
A Key Management Solution for Overlay-Live-Streaming

Mathias Fischer
Technische Universität

Ilmenau, Germany
mathias.fischer@tu-

ilmenau.de

Guenter Schaefer
Technische Universität

Ilmenau, Germany
guenter.schaefer@tu-

ilmenau.de
Robert Schmidt
Denso Automotive

Deutschland GmbH
Eching, Germany

r.schmidt@denso-
auto.de

Thorsten Strufe
Eurécom

Sophia Antipolis, France
thorsten.strufe@eurecom.fr

ABSTRACT
Confidential communication of live-generated multimedia
data distributed via application level multicast (ALM) still
remains a mostly unaddressed subject even though some
important usage scenarios, e.g. paid subscription services
or personal video-streaming, are anticipated to gain more
widespread use as the Internet continues to evolve into the
common transport platform for all kinds of services. In
this article, we examine the specific requirements for key
management schemes to be used in ALM-based distribution
systems and analyze existing key management approaches
with respect to these requirements [1, 2, 3]. Based on the
results of this analysis, we design a new key management
scheme that combines ideas of the Logical Key Hierarchy
(LKH) protocol [4, 5] and the Iolus approach [6]. We com-
pare the resulting scheme to a simple approach that is based
on pairwise keys between neighboring nodes without further
key-hierarchy based optimization and that serves as a bench-
mark. Our results of a comparative simulation study clearly
indicate the suitability of our scheme for ALM-based live-
streaming.

Categories and Subject Descriptors
C.2.4 [Computer Communication Networks]:
Distributed Systems—Distributed applications

General Terms
Security, Algorithms, Measurement, Performance, Experi-
mentation

Keywords
Peer-to-peer, application-layer multicast, content distribu-
tion, key management, LKH, Iolus, DH

Conference name: SecureComm 2008, SOSOC Workshop, September 22 -
25, 2008, Istanbul, Turkey
Copyright c©2008 ACM ISBN # 978-1-60558-241-2.

1. INTRODUCTION
Application Layer Multicast (ALM) [7, 8] harnesses the re-
sources of participating end-hosts to create robust and scal-
able content dissemination systems. The main focus of re-
search so far has been on creating efficient [8] and robust [9,
10, 11] distribution topologies. Security aspects, however,
have been largely unattended in ALM research. Especially
the establishment of confidentiality among a closed group
of nodes is a very important issue, as it is a prerequisite
for commercial as well as personal deployment. Content
providers, which charge their customers for the service of
delivering a multimedia stream, have a strong interest in
keeping the transmitted data confidential in order to protect
their revenues. Unless the dissemination scheme can offer
the same level of protection as traditional unicast channels,
content providers are more likely to accept the higher cost of
distribution through unicast rather than deploying an over-
lay dissemination scheme. Confidentiality may also be a key
requirement in non-commercial scenarios. As participants
are sharing potentially sensitive data, they may have a high
interest in securing it, restricting access to a closed group of
recipients.

To establish a confidential setup in ALM, some key manage-
ment (KM) scheme has to be introduced in order to agree on
common keys to encrypt the content. Key management is
an especially difficult task in ALM systems, as they usually
do not contain a central or dedicated entity that may take
care of key management duties (e.g. serving as a trusted
third party, etc.). Considering the distribution of live con-
tent yields additional challenges, as groups in this scenario
are typically very short lived and the mean time of partici-
pation of nodes is very low [12]. An immediate and central
requirement to a key management scheme for an ALM is
scalability in the amount of participants. Adding overhead
has to be avoided and the resource consumption for nec-
essary overhead should be evenly distributed over all par-
ticipants. As a direct consequence the introduction of an
additional infrastructure component has to be refrained off.

Systems implementing ALM are commonly classified into
the categories mesh-first or tree-first [13]. While mesh-first
approaches create a management overlay first and set up

the content dissemination topology using this mesh, tree-
first approaches create the content dissemination topologies
directly and use them for the distribution of management
traffic, as well. However, using the ALM for live streaming,
the content is actually distributed along a set of spanning
trees, each rooted at the source of the stream, that con-
sists of all participating nodes as either inner- or leaf-nodes.
Therefore, the stream is divided into several substreams of
equal size, called stripes, which are distributed via one of
the spanning trees, respectively. Hence, all ALM for live
streaming are composed of one or a set of spanning trees,
which in consequence can be leveraged for key management
purposes.

In this article, we evaluate different types of key manage-
ment schemes with respect to their adoption in ALM sys-
tems for multimedia live-streaming. Based on a qualitative
study of the different types of schemes with respect to their
suitability in ALM scenarios, we select promising approaches
for a closer performance analysis.

Subsequently, we design a decentralized key management
approach that is based on the Logical Key Hierarchy (LKH)
and the Iolus protocol adapted to a tree-based key distri-
bution topology. In order to reduce overhead, the approach
leverages on the spanning tree of the ALM streaming topol-
ogy. Furthermore, as models of user behaviour [12, 14] have
shown the necessity of this prerequisite, our approach is de-
signed to perform under high churn and can handle frequent
arrivals or departures of participants of the ALM. A simu-
lation study shows, that at moderate churn this approach
performs better than a simple benchmark approach, per-
forming hop-by-hop re-keying based on pairwise secrets be-
tween neighbor nodes. However, another lesson learned from
both analysis and simulation study is, that in an environ-
ment of small groups, which are subject to high churn, the
simple and straight forward approach to use pair-wise keys
between each pair of neighbors is much more efficient than
the more sophisticated approaches found in the literature.

The remainder of this article is organized as follows. The
requirements for a key management scheme to be used in
ALM-based live-multimedia distribution are formulated in
section 2. In section 3, we discuss the state-of-the-art in
group key management followed by an explanation of our
own approach in section 4 that is analyzed and evaluated in
section 5. In section 6, we summarize our findings and give
a conclusion to our work.

2. REQUIREMENTS ON A KEY MANAGE-
MENT SCHEME

In the following, we describe requirements that can be de-
rived from the described scenario and that either relate to
performance- or security-related aspects of the key manage-
ment scheme.

Three major requirements regard the performance of the
scheme:

1. Scalability: The design of the introduced security scheme
has to be able to cope with growing, potentially very
large numbers (> 106) of participating nodes.

2. Moderate resource usage: The key management must
not pose high load to the processing, storage or com-
munication resources of any participant. The capabil-
ities of the device of a participant in the group may
differ to those of e.g. a central key server. While the
latter will usually be a dedicated high-end machine,
the former may be a mobile phone or other hand-held
device, which is severely limited in its processing and
storage resources. For this reason, a participant must
not be faced with the task to store a huge amount of
keys, or to perform a large amount of expensive com-
putations, e.g. for packet encryption and decryption.
In addition, the bandwidth overhead of the KM should
be low, so that a re-keying does not lead to a dispro-
portional number of messages. A resource demand in-
dependent of the group size is preferable.

3. Ability to cope with churn: A KM for overlay live
streaming needs to be able to cope with a highly dy-
namic behavior of nodes, especially with high rates of
correlated node arrivals and departures, and addition-
ally with nodes that might take part in the service for
a very short time only.

The security-related requirements are as follows:

1. Availability: The key management has to be available
without interruption. In consequence, the failure of
nodes, especially of a single node, must not lead to a
failure of the key management.

2. Minimal trust infrastructure: The key management
scheme should rely on a minimal number of trusted
entities only, if possible by leveraging existing infras-
tructure instead of adding new components.

3. Backward and forward secrecy: A key requirement, es-
pecially for commercial content providers, is to keep
both backward- and forward secrecy: A new peer must
not be able to decrypt packets that were sent before it
joined the group [15], and a leaving peer must not be
able to decrypt any future traffic. These requirements
are sometimes also termed “user revocation” or “black-
listing” [16] and the only possibility to keep forward-
and backward secrecy is to perform re-keying for the
whole group and distributing new keys.

4. Key independence: New keys should not be encrypted
by an old key for distribution, in order to keep forward
secrecy, and because an attacker that has managed to
gather one key would be able to decrypt the rest of the
communication.

5. No 1-affects-n: Changes in the group should not lead
to group-wide re-keying (1-affects-n). Hence, differ-
ent keys have to be used for different peers: If only
a single group key is shared by all participants, the
whole group has to be re-keyed, in order to maintain
backward and forward secrecy, even if only a single
membership change occurs.

6. Controlled access: An access control mechanisms has
to be provided to ensure that only authorized peers
are able to join the group. However, access control is
out of the scope for this paper.

3. ANALYZED SCHEMES
In large scale content distribution the key management will
typically be deployed to distribute one symmetric Traffic
Encryption Key (TEK), which is used to encrypt the con-
tent at the source and decrypting it at the participants, re-
spectively. In order to securely distribute the TEK, a secure
context among all participants is created, based on one or
several Key Encryption Keys (KEK), which again have to
be agreed upon using a key management scheme. Three dif-
ferent strategies to establish a common secure context, and
thus to agree on KEK, exist:

1. One common KEK for the whole group

2. Group-shared KEKs

3. KEKs shared between pairs of peers

There are various protocols for KM [1, 2, 3, 17]. Character-
izing them with regards to their level of distribution, they
can be classified into central, decentralized or contributory
schemes [18].

3.1 Centralized
Centralized approaches are based on a central entity, called
group controller (GC), which maintains secure channels to
all group members.

3.1.1 GKMP
The simplest form of centralized group key management is
provided by the Group Key Management Protocol (GKMP)
[19, 20]. A TEK is distributed via a central GC. In doing
so, O (n) messages and encryptions per change in the group
compound are required. In case of a member join, the new
TEK is distributed to the former members by using the old
key, a characteristic that is in conflict with the requirement
of key independence.

3.1.2 LKH
The Logical Key Hierarchy (LKH) [4, 5] is based on a binary
tree of keys (compare figure 1), that is administrated by a
central GC. Intermediate keys are created directly by the
GC and are encrypted and distributed via pairwise keys that
reside in the leaf nodes of the tree (k0 − k7). The key in
the root node of the binary tree k0−7 is used as the TEK
of the group and all keys in intermediary nodes represent
KEKs. The GC is responsible for the key distribution to
its members. It transmits to all nodes all keys on the path
between itself and their corresponding leaf node. Hence,
for every node departure it is inevitable to change all keys
known to the leaving member, in order to maintain forward
secrecy.

For a secure key distribution, the GC encrypts each key
in the tree with the keys of its child nodes and broadcasts
them to the group. After a successful authentication of a
new member, the GC decides about the joining member’s
position in the tree and changes all keys on the path between
the parent of the new member and the root. Arrivals and
departures of members are processed in the same way.

30−

k

70−

k

74−

k

10−

k
32−

k
54−

k
76−

k

0
k

1
k

2
k

3
k

4
k

5
k

6
k

7
k

0
m

1
m

2
m

3
m

4
m

5
m

6
m

7
m

Figure 1: Logical Key Tree with eight members

In consequence, a re-keying due to any change in the group
causes all children to encrypt the new key, too. For this rea-
son, all keys on the path from its leaf node to the root have
to be changed. Regarding the example in figure 1, the case
of member m7 leaving the group lead to the need to change
the keys k6−7, k4−7, and k0−7 and to replace them with
k′6−7, k′4−7 and k′0−7. Consequently, the following messages
are sent by the GC:

• {k′6−7}k6 → m6

• {k′4−7}k6 → m6

• {k′0−7}k6 → m6

• {k′4−7}k4−5 → m4,m5,

• {k′0−7}k4−5 → m4,m5,

• {k′0−7}k0−3 → m0,m1,m2,m3

LKH considerably reduces the number of encryptions com-
pared to a distribution of the TEK via individual channels.
Per single join or leave, LKH requires O (2 log n) encryp-
tions and the same number of broadcast messages for re-
keying in order to change O (log n) keys at a group size of n
members. If multiple keys are put in one message, the mes-
sage effort can be reduced to O (log n) at the cost of bigger
messages.

3.1.3 OFC
The One-way Function Chain (OFC) [21] relies on pairwise
keys between the GC and members and uses a binary key
tree, too, which is built up similar to LKH. Upon a member
leave all keys on the path from the leaving member to the
root node have to be changed. Therefore, the GC transmits
a value r to the sibling of the leaving member and applies a
hash function f to r to create a hash chain along the path
of the leaving member from its leaf node to the root. The
GC assigns values from the hash chain according the point
the affected path touches the path of other nodes towards
the root. In case of m7 in Figure 1 leaves the group, the
following messages are sent by the GC:

• {k′6−7 = r}k6 → m6

• {k′4−7 = f(r)}k4−5 → m4,m5

• {k′0−7 = f(f(r))}k0−3 → m0,m1,m2,m3

After that, every member holds the TEK, represented by
f (f (r)), or is able to compute it by hashing the received
value one or several times depending on its position in the
key tree. A join is handled in the same way. OFC of-
fers a trade-off of computation for communication and re-
quires O (log n) broadcast messages per join/leave by ap-
plying marginal additional computation requirements. The
number of encryptions is O (log n).

3.1.4 ELK
The Efficient Large-Group Key Distribution Protocol (ELK)
[22] is similar to OFC and requires O (log n) encryptions
and O (log n) messages per join/leave as well. It is based
on a binary key tree and pairwise keys between the GC
and all members. In addition, ELK decreases the required
message length at the cost of more computation. In case
of a member join, intermediate keys are built based on a
part of the left and right successor key, respectively. During
a member leave, the re-keying message for a certain node
contains the missing part for the key calculation. Re-keying
messages caused by member joins contain only a checksum of
the new key and the members compute the missing bits for
the key in brute-force. This leads to a lower communication
cost but a considerably higher additional computation effort
at the same time, which offends the requirement of only
moderate computation effort.

3.1.5 Summary
GKMP requires n unicast messages per re-keying and the
same number of encryptions. The tree-based approaches like
LKH trade-off computation for communication effort. LKH
needs only O(2 log n) encryptions at the cost of O(2 log n)
broadcast messages. OFC and ELK perform better in terms
of communication and effort for encryptions. Nevertheless,
they cause additional costs. In OFC, group controller and
group members are burdened with additional computation
for hashing. ELK requires significant computation upon a
member leave.

Referring to the requirements for group key management
schemes in Section 2, all centralized approaches suffer from
relying on a central entity, which represents a single-point-
of-failure and a bottleneck. Scalability and availability can
be achieved by additional measures, but is not given by the
centralized KM itself. A higher scalability can be accom-
plished by introducing a virtual server concept and avail-
ability can be achieved by deploying additional redundant
group controllers. Centralized KM approaches usually apply
symmetric cryptography and for this reason they have only
moderate resource requirements. Only ELK requires con-
siderable computation effort by offering only low communi-
cation overhead. Backward and forward secrecy is given in
all presented centralized KM approaches. Since centralized
KM schemes distribute a single TEK to the group, they re-
quire an re-keying after a member join or member leave, a
characteristic commonly known as 1-affects-n. In addition,
churn poses a problem to all centralized schemes. Except for
GKMP all presented schemes meet the key independence re-
quirement.

3.2 Decentralized
In decentralized approaches the large group is split up into
smaller subgroups and each of them is managed by a sub-
group controller.

3.2.1 Iolus
Iolus [6] partitions the overall group into subgroups with one
subgroup controller, called Group Security Agents (GSA),
respectively. In addition, a Group Security Controller (GSC)
represents a central authority and is placed in a top-level
subgroup. GSAs are arranged in a tree-based hierarchy with
the GSC residing in the top-level group. Neighboring GSA
in the tree share pairwise keys. There is not a single global,
but one TEK per subgroup. Sending messages from one
subgroup to another requires one or several re-encryptions
depending on their target destination in the subgroup hi-
erarchy. If a message traverses only one hop, the GSA at
the side of the sender takes the message, which is encrypted
with the subgroup-TEK, and decrypts it, encrypts it again
with the pairwise key of the GSA at the side of the receiver
and sends it. The receiving subgroup controller decrypts it
and encrypts it again with the subgroup-TEK. Afterwards,
it forwards the message to its destination.

3.2.2 IGKMP
The Intra-Region Group KM Protocol (IGKMP) [23] con-
sists of one central Domain Key Distributor (DKD) and sev-
eral Area Key Distributors (AKD). Each AKD maintains a
subgroup. The DKD is responsible for global TEK genera-
tion and TEK distribution to the AKDs, which in turn up-
date their subgroups. For a re-keying, the AKDs can make
use of a public key infrastructure, secure multicast or log-
ical tree-based algorithms. With the DKD again a central
entity is introduced, even though it has not the same tasks
as a GC in centralized approaches. As a result of the usage
of a global TEK, 1-affects-n and bursty behavior can still be
a problem to the KM.

3.2.3 Summary
A decentralization of the KM makes it more scalable and the
failure of a subgroup controller affects only its correspond-
ing members and not the whole group. Decentralized ap-
proaches usually apply symmetric cryptography and there-
fore they require only moderate computation effort. The
communication effort is depending on the specific scheme.
The presented decentralized approaches enable backward
and forward secrecy and keep the key independence. In Iolus
the decentralization mitigates 1-affects-n and improves the
ability to cope with churn, because one TEK per subgroup
is used and only the affected subgroups have to be re-keyed
during a join or leave. Both approaches still rely on a central
entity, namely a GSC in Iolus and the DKD in IGKMP. The
second one introduces a globally used TEK, which leads to
1-affects-n and problems with churn.

3.3 Contributory
In the following, we outline representatives of contributory
schemes. Here, each peer has to contribute, via computa-
tion and communication, to create a common TEK. The
basic idea is not to transmit the final key over the channel
according to the underlying Diffie-Hellmann key exchange
principle. The following schemes are based on that.

3.3.1 TGDH
The aim of Tree-based Group Diffie-Hellman (TGDH) [24] is
to create a common TEK in contributory manner. The basic
idea behind is the extension of the two-party Diffie-Hellman
key exchange to all members in the group. Therefore, an
identical key tree for all members is built. As in central-
ized tree-based schemes the member nodes reside in the leaf
nodes. Sibling members perform a DH key-exchange to cre-
ate the key which resides in their parent node in the tree. In
the initial phase, the members choose a secret s that is lo-
cated in their leaf node of the tree, respectively, and compute
a so-called blinded key based on this value and broadcast it.
Thus, a blinded key is comparable to a public value in the
DH key-exchange. A node can compute the secret key of a
parent node, by the combination of its own secret key and
the blinded key of its sibling. Therefore, it performs the DH
key-exchange all over.

Subsequently, so-called sponsors compute the rest of the
blinded keys for the intermediate nodes and broadcast them
to the group. Sponsors in consequence are burdened with
a higher computational cost than other members. They are
chosen depending on the strategy of the implementation.
The original publication suggests to use the shallowest right-
most node in the tree. After the exchange of all blinded keys,
which are intermediate nodes in the key tree, each member
is able to compute the final common key. TGDH needs
O (log n) exponentiations and O (n) messages for a join or
leave.

3.3.2 STR
The Skinny Tree protocol (STR) [25] builds up a key tree
based on the same mechanisms as TGDH. The main differ-
ence is the key tree itself, which is unbalanced. New mem-
bers are inserted at the leftmost leaf node of the tree. Ev-
ery intermediate node has two children, one leaf node and
another intermediate node. Only the left-most intermediate
node has two successive leaf nodes. STR has a constant over-
head in exponentiations for inserting a new member, the ex-
clusion requires O (n). The message overhead per join/leave
is O (n).

3.3.3 FDLKH
The Fully Decentralized Key Management Scheme on Log-
ical Key Hierarchy (FDLKH) [17] is a derivative of LKH
without a central Group Controller. Instead, keys are com-
puted contributory by Diffie-Hellman (DH) key-exchanges.
The role of the GC is taken over by so-called captains, which
are all affected nodes in the key tree during a join/leave of
a member node. During a join, the first intermediate key
is computed by a DH between the new member and its sib-
ling. The key one level above is computed between joining
member and the left-most member in the neighbor subtree
and so on. In case of a member join, the new group key is
encrypted by the old one, which offends the requirement of
key independence. For each member join or leave O(log n)
DH key-exchanges have to be performed.

3.3.4 Summary
Contributory approaches are scalable and keep the avail-
ability requirement, because no central entities are required.
However, the computation and communication effort is very

high compared to centralized and decentralized approaches,
since for every change in the group compound expensive ex-
ponentiations are caused.All observed approaches keep back-
ward and forward secrecy and except FDLKH all of them
maintain key independence.

3.4 Discussion
Even though centralized approaches lack of the known prob-
lems, like containing a single-point of failure and lacking
scalability, they could be judged to be suitable for ALM.
However, some further problems occur:

• There is no central point in a peer-to-peer live stream-
ing scenario, except the source of the stream, which
should not be burdened with the role of a central coor-
dinator in key management for all streaming members.

• The knowledge of the source should be restricted to
its direct successors for security reasons: it should not
be known by all streaming members, as it is a highly
valuable target for attacks and could be easily identi-
fied otherwise.

At the first glance, contributory approaches appear to be
suitable, too, since they follow the idea of peer-to-peer by
distributing the effort for key computation and communica-
tion to all members. However, there are two major concerns
for contributory approaches in the streaming scenario:

• The knowledge of peers is rather limited. The idea of
one-to-many streaming data dissemination is in con-
trast to key management data dissemination. Nei-
ther ring-structures nor tree-structures for contribu-
tory key-management apply well and they would have
to be set up explicitly.

• Cryptographic operations (Diffie-Hellman or Elliptic-
Curve) applied in contributory approaches are quite
expensive. The performance of contributory schemes is
inferior of that of centralized and decentralized schemes.
Contributory approaches require expensive operations
while centralized and decentralized approaches com-
municate via already established secure channels and
hence benefit from relatively fast symmetric cryptog-
raphy.

In an environment without a central authority or GC, a
centralized KM is not possible. Contributory approaches re-
quire knowledge about the group, leading to significant com-
munication and computation effort for single group mem-
bers. For this reason, a contributory KM is not applicable to
the ALM scenario, neither. In consequence, only the decen-
tralized KM approaches remain as promising solutions to the
key management problem in overlay live streaming systems.
They provide a scalable KM and without the demanding
requirements of a contributory approach. So for example,
Iolus or IGKMP can be applied to the presented scenario.
Iolus has the disadvantage of the need for a re-encryption of
the packets from one subgroup to the other. Both introduce
central authorities, however, they are not burdened by the
same load as a GC in centralized approaches. In the follow-
ing section the mapping of a decentralized KM on the ALM
system is given.

4. DESIGN OF A DECENTRALIZED KEY
MANAGEMENT FOR PEER-TO-PEER
STREAMING

Outgoing from the source node, as the only central entity
in peer-to-peer live-streaming, the stream is distributed via
multiple spanning trees. In order to limit the overhead cre-
ated by the KM, this existing infrastructure is leveraged by
using one of the spanning trees for the distribution of a glob-
ally known TEK. To enable backward and forward secrecy
the use of a periodic re-keying is proposed, which prevents to
change the TEK for every change in the group compound. A
new TEK is distributed shortly before the old one gets inval-
idated, so that there is no additional communication delay
in streaming. The interval of the periodic re-keying offers
a trade-off in-between forward secrecy and applied commu-
nication and computation costs. A low re-keying interval
provides a fast exclusion of nodes at high communication
and computation costs, whereas a broader re-keying inter-
val excludes nodes at a more slow rate and causes less effort.
So, the interval can be adjusted according the requirements
of the application making use of the KM.

To establish a global secure context, the source node gen-
erates a TEK and distributes it to the group via one span-
ning tree. Since a member’s knowledge about the group
is restricted to its direct successors and predecessors in all
stripes, the TEK is distributed in a hop-by-hop fashion in
the chosen spanning tree until it reaches the leaf nodes.

Based on local knowledge every forwarding node forms a
subgroup together with its one-hop successors, takes over
the role as subgroup controller and establishes a common
subgroup-wide known KEK in advance of the TEK distri-
bution. Thus, an intermediate node is member in a subgroup
managed by its predecessor and is a subgroup controller it-
self for all of its one-hop successors. Participants residing
in the leaf nodes of a spanning tree are subgroup members
only.

Basically, this is a combination of Iolus and IGKMP. The
source as a central point in streaming represents an IGKMP
DKD. All forwarding nodes in the streaming are Iolus sub-
group controllers, which maintain subgroups with their di-
rect successors. Figure 2 shows a streaming topology con-
sisting of 13 nodes and the resulting subgroups. The TEK
created by the DKD is transmitted from the top of the
streaming tree to the leaf nodes. The TEK received from
an upper subgroup or from the source is decrypted by the
subgroup controller, encrypted by the local subgroup KEK
and sent further.

For an efficient key distribution one of the centralized ap-
proaches described in section 3.1 can be applied to generate
a subgroup-wide known KEK. Based on pairwise keys gen-
erated by the DH key-exchange the deployment of LKH in
subgroups is proposed. During a change in the group com-
pound it requires little more messages and encryptions than
OFC or ELK. The signalling effort can be neglected in this
setting, since it is only marginal compared to the transmit-
ted streaming data. The number of encryptions for LKH
is higher compared to OFC or ELK. However, OFC causes
additional computation effort by hashing keys and in ELK

Subgroup 2 Subgroup 3 Subgroup 4

Subgroup 1

Figure 2: Decentralized KM, leveraging the stream-
ing topology

significant extra computation is caused by the processing of
member leaves. For this reason and because it is the state-of-
the-art in tree-based centralized KM, LKH is the approach
we selected for a deployment in the subgroups of our ALM
key management.

Our new approach has the following properties:

• Scalability: The novel approach is scalable, because of
its decentralized manner and the use of local knowl-
edge only.

• Moderate resource usage: The decentralized KM for
peer-to-peer streaming builds up on symmetric cryp-
tography, except the establishment of pairwise keys,
which is done by the DH key exchange. This poses
no problem in computation nor storage or communi-
cation.

• Ability to cope with churn: Joins and leaves of mem-
bers are processed simultaneously. Furthermore, a re-
keying is done only once per interval, allowing mul-
tiple insertions and deletions of members at the same
time. So, the re-keying of the LKH groups is processed
shortly before a new TEK is sent out from the source
and not immediately upon a join or leave of a node.
In addition, churn is mitigated by the decentralization
of the KM leading to small subgroups. In worst-case,
at a high churn the whole LKH tree in the subgroup
is affected and all keys have to be changed.

• Availability: The failure of a subgroup controller leads
to a re-organisation of the corresponding spanning tree
in the used peer-to-peer streaming approach. Dis-
rupted members reconnect to other nodes and are in-
serted into other subgroups.

• Minimal trust infrastructure: No additional entities for
the KM are required, because existing structures are
leveraged.

• Backward and forward secrecy: A periodic re-keying,
instead of a re-keying per join or leave, enables in-
cluded members to decrypt the group traffic sent via
the received TEK before their join and excluded mem-
bers are able to monitor the group traffic until their
TEK gets invalidated. If the re-keying interval is suf-
ficiently small, this poses no problem at all.

• Key independence: The key independence is kept, be-
cause a new TEK is distributed via the existing KEK
infrastructure in the streaming overlay, instead of the
distribution via a former TEK.

• No 1-affects-n: Here, the same as for the ability to
cope with churn applies. A re-keying is done once per
interval and not immediately upon member leave or
member join.

For a deeper analysis of the approach a simulation study is
presented in the following section.

5. EVALUATION
In order to have a benchmark for our novel approach, it
is compared to a simple approach based on pairwise keys
between neighbors, which are used for the secure distribution
of a TEK. This simple approach allows the exclusion of a
member by deleting the corresponding pairwise key before
the subsequent re-keying of the TEK.

In contrast, our decentralized LKH-based KM requires an
explicit re-keying in every subgroup whenever the group
changes, before a new, global TEK distribution can take
place. In consequence, a subgroup controller is burdened
with additional computation and communication effort. How-
ever, this leads to the benefit of saving TEK encryptions
during a global re-keying, since only one encryption for all
successors at the subgroup controller is required, rather than
one encryption per child. The procedure for a member ar-
rival is similar in both approaches: A new member receives
a first TEK encrypted with a pair-wise key, to allow an im-
mediate inclusion.

We evaluate and compare our novel KM with respect to
computation and communication cost to the simple bench-
mark approach by integrating both into an ALM simulation
framework [26]. In this approach, the forwarding content is
split into several stripes and a spanning tree is created for
each of the stripes. The framework is based on OMNeT++1

and the Internet Protocol framework INET2.

5.1 Simulation setup
For simulation, the transient build-up phase of a stream was
investigated, with an assumed simulation time of 100 sec-
onds and only users joining the stream without leaving ones.
In this phase the KM is burdened with the highest load in
the course of streaming, since most of the members join at
the beginning.

For each set of parameters, R = 32 simulation runs are con-
ducted. All results are presented together with their confi-
dence interval, representing a confidence level of 95 percent.

Since the proposed key management is intended for personal
live streaming, the source of the streaming is assumed to
be a less powerful device (e.g. a PDA or netbook) than
a streaming client. So, the capacity of the source is set to
Cs = 3 and a client’s capacity to Cc = 4. In other words, the

1http://www.omnetpp.org/
2http://www.omnetpp.org/doc/INET/neddoc/index.html

 0

 2

 4

 6

 8

 10

 12

 50 55 60 65

U
s
e

r
A

rr
iv

a
l
p

e
r

s
e

c
o

n
d

Time in seconds

Figure 3: Resulting join rate in the simulation.

server is able to provide the whole stream three times and
each client up to four times. Since the stream is divided into
stripes, that denotes equal slices of the stream, this capacity
can be spent for one stripe at once, i.e. the total capacity in
stripes is T = C · k, where k denotes the number of stripes.
In case of eight stripes, each node may have up to 4 · 8 = 32
successors in one stripe.

For comparable results for the delay of cryptographic oper-
ations we conducted measurements according [27], in order
to gain realistic values under the conditions of current hard-
ware. Based on them, for simulation a period of 5 · 10−3

seconds for a DH-operation with a key length of 1024 bit
is assumed and 2 · 10−6 seconds for a symmetric crypto-
operation using AES-256.

The user model is derived from literature [12] and the inter-
arrival time follows a Poisson-distribution with a mean of
λ = 50 sec according realistic observations presented in [14].
Figure 3 shows the resulting arrival rate per second in a
group of N = 50 obtained by 16 simulation runs.

It is assumed that the stream operator requires leaving mem-
bers to be excluded from the stream as soon as possible. For
this reason, the length of the re-keying interval is set to 10
seconds for the TEK, assuming that this is sufficient for a
strict exclusion strategy. Consequently, one second before
TEK re-keying a KEK re-keying in the subgroups is per-
formed.

Small groups with N = 50, 100, 150, 200, 250 clients and
large groups with N = 500, 750 clients were simulated. The
number of stripes is k = 1, 2, 4, 8.

5.2 Simulation Results
The simulation study is intended to answer the question of
the suitability of the LKH-based KM approach to the ALM
live-streaming scenario. Therefore in the following, the com-
putational requirements and the communication overhead is
analyzed in comparison to a TEK distribution solely based
on pairwise keys shared by neighbor nodes in the streaming
overlay.

5.2.1 Computational results for build-up-phase
Computational overhead is caused in both approaches by
DH key-exchanges and by the overall AES encryptions for
TEK and KEK establishment. Both approaches, our novel
LKH-based as well as the simple pairwise key-based ap-
proach, have the same effort in establishing secure chan-
nels. In addition, both approaches require AES encryptions
for secure TEK distribution and the LKH-based approach
requires additional encryptions for the build up and main-
tenance of LKH subgroups.

Figure 4 shows the confidence levels of the DH operations
performed at maximum nodes, which are the nodes with the
highest load per simulation run, respectively. The course of
the graph depends on the behaviour and the characteristics
of the streaming topology. Thus, a great impact on the DH
operations lies in the amount of stripes k. The maximum
number of possible successors for all stripes is k · Cs = 3 · k
for the source and k · Cc = 4 · k for a client. Beyond, the
allocation of free places in the different levels of the tree
has a great influence. Table 1 shows the maximum depth of
the streaming tree and the maximum number of forwarding
nodes for all simulated group sizes depending on the number
of stripes.

At eight stripes 50 nodes are placed in lmax = 2 levels and
from 150 to 750 nodes, the tree contains lmax = 3 levels.
So, at 150 nodes, not all free places on the three levels of
the streaming tree are allocated. Consequently, the most
intermediate nodes do not reach their maximum successor
number and for this reason they have less DH operations as
a node with the full amount of children. This justifies the
heavy increasing at the beginning of the graph, containing
the results of four and eight stripes, and the stabilization of
four and eight stripes at around 150 and 500, respectively.
At this points, most of the intermediate nodes have reached
their maximum number of successors.

The effort for both source and clients rises linearly with in-
creasing number of stripes. It is further independent on the
group size unless the group size is smaller than the max-
imum number of successors a forwarding client is able to
have. The number of forwarders at the same N decreases
with more stripes, since the remaining forwarders have more
successors.

Number of stripes k
Group size N 1 2 4 8

50 3 3 2 2
16 28 4 4

100 4 3 3 2
52 28 52 4

150 4 3 3 3
52 28 52 100

200 4 3 3 3
52 28 52 100

250 4 4 3 3
52 196 52 100

500 5 4 3 3
196 196 52 100

750 5 4 3 3
196 196 52 100

Table 1: Depth of streaming tree depending on N ,
k and C = 4.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 100 200 300 400 500 600 700 800

D
H

-O
p
e
ra

ti
o
n
s

Group size

1 stripe
2 stripe
4 stripe
8 stripe

Figure 4: DH operations observed at forwarding
nodes

After an initial connection attempt of a node, a DH key-
exchange is performed and the generated key is used as KEK
to send the first TEK. This is common for both approaches.
In the simple approach a forwarding node distributes a newly
received TEK by encrypting it individually per successor.
So, one AES encryption per successor is required.

In our LKH-based approach only one AES encryption is
needed for forwarding the TEK, since all successors share a
common subgroup KEK. Therefore, additional computation
effort, in terms of AES encryptions, for the buildup and the
maintenance of the key tree is caused. A KEK re-keying in
a LKH-based subgroup of n members due to a single change
in the group compound requires O(log n) keys to be changed
and O(2 log n) encryptions. In worst case, at a high churn
the whole local LKH tree has to be rebuilt.

The maximum AES-Encryptions are shown in Figure 5. The
maximum effort again is found again at the forwarders with
the most successors. The simple approach requires around
50 AES encryptions at two stripes and up to 240 encryp-
tions at eight stripes at all group sizes. Our LKH-based
scheme needs, beginning from N = 250, around 30 encryp-
tions at two stripes and around 110 for eight stripes. The
figure makes obvious that our LKH-based approach clearly
outperforms the simple one. The deployment of LKH in
the subgroups saves up half the AES encryptions compared
to the simple approach based on pairwise keys. In both
approaches the graphs rise with an increasing number of
stripes, as shown in Figure 5, which is founded in the allo-
cation of the positions in the different levels of the streaming
tree.

In the simulation six TEKs, one per interval, are generated
by the streaming source. In the simple approach, each TEK
has to be encrypted three times at the source, sometimes
more depending on the streaming topology. This leads to at
least 18 encryptions. The simulation showed that this can
be even much higher for a stream setup with more stripes,
resulting in more fluctuation in the streaming topology. An-
other reason for that are the initial TEK encryptions for

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500 600 700 800

A
E

S
 e

n
c
ry

p
ti
o
n
s

Group size

PK 2 stripes
PK, 8 stripes

LKH, 2 stripes
LKH, 8 stripes

Figure 5: Total amount of AES encryptions at for-
warding nodes for subgroups solely based on pair-
wise keys (PK) and LKH-based subgroups.

members that stay connected to the source only for a short
time. Our LKH-based scheme should reduce this to one en-
cryption per TEK for the source. The results showed that
this is not sufficient since there are still the initial encryp-
tions via pairwise keys.

5.2.2 Communication results
For analyzing the communication effort the transmission of
the TEK was not considered, because it is the same for both
approaches. Again, we studied the forwarding nodes more
deeply and compare both approaches according the sum of
communication overhead caused by the creation of KEKs.

The effort for the simple approach poses no problems to the
clients nor the source in terms of additional bandwidth re-
quirements. The traffic is caused by the DH key exchange
procedure upon every connection attempt of a node to an-
other one on stripe 0. So, the forwarding nodes do not need
much more than 10 KByte for the whole re-keying of the
simulated build-up scenario.

Our LKH-based KM is based on the same costs for the es-
tablishment of secure pairwise channels and causes addi-
tional costs for local tree buildup and maintenance. For
a single membership change the periodic KEK re-keying
in a subgroup of n members requires O(log n) keys to be
changed and the distribution of the new keys to the group.
In worst-case, if multiple membership occurred since the last
re-keying period, all keys have to be changed and the whole
tree has to be re-built. For k ≤ 4 the maximum effort is less
than 5 KByte. Peaks at around 15 KByte at the forwarders
for k ≤ 8 are still tolerable, too.

6. CONCLUSION
In this work, we studied different key management schemes
that have been proposed to establish a secure context among
group members in live multimedia streaming overlays. Af-
ter analyzing different schemes we proposed a new approach
which is based on Iolus in combination with the Logical Key

Hierarchy (LKH) and the Diffie-Hellman (DH) key agree-
ment.

We compared our new approach to a simple benchmark ap-
proach that distributes a global TEK via pairwise keys,
which are established between neighbors in the streaming
topology, by integrating both in an existing overlay live
streaming system [26] and conducting a simulation study.

The results showed that it is feasible to create a secure
context based on a pairwise DH key agreement, by estab-
lishing locally secure contexts between all forwarding nodes
in the topology and their respective children. Analyzing
and comparing the computation and communication cost we
had to realize that the simple approach, based on pairwise
keys, performs best with respect to its communication over-
head. Additionally, it is the only approach does not cause
an additional overhead for leaving members, as the affected
predecessor simply deletes the corresponding pairwise key.
The main drawback of the simple approach lies in the large
amount of TEK encryptions at forwarding nodes, which are
burdened with one encryption per direct successor.

In contrast, LKH decreases this number to one TEK en-
cryption per subgroup. Nevertheless, changes in the group
during a TEK re-keying interval require a re-keying of the
subgroup KEK and in consequence a high churn and a high
re-keying interval will cause high computation and commu-
nication cost. In the worst case, all keys of the local LKH
trees have to be changed and our LKH-based KM is outper-
formed by the simple approach.

However, our simulation results are based on a user behav-
ior according to [14, 12], which is characterized by a heavy
load in the transient build up phase of streaming. In ad-
dition, a strict exclusion strategy is assumed with short re-
keying intervals, so that the cost at the subgroup controllers
for re-keying is decreased. With regards to the computa-
tional effort, the LKH-based KM performs better compared
to the simple approach in this context, by demanding only
a slightly higher communication effort.

Summarizing, the LKH-based KM seems to be suitable for
even highly dynamic scenarios. However, when the churn
increases to a certain point, LKH will be outperformed by
the simple approach. Thus, as both approaches are based
on pairwise keys, a dynamic adaption of the KM according
the current load situation in streaming is suggested.

7. REFERENCES
[1] S. Rafaeli and D. Hutchison, “A survey of key

management for secure group communication,” ACM
Comput. Surv., vol. 35, no. 3, pp. 309–329, 2003.

[2] Y. Challal and H. Seba, “Group key management
protocols: A novel taxonomy.” [Online]. Available:
http://citeseer.ist.psu.edu/challal05group.html

[3] X. Zou, B. Ramamurthy, and S. S. Magliveras, Secure
Group Communications Over Data Networks. Santa
Clara, CA, USA: Springer-Verlag TELOS, 2004.

[4] C. K. Wong, M. Gouda, and S. S. Lam, “Secure group
communications using key graphs,” IEEE/ACM
Transactions on Networking, vol. 8(1):16-30, 2000.

[5] D. Wallner, E. Harder, and R. Agee, “Key
management for multicast: Issues and architecture,”
1999, rFC 2627.

[6] S. Mittra, “Iolus: a framework for scalable secure
multicasting,” SIGCOMM Comput. Commun. Rev.,
vol. 27, no. 4, pp. 277–288, 1997.

[7] P. Rodriguez, E. W. Biersack, and K. W. Ross,
“Improving the Latency in the Web: Caching or
Multicast?” in 3rd International WWW Caching
Workshop, 1998.

[8] Y. H. Chu, S. G. Rao, S. Seshan, and H. Zhang, “A
Case for End System Multicast,” IEEE Journal on
Selected Areas in Communications, vol. 20, no. 8, pp.
1456–1471, Oct 2002.

[9] M. Castro, P. Druschel, A. Kermarrec, A. Nandi,
A. Rowstron, and A. Singh, “SplitStream:
High-bandwidth multicast in cooperative
environments,” in 19th ACM Symposium on Operating
Systems Principles, 2003, pp. 298–313.

[10] T. Strufe, “A peer-to-peer-based approach for the
transmission of live multimedia streams (German: Ein
Peer-to-Peer-basierter Ansatz für die
Live-Übertragung multimedialer Daten),” Ph.D.
dissertation, TU Ilmenau, 2007.

[11] S. Birrer and F. Bustamante, “Magellan:
Performance-based, Cooperative Multicast,” in
International Workshop on Web Content Caching and
Distribution, 2005, pp. 133 – 143.

[12] E. Veloso, V. Almeida, W. Meira, A. Bestavros, and
S. Jin, “A Hierarchical Characterization of a Live
Streaming Media Workload,” in ACM Internet
Measurement Workshop, 2002, pp. 117 – 130.

[13] S. Banerjee, B. Bhattacharjee, and C. Kommareddy,
“Scalable application layer multicast,” in ACM
Computer Communication Review (SIGCOMM), 2002,
pp. 205–217.

[14] K. Sripanidkulchai, B. Maggs, and H. Zhang, “An
analysis of live streaming workloads on the internet,”
Carnegie Mellon University, Oct. 2004.

[15] Y. Challal and H. Seba, “Group key management
protocols: A novel taxonomy,” International Journal
of Information Technology, vol. 2, no. 1, Dec. 2005.

[16] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor,
and B. Pinkas, “Multicast security: A taxonomy and
efficient constructions,” IETF, 1999.

[17] D. Inoue and M. Kuroda, “FDLKH: fully decentralized
key management scheme on logical key hierarchy,”
Lecture Notes in Computer Science, vol. 3089/2004,
pp. 339–354, 2004.

[18] C. Abad, W. Yurcik, and R. Campbell, “A survey and
comparison of end-system overlay multicast solutions
suitable for network-centric warfare,” International
Society for Optical Engineering proceedings series, vol.
5441, pp. 215–226, 2004.

[19] H. Harney and C. Muckenhirn, “Group key
management protocol (gkmp) specification,” RFC
2093 (Experimental), July 1997. [Online]. Available:
http://www.ietf.org/rfc/rfc2093.txt

[20] H. Harney and C. Muckenhirn, “Group key
management protocol (gkmp) architecture,” RFC 2094
(Experimental), July 1997. [Online]. Available:
http://www.ietf.org/rfc/rfc2094.txt

[21] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor,
and B. Pinkas, “Multicast security: A taxonomy and
some efficient constructions,” in INFOCOMM’99,
1999. [Online]. Available:
citeseer.ist.psu.edu/canetti99multicast.html

[22] A. Perrig, D. Song, and D. Tygar, “Elk, a new
protocol for efficient large-group key distribution,”
2001. [Online]. Available:
citeseer.ist.psu.edu/perrig01elk.html

[23] B. DeCleene, L. Dondeti, S. Griffin, T. Hardjono,
D. Kiwior, J. Kurose, D. Towsley, S. Vasudevan, and
C. Zhang, “Secure group communications for wireless
networks,” Military Communications Conference,
2001. MILCOM 2001. Communications for
Network-Centric Operations: Creating the Information
Force. IEEE, vol. 1, pp. 113–117 vol.1, 2001.

[24] Y. Kim, A. Perrig, and G. Tsudik, “Tree-based group
key agreement,” University of California, Irvine, 2002.

[25] Y. Kim, A. Perrig, and Gene Tsudik,
“Communication-efficient group key agreement.”
[Online]. Available:
citeseer.ist.psu.edu/kim01communicationefficient.html

[26] T. Strufe, J. Wildhagen, and G. Schäfer, “Towards the
construction of Attack Resistant and Efficient Overlay
Streaming Topologies,” in 2nd International Workshop
on Security and Trust Management, 2006, pp.
108–118.

[27] W. Dai, Crypto++ v5.2.1, Aug. 2006.

