN-based rectangular areas
approach and the cluster-based approach with random walk trace data.

CAN-based algorithm (cf. Figure 10). As described in section
VII-B, this is one of the main motivations for the cluser-
based approach in order to improve the interactive experience
for the players. But in the Freewar simulation the cluster-
based method (cf. Figure 9 has a worse performance than the
CAN-based approach with respect to player handovers. The
CAN-based method causes 4,813 handovers and 75,325 FPC
messages. The cluster-based method causes 8,038 handovers
and 48,441 FPC messages.

So whether our CAN-based or the cluster-based approach
is more suitable for a practical game depends on the typical
behavior of the players in the game world and on the costs of
FPC messages versus player handovers.

VIII. CONCLUSIONS

In this paper we use a structured P2P technology for the
organization of the infrastructure and thus for the reduction
of downtimes in MMOGs. By using a cluster-based approach
we split the game world in groups of players and not in
rectangular disjunctive zones. The clusters are distributed
on different nodes of the P2P network. Thus, we get the
possibility to dynamically connect and disconnect machines

Handovers, Cluster−based Method

Handovers on VServer move, Cluster−based Method

Handovers, CAN−based Method

Handovers on VServer move, CAN−based Method

Simulation Time [s]
10000 20000

H
an

do
ve

rs
 o

f P
la

ye
rs

0

2000

4000

6000

8000

Fig. 9. Comparison of player handovers from one cluster to another with the
CAN-based rectangular areas approach and the cluster-based approach with
the Freewar trace data.

F o r e i g n P C , C l u s t e r − b a s e d M e t h o d

F o r e i g n P C , C A N − b a s e d M e t h o d

Simulation Time [s]
10000 20000

M
e

s
s

a
g

e
s

0

20000

40000

60000

Fig. 10. The number of FPC messages with the CAN-based rectangular
areas approach and the cluster-based approach with the Freewar trace data.

to and from the peer-cluster and to load-balance the game
according to the actions of the players. The evaluation shows a
better behavior than the previous CAN-based approach, which
created rectangular areas.

REFERENCES

[1] S. Rieche, K. Wehrle, M. Fouquet, H. Niedermayer, L. Petrak, and
G. Carle, “Peer-to-Peer-based Infrastructure Support for MMOGs,” in
Proc. of CCNC, Las Vegas, 2007.

[2] S. Ratnasamy, P. Francis, et al., “A Scalable Content-Addressable
Network,” in Proc. of the ACM SIGCOMM, San Diego, 2001.

[3] T. Iimura et al., “Zoned federation of game servers: a P2P approach to
scalable MMOGs,” in Proc. of NETGAMES, Portland, 2004.

[4] H. Lu, “Peer-to-Peer Support for Massively Multiplayer Games,” in
Proc. of IEEE INFOCOM, Hong Kong, 2004.

[5] J. Keller and G. Simon, “Solipsis: A Massively Multi-Participant Virtual
World,” in Proc. of PDPTA, Las Vegas, 2003.

[6] C. GauthierDickey, D. Zappala, et al., “Low Latency and Cheat-Proof
Event Ordering for P2P Games,” in Proc. of NOSSDAV, Ireland, 2004.

[7] A. Rao, K. Lakshminarayanan, et al., “Load Balancing in Structured
P2P Systems,” in Proc. of IPTPS, Berkeley, 2003.

[8] D. Karger and M. Ruhl, “Simple Efficient Load Balancing Algorithms
for Peer-to-Peer Systems,” in Proc. of IPTPS, San Diego, 2004.

[9] J. Byers, J. Considine, et al., “Simple Load Balancing for DHTs,” in
Proc. of IPTPS, Berkeley, 2003.

[10] J. Cernik, “Freewar - MMORPG Browsergame,” www.freewar.de.

