
HLA-OMNET++: an HLA compliant network simulator

Emanuele Galli, Gaetano Cavarretta and Salvatore Tucci
Università of Roma ”Tor Vergata”

Via del Politecnico 1, 00133, Rome, Italy
galli@disp.uniroma2.it

Abstract

An approach to the modeling of Critical Infrastructure
can be the integration of already implemented and heteroge-
neous simulators. In this way the model builder can concen-
trate more on the modeling of interdependencies between
heterogeneus infrastructure than on the developing of an
huge and unique simulator. The HLA standard is proba-
bly one of the more common technique to reach such goal.
We present the architecture and implementation of the HLA-
OMNet++: an HLA-1516 network simulator used to simu-
late the communication network infrastructure.

1 Introduction

In the last years different projects sponsored by the gov-
ernment agencies (e.g. NISAC in USA and EISAC in EU)
address the problem of modeling and simulation of complex
critical systems. From an homeland security point of view,
complex critical systems (e.g. communication networks,
power grid, transportation systems, financial services, etc...)
can not be considered as standalone systems, but, due to
their interdependencies, have to be considered as a complex
system composed of interdependent systems. One of the
main approaches used to simulate complex critical systems
is the federation of existing simulation models [2, 1, 3, 4].
Unfortunately, sector-specific simulation model, developed
during the past, typically were designed not having in mind
distributed simulation features. Then, one of the main steps
toward the federated simulation of critical complex systems
is the development of HLA compliant network simulation
framework.

This work, part of the CRESCO project, en-
hances the OMNeT++ network simulation framework
(http://www.omnetpp.org), implementing an HLA sched-
uler and an IEEE 1516 compliant Federate Ambassador
(implemented and tested using the poRTIco HLA imple-
mentation - http://www.porticoproject.org). The proposed
scheduler allows to use existing OMNeT++ network simu-

lation model, to design new network model and use them in
a distributed simulation. Right now the HLA-OMNeT++
publishes interactions to send and receive messages be-
tween network nodes as well as to modify the network
topologies and network nodes properties. However, the pro-
posed HLA compliant scheduler supports the publishing of
any type of interaction and object.

The paper is organized as it follows. Section 2 briefly
describes how OMNeT++ works. Section 3 describes the
architecture of the OMNeT++ federate (IEEE 1516 compli-
ant) and of the HLA compliant scheduler. Section 4 con-
cludes the paper.

2 OMNeT++ overview

OMNeT++ is an event driven simulation framework to
model and to simulate communication networks and, more
in general, computer network systems. The OMNeT++ ar-
chitecture is based on components and it is completely mod-
ular.

An OMNeT++ model is obtained composing one or
more, hierarchically nested, modules. The lower level mod-
ules of the hierarchy, named Simple Modules, are pro-
grammed in C++ using the simulation library and extend-
ing the cSimpleModule class. Simple Modules generate
and react to events and they implement the behavior of a
modeled object (e.g. a network node or a link). Each mod-
ule is characterized by a set of parameters that can be used
to parametrize the module behavior. Simple module can be
combined to compose more complex modules, named com-
pound modules. Simple and/or compound modules com-
municate by exchanging messages. Messages can be used
to model events, network messages, packets, bits, signals
or other. A message in OMNeT++ is an instance of the
class cMessage and it can be used by any module. Gen-
erally it’s necessary to define a module which is the traffic
generator of the simulation that defines the distribution of
traffic, the dimension of packages and so on. All the OM-
NET++ events are queued in the Future Events Set (FES)
queue. The scheduler extracts messages from the FES in

12th 2008 IEEE/ACM International Symposium on Distributed Simulation and Real-Time Applications

1550-6525/08 $25.00 © 2008 IEEE

DOI 10.1109/DS-RT.2008.44

319

12th 2008 IEEE/ACM International Symposium on Distributed Simulation and Real-Time Applications

1550-6525/08 $25.00 © 2008 IEEE

DOI 10.1109/DS-RT.2008.44

319

arrival time and priority order.
OMNeT++ offers two methods to send messages: the

sendDelayed() method to send messages with a speci-
fied delay; and the send() method to send messages with
zero delay.

3 The HLA-OMNeT++

To make OMNeT++ IEEE 1516 compliant we need: 1)
to design a new HLA compliant scheduler for OMNeT++,
named rtiScheduler and 2) to design a Federate Am-
bassador that allows the interaction between poRTIco, writ-
ten in Java, and the rtiScheduler other than the OM-
NeT++ modules, written in C++.

3.1 The OMNeT++ Federate architecture

The HLA-OMNeT++ is composed by three blocks (see
figure 1). The first one (bottom of the figure) is the inter-
face between the OMNeT++ scheduler and the RTI. It is a
Java module that implements the OMNeT++ federate, that
communicates directly with the RTI-Ambassador, and the
OMNeT++ Federate Ambassador (OFA) that interacts di-
rectly with the RTI. The HLA compliant scheduler is im-
plemented by a C++ module, the rtiScheduler (middle
of the figure). The rtiScheduler guarantees the synchroniza-
tion with other federates. The OMNeT++ Federate and the
rtiScheduler communicate using the client/server paradigm
implemented by a socket based interprocess communica-
tion and an XML based communication protocol. The third
block is composed by the OMNeT++ modules that imple-
ments the communication network simulation model. The
network model designer will work only at this level without
care about how events are scheduled and she/he has to de-
fine the Entry Point Module (the traffic generator module)
that will “communicate” with other federates and initializes
the simulation of every packet. Moreover the designer has
to define the network topology and the simulation model.

message NetPk t
{

f i e l d s :
s t r i n g s r c A d d r e s s ;
s t r i n g d e s t A d d r e s s ;
s t r i n g p a y l o a d ;
s t r i n g d e s t S t a t u s ;
s t r i n g i d ;
s t r i n g p r o t o c o l ;
u n s i g n e d i n t p o i n t e r T o p o l o g y ;

} ;

Listing 1. The NetPkt, defined using the NED
language

Figure 1. OMNeT++ Federate Architecture

When the OFA receives a message from RTI, the mes-
sage is translated in Xml language and sent to the rtiSched-
uler by the open socket. As soon as the xml-message is
received by the rtiScheduler, it’s used to create a new OM-
NeT++’s message, named Netpkt, as shown in listing 1.

The Netpkt-message contains the source and destination
address node of the communication network in addition to
the payload, the transportation protocol, the status of the
destination node (if active or inactive due to some fault) and
other information. The new message is put in the FES queue
to be managed by the rtiScheduler. As soon as the mes-
sage is gotten by the scheduler it is delivered to a specified
OMNeT++’s module, responsible to manage all messages
received by other federates. When the message arrives to
the destination node, it is delivered to the entry point mod-
ule which calls the sendToRTI method of the scheduler.
This method is responsible to translate the OMNeT++ mes-
sage in a well formatted xml-message and sends it to the
Java block. Subsequently the message is translated in HLA
language to be received by the RTI Ambassador.

3.2 The rtiScheduler

OMNeT++ offers the abstract class cScheduler to
customize the scheduler. The cScheduler class de-
fines four virtual method that are: startRun(), to start
a simulation; endRun(), to terminate the simulation;

320320

executionResumed(), to restart the simulation from
a pause; getNextEvent(), to extract the next event to
process from the the FES (NULL is returned if the FES is
empty).

Moreover we have defined other two methods that make
the rtiScheduler independent from the modeled net-
work topology and the Local RTI Component. Such
virtual methods are: setInterfModule(cModule

*entryPointModule, used to set the OMNeT++ mod-
ule that will receive the arriving request from the federa-
tion; sendResponseToRTI(cMessage *msg), used
to reply requests from the federation. In the following we
describe the main virtual methods implemented.

startRun(). This method is used to initialize the simu-
lation and to activate the msgServer (see Fig. 1), a
thread responsible to manage the XML messages re-
ceived/sent from/to the Federate Ambassador.

setInterfModule(cModule *entryPointModule).
This method defines which is the OMNET++ module
that receives messages from the federation. All
messages from federation are always received from
the entryPointModule module (see Fig. 1).

sendResponseToRTI(cMessage *msg). This
method can be used by any OMNET++ module that
wants to send a message to the federation. Usually the
entryPointModule is delegated to manage and
send the reply to the federation. The OHLA module
receives the msg message (a NetPkt message) from
the entryPointModule. Then it parses the NetPkt
and it creates the commRespToRTI message that is
sent to the Federate Ambassador.

*getNextEvent(). This method implement the selec-
tion of the next event from the FES (see Figure 2). If
there is an event in the queue, and it is time to deliver
the message, the message is returned, otherwise the
method return NULL. In a distributed simulation, an
empty FES does not necessarily means that the simu-
lation is terminated. Then we have modified the sched-
uler to generate, in case of an empty FES, a Time
Advance Request to the RTI and to wait the ar-
rival of a Time Advance Grant signal from the
RTI. The Time Advance Grant signal wakes up
the scheduler that check again the FES.

4 Concluding remarks

This paper presents the implementation of an HLA
compliant version of the OMNeT++ network simulation
framework. The proposed extension is under submission,

Wait Signal

Si lSignal ==

Time_Advance_Grant

?

No

Wake up Scheduler;

?

Yes

Wake up Scheduler;

Logical Time new Time

Time Advance Request
FES is

empty?
Yes

empty?

Peek the first NetPkt from FES

No

A i l Ti <

Peek the first NetPkt from FES

No Arrival Time <

Logical Time ?

No

Y

Return Message

Yes

Figure 2. Flow chart of getNextEvent method

for approval, to the OMNeT++ community. The HLA-
OMNeT++ has been used with success in the implemen-
tation of a simulation framework of complex system devel-
oped in the context of the CRESCO project and which re-
sults are published with success in [1]. HLA-OMNeT++
has been validated comparing the results obtained running
monolithic and distributed simulations. HLA-OMNeT++
can be obtained sending an email to the authors.

References

[1] E.Casalicchio, E.Galli. ”Metrics and Statistical Mea-
sures to Quantify Critical Infrastructure Interdependen-
cies”. Second IFIP WG 11.10 International Confer-
ence on Critical Infrastructure Protection, George Ma-
son University, Arlington, VA, USA, March, 2008

[2] E.Casalicchio, E.Galli, S.Tucci. ”Federated Agent-
based Modeling and Simulation Approach to Study In-
terdependencies in IT Critical Infrastructures”. Proc. of
11th IEEE Int’l Symposium on Distributed Simulation
and Real Time applications (DS-RT07), Crete, Greece,
Oct 2007.

[3] D. Dudenhoeffer, M. Permann, and M. Manic. Cims:
A framework for infrastructure interdependency model-
ing and analysis. Winter Simulation Conference, 2006.
WSC 06. Proceedings of the, pages 478–485, 3-6 Dec.
2006.

[4] The IRRISS Project. http://www.irriis.org

321321

