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ABSTRACT 
Voice over IP (VoIP) environments pose challenging threats to 
Intrusion Detection Systems (IDSs). Services over VoIP systems 
are provided by multiple interacting protocols, each with its own 
vulnerabilities. This scheme could result in novel and more 
complex attacks, and requires cross-protocol aware IDSs. 
Furthermore, VoIP devices may suffer a full or partial service loss 
if the syntax or semantics of the aforementioned protocols are 
violated. Usually, a single detection approach is suited to identify 
a subset of the security violations to which a system is subject in 
VoIP environments. Therefore, a hybrid approach that combines 
the strengths and avoids the weaknesses of various approaches is 
needed. In this paper, we discuss the performance and the 
detection accuracy of a hybrid, host-based intrusion detection 
system suitable for VoIP environments. Our system has two 
combined detection modules, namely, a specification-based and a 
signature-based module. Both modules use State Machines and 
State Transition Analysis Techniques to model proper protocols’ 
behaviors and potential attacks. Both modules address the issues 
related to syntax and semantics anomaly detection for the 
monitored protocols. In addition, our architecture provides a 
cross-protocol framework for various protocols to exchange 
useful detection information in real time. We implement our 
proposed architecture in a network simulator, alongside 
implementing a variety of attacks to test the credibility of the 
design. The implemented IDS shows an excellent detection 
accuracy, and low runtime impact on the performance of the VoIP 
system.   

Categories and Subject Descriptors 
K.6.5 [Security and Protection]: Unauthorized access 

General Terms 
Performance, Security 

Keywords 
intrusion detection, VoIP, hybrid detection, performance 

evaluation. 

1. INTRODUCTION 
Anderson, who introduced the concept of intrusion detection in 
1980, defined an intrusion attempt or a threat to be the potential 
possibility of a deliberate unauthorized attempt to access 
information, manipulate information, or render a system 
unreliable or unusable [1]. Intrusion detection systems can be 
classified based on the detection techniques into three main types. 
The first one, anomaly detection, explores issues in intrusion 
detection associated with deviation from normal system or user 
behavior. Anomaly detection’s philosophy is that, if we could 
establish a normal profile for a system, we could in principle 
report all system states varying from the normal profile as 
intrusion attempts. Anomaly detection has the advantage of 
detecting previously-unknown attacks but at the cost of relatively 
high false alarm rate, which is due to the fact that systems often 
exhibit legitimate but previously-unseen behavior. A main issue 
in anomaly detection is to select the threshold upon which we 
measure the deviation from the normal profile. The second 
detection technique is signature detection which uses attack 
signatures to discriminate between normal and anomalous 
behavior. Signature detection is capable of detecting all known 
attack patterns, but is of little use for unknown ones [12]. 

A third technique that has been overtaking both previous 
approaches is intrusion detection by static program analysis which 
was first proposed by Wagner and Dean [22]. This technique 
performs a static analysis of the program to create an abstract 
automata model of the functions and system calls. The program’s 
behavioral specifications are used to create the model and as a 
basis to detect attacks. If the program executes a function or 
invokes a system call which violates the model, the IDS assumes 
that an intruder has corrupted the program. This approach has 
become more mature with the inputs of Balepin et al [2], and has 
had the name specification-based intrusion detection. 
Specification-based technique has the capacity to detect 
previously-unseen attacks with the lowest false alarm rate. This 
advantage is due to the programmatic nature of the IDS, which 
contains a model that represents all possible legal paths through 
the program or the protocol session, ensuring that any detected 
deviation from the model is not caused by the program’s code but 
by code inserted by a bug or an attacker.  
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In a narrow sense, specification-based detection means looking 
for behavior in network traffic that is peculiar in terms of the 
specification for the protocol the traffic is using. In this case, 
detection is interested in syntax violation. In a broader sense, the 

Conference name: SecureComm 2008, September 22 - 25, 2008, 
Istanbul, Turkey. 
Copyright © 2008 ACM ISBN # 978-1-60558-241-2. 



term could mean applying anomaly detection on the semantics of 
traffic as expressed using the protocol. In this approach, traffic is 
not peculiar due to a particular protocol element it is using, but 
rather what in aggregate it is trying to achieve with the protocol. 
Semantics violations are the main concern here. 

Considering the resources they monitor, IDSs can also be 
differentiated popularly as: (a) Network IDS (NIDS) which is a 
dedicated monitoring component on a network, and (b) Host IDS 
(HIDS) which monitors a host computer only. 

IP forms the decisive difference between traditional circuit-
switched networks and VoIP networks. It is used in VoIP 
networks to carry voice alongside ordinary data. VoIP networks 
break voice and data into packets that are routed to a certain 
destination using multiple independent paths. This feature can 
benefit the network in terms of self-recovery with failed link 
paths, but has some security implications as will be shown in the 
implementation section. Clearly, such a difference entails changes 
in the infrastructure and protocols used. 

Components in VoIP infrastructure can be generally classified 
into servers, endpoints, and routing nodes. VoIP servers are the 
components responsible for various duties aiming at maintaining 
the service and enhancing it such as address resolution, 
registration, and call redirection. Endpoints (also known as User 
Agents UAs) are the devices capable of initiating or terminating a 
call. Routing nodes in VoIP environments have the capacity to 
connect IP networks to either other IP networks or circuit-
switched networks. 

H.323 and SIP are the most dominant VoIP multimedia suites. 
Both protocols are used for signaling, and with them come other 
protocols that cater for functions other than signaling. Signaling 
protocols are responsible for call setup, tear down, and 
modification. Media transport protocols are involved in end-to-
end transport of voice and multimedia data. In addition to that, 
support protocols are used to enable services and features required 
for proper network operation. A major source of vulnerabilities in 
these protocols is that they transmit packet headers and payloads 
in clear text by default due to the absence of built-in 
authentication and encryption [23]. It is therefore easy for 
attackers to cause call termination and call flooding as well as to 
spoof caller ID or to exercise other attacks. 

Our approach takes advantage of a combination of technologies to 
enhance the efficiency of intrusion detection in VoIP 
environments. It starts with developing host-based specifications 
for the protocols involved in SIP-based IP telephony, namely 
Session Initiation Protocol (SIP) and Real-time Transport 
Protocol (RTP). The tendency towards a host-based architecture is 
encouraged by the current shift of interest in VoIP environments 
from the center to the edges of the network. The specifications are 
derived from Request For Comment documents (RFCs) which 
describe the protocols. The developed specifications form the 
basis of our specification-based detection modules which are 
aided by signature-based ones to store more complex, and specific 
attack patterns. This hybrid approach helps to improve the 
efficiency of the system and lower the false alarm rate. 

Both specification-based and signature-based modules combine 
protocol syntax and protocol semantics anomaly detection 
techniques. Such a feature is vital in the detection process to 

cover all aspects of the protocols being monitored. It allows us to 
report any violations of the standards in the protocol packets, 
alongside reporting any deviation from the expected protocol 
behavior during a session. 

Our specification-based detection modules are developed in part 
based on the Communicating Extended Finite State Machines 
(CEFSMs) model which allows us to represent each of the 
involved protocols as an Extended Finite State Machine (EFSM). 
An EFSM is a suitable structure to model the control flow of the 
protocol and its data, and to spot any deviation from the expected 
behavior. The Communicating Extended Finite State Machines 
model enables a combination of stateful and cross-protocol 
intrusion detection. Stateful detection implies building up relevant 
state within a session and across sessions and using the state in 
matching for possible attacks. Cross-protocol detection allows the 
IDS to access packets from multiple protocols in a system to 
perform its detection. Both types of detection are important to 
keep the state of the session and to guard against anomalies of 
involved protocols. 

On the other hand, our signature-based detection modules are 
based in part on describing an attack at the session level as a 
sequence of actions that the attacker performs to compromise the 
security of a computer system. This sequence of actions is best 
modeled by state transition analysis techniques which represent 
an attack as well defined states and transitions between these 
states. This representation allows signatures to complement the 
EFSM-based module in the specification-based component, and to 
overcome some of its shortcomings. It also allows the creation of 
semantics-aware signatures. 

The rest of the paper is organized as follows. Section 2 discusses 
State Transition Analysis Techniques alongside State Machine 
models, and their use in intrusion detection. SIP suite and its 
security concerns are discussed in Section 3. Section 4 sheds 
some light on the system design. The implemented attacks used to 
test our system are detailed in Section 5 followed by discussing 
some simulation issues in Section 6. The detection and 
performance evaluation results are presented in Section 7 before 
mentioning the related works in Section 8. The paper is concluded 
in Section 9. 

2. STATE TRANSITION ANALYSIS AND 
STATE MACHINES 
State Transition Analysis was developed by the Reliable Software 
Group at University of California, Santa Barbara to represent 
computer penetrations. State transition analysis provides a method 
of representing the sequence of actions that the attacker performs 
to achieve a security violation. A major advantage of using this 
approach is its ability to foresee an incoming penetration based on 
the current system state. This advantage allows IDSs to limit the 
damage before it occurs. This important feature is shown in figure 
1. The figure shows a state transition diagram of a certain attack. 
To successfully execute the attack, the attacker needs to reach the 
system state State0, have Assertion 1 and Assertion 2 hold, and 
perform a sequence of actions represented by State1 and State2. If 
the system reaches State0 and finds the specified assertions hold, 
the signature-based detection mechanism can raise an alarm 
warning about the potential impending Compromised State. The 
intermediate states State1 and State2 can be used to represent 



variants of the penetration. A State Transition Diagram (STD) is 
the graphical representation that the state transition analysis uses 
to represent a penetration. This representation is useful for 
describing attacks in that it provides an interesting level of 
abstraction to the analyst: just above the system call and below 
English description [4]. This level of abstraction allows for 
higher-level and semantics-aware representation of the attack 
scenario. A state diagram can take the form of a directed graph 
which consists of: labeled circles to represent system states, input 
symbols to represent the input at each state, output symbols to 
represent the output from each state, edges to represent transitions 
between states, a start state, and a final state. State diagrams are 
the common factor between State Transition Analysis and State 
Machines. 

State2 

State1

State0

Compromised
State 

1. Assertion 1
2. Assertion 2

1. Assertion 3
2. Assertion 4

 
Figure 1. State Transition Diagram of an Attack. 

2.1 Extended Finite State Machines 
A communication protocol can be modeled as a Finite State 
Machine (FSM) that produces outputs on its state transitions after 
receiving inputs. However, FSMs are not powerful enough to 
model variables and operations based on variable values which 
form an important part of any protocol design. These limitations 
led to extending FSMs into Extended Finite State Machines 
(EFSMs). 
An Extended finite state machine (EFSM) M is a quintuple:                   
                                        M = (I, O, S, x, T) 
where I, O, S, x, and T are finite sets of input symbols, output 
symbols, states, variables, and transitions respectively. Each 
transition t in the set T is a 6-tuple: 

t= (st, qt, at, ot, Pt, At) 
where st, qt, at, and ot are the start (current) state, end (next) state, 
input, and output, respectively. Pt (x) is a predicate on the current 
variable values and At (x) gives an action on variable values. 
Initially, the machine is in an initial state s  S with initial 
variable values: xinit. Suppose that at a state s the current variable 
values are x. Upon input a, the machine follows a transition t = (s, 
q, a, o, P, A) if x is valid for P: P(x) = TRUE. In this case, the 
machine outputs o, updates the current variable values by action 
x: = A(x), and moves to state q [8]. 
We can build elaborate systems of interacting machines by 
connecting the output signals of one machine to the input signals 
of another to form communicating extended finite state machines 
[3]. 

2.2 EFSMs in Specification-based Detection 
Internet protocols can be easily modeled as EFSMs. A protocol 
can be viewed as a sequence of processes (states) chained by a set 
of events (transitions). A running protocol EFSM receives packets 
(input signals) through one of the available ports. Packets usually 
contain header fields with values (input parameters). Upon 
receiving a packet, a check is performed to identify the packet 
type (predicate), and to determine the appropriate event 
(transition). Some transitions represent unexpected packets, which 
usually occur due to network failures or an attack. Similarly, 
absence of expected packets, and the consequent transition on a 
timeout event, suggests a failure or an attack. Another source of 
input to a protocol state machine could be a signal sent by another 
protocol state machine (synchronization signals). The execution 
of the chosen event (transition) could result in producing and 
sending a packet with its header values (parameterized output 
signal) by a dedicated function (output parameter function). The 
protocol then updates its state information (context variables) by a 
pre-defined set of instructions (context update function). 

Figure 2 shows a state transition diagram (STD) for a protocol 
that has three states and two transitions based on its 
specifications. When the state machine is in state 1, and upon 
receiving input signal (inp1), a predicate is computed to choose 
the appropriate transition which leads to state 2. The dotted 
transition which leads to the attack state represents an unexpected 
input received at state 1. The unexpected input results in the 
predicate failing to enable a legitimate transition, and the machine 
raising a protocol violation flag. 

0

1
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Inp0/Outp0

Inp1/Outp1

attack

 
Figure 2. A state transition diagram that shows normal and 

potential abnormal protocol behavior.  

Despite the remarkable convenience STDs provide for the EFSM 
model in specification-based IDSs, there are also problems with 
this approach in this type of detection: 

1. It can model abnormal behavior as a simple and 
straightforward sequence of events, rather than more 
complex forms. This limitation will become clear when we 
discuss some of the complex cross-protocol attacks in the 
implementation section such as BYE and Re-INVITE 
attacks. 

2. Some attacks, which are launched by abusing legitimate 
features of the system, can pass EFSM-based anomaly 



detection without being detected. This limitation is the 
reason why STD-based EFSMs cannot directly detect attacks 
such as Denial of Service and failed logins in anomaly mode 
[19].  

Clearly, a signature-based module that is based on a flexible state 
transition analysis is needed to assist specification-based module 
to detect such attacks. 

3. SIP-BASED VOIP AND THREAT 
MODEL 
Session Initiation Protocol (SIP) is a standard signaling protocol 
for VoIP, and is appropriately coined as the “SS7 of future 
telephony.” It was developed by the Internet Engineering Task 
Force (IETF) in RFC 2543 which was updated by RFC 3261. SIP 
was designed to address some important issues in setting up and 
tearing down sessions, such as user location, user availability, and 
session management. Its simplicity and versatility make it the 
choice of instant messaging, video conferencing, and multiplayer 
game applications among others. SIP uses other protocols to 
perform various functions during a session such as Session 
Description Protocol (SDP) to describe the characteristics of end 
devices, Resource Reservation Setup Protocol (RSVP) for voice 
quality, and RTP for real-time transmission. 

3.1 SIP Session 
Figure 3 shows the establishment of a SIP session between two 
users in the same domain. When turning on their devices, both 
users register their availability and their IP addresses with the SIP 
proxy server using REGISTER request. The proxy server then 
sends this information to the relevant Registrar server. The caller 
tells the proxy server that he/she wants to contact a certain callee 
using INVITE request. The SIP proxy server relays the caller’s 
invitation to the callee. The callee informs the proxy server that 
the caller’s invitation is acceptable with OK response. The SIP 
proxy server communicates this response to the caller who sends 
ACK response establishing a session. The users then create a 
point-to-point RTP connection enabling them to interact. Any of 
the parties involved in a session can end it by sending a BYE 
request. 

3.2 SIP and RTP Threat Model 
SIP is susceptible to the following threats and attacks: 

• Denial of service: The consequence of a DoS attack is that 
the entity attacked becomes unavailable. DoS attacks include 
scenarios like targeting a certain UA or proxy and flooding 
them with requests. 

• Eavesdropping: If messages are sent in clear text, any 
malicious user can eavesdrop and get session information, 
making it easy for them to launch a variety of hijacking-style 
attacks. 

• Tearing down sessions: An attacker can insert messages like 
a CANCEL request to stop a caller from communicating 
with someone else. It can also send a BYE request to 
terminate the session. 

• Session hijacking: An attacker can send an INVITE request 
within dialog requests to modify requests en route to change 
session descriptions and direct media elsewhere. 

• Man in the middle: This attack is where attackers tamper 
with a message on its way to a recipient [14]. 
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ACK

ACK
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Figure 3. Establishment of a typical SIP session.

With regard to RTP, attackers can inject artificial packets with 
higher sequence numbers that will cause the injected packets to be 
played in place of the real ones [23]. Flooding with RTP packets 
not only deteriorates the perceived quality of service (QoS) but 
also may cause phones dysfunctional and reboot operations [16]. 

4. THE PROPOSED ARCHITECTURE 
The proposed architecture of our host-based intrusion detection 
system is shown in figure 4. The following is a detailed 
description of the architecture components. 

Incoming VoIP traffic

Filter

State Table

Field Table

Admin

Packet verifier

SIPRTP

Behavior observer

Admin

Protocol
Table

 
Figure 4. System Architecture. 

1. The Filter: It classifies the incoming VoIP traffic into 
signaling and media packets. Currently, the filter supports 
SIP for signaling and RTP for media delivery. 

2. The Packet Verifier: Its purpose is to validate compliance 
with protocol syntax according to standards. It checks the 
length of the fields, validates in terms of mandatory fields, 
and examines the structure of the message. This way, many 
unknown attacks can be detected such as attacks aiming at 
exploiting a vulnerability in the endpoint implementation by 
sending invalid protocol fields, which can lead to inadvertent 
leakage of sensitive network topology information, call 
hijacking, or Denial of Service (DoS) attacks. 



3. The Behavior Observer: The main duty of the behavior 
observer is to guard against semantics anomalies. It performs 
stateful detection by keeping the Extended Finite State 
Machines of the protocols involved in a call. Protocol 
EFSMs are designed based on protocol specifications, so 
they can detect any deviation from normal protocol behavior. 
This way, the behavior observer can detect unknown attacks. 
Each protocol EFSM is provided with getter functions, so 
that other protocol EFSMs can get values of header fields 
and protocol state, which benefits detection accuracy. 

4. The Protocol Table: This table is responsible for defining 
protocols at a high-level of abstraction. Each record in this 
table defines a specific protocol supported by the system, 
and each field defines a high-level attribute of the protocol. 
This table is meant for organizational purposes and to add 
some normalization to the design of the signature database. 
Table 1 shows an example of the content of two records from 
the protocol table. The table shows how our database defines 
SIP and RTP at a high level. The Protocol ID field gives 
each protocol a unique identifier, and is used to join various 
tables as will be shown shortly. 

Table 1. Example of Protocol Table Contents 

Field Name Field Content 1 Field Content 2 
Protocol ID 53 54 

Protocol Name SIP RTP 

Layer Application Layer Application Layer 

Description A protocol used for 
session initiation 

A protocol used for 
real-time 
transmission 

5. The Field Table: Each record in this table represents a 
certain field in the protocol’s header and a suspicious pattern 
associated with it. Multiple records in this table can be used 
to form a signature that spans across many fields and 
protocols. Table 2 depicts an example of the content of the 
field table. It shows two records representing a signature that 
includes two SIP’s header fields, namely, the start line and 
from fields. The signature indicates that the system should 
raise an alert whenever an INVITE request is received from 
sip:alice@domain.com. A field worth noting in the field 
table is the Stand-Alone field which determines whether the 
pattern associated with the header field forms a signature on 
its own, or as part of other header fields. A false in this field 
instructs the retrieval system to retrieve the record with the 
Next Protocol ID and Next Field ID to form the full signature 
with the current field. Null values in Next Protocol ID and 
Next Field ID denote the end of the retrieval process. 

6. The State Table: Each record in this table represents a state 
in the protocol’s EFSM. When a session reaches a certain 
protocol state, the IDS retrieves all the records associated 
with that state from the state table. A record could contain 
various values suitable for threshold detection such as the 
upper limit for the number of requests allowed within a 
specific amount of time at that state, to avoid Denial of 
Service saturation attacks. Furthermore, a record could 
contain a stored procedure to be executed upon arriving at 
the certain state. Such a procedure is meant to predict an 
impending compromise at the current system’s safe state, 
and to limit the damage before it occurs. This strategy stems 

from the fact that for multi-step attacks, there are benign 
steps that precede the attack sequence. The administrator can 
provide the state table with the necessary procedures to be 
taken at the safe state that precedes the attack. It should be 
obvious from the aforementioned description that this table 
deals with input that has the perfect syntax, but is trying to 
achieve something that violates the semantics of the 
protocol. Hence, it is the semantics-based component of the 
database. Some examples of the contents of this table will be 
shown in the section on implemented attacks.  

Table 2. Example of Field Table Contents

Field Name Field Content 1 Field Content 2 
Protocol ID 53 53 

Field ID 1 5 

Field Name Start Line From 

Description 
To distinguish 
requests from 
responses 

The sender of the 
message 

Type String String 

Pattern INVITE sip:alice@domain.com 

Stand-alone False False 

Next Protocol ID 53 Null  

Next Field ID 5 Null  

Impact 

INVITE requests 
from Alice should 
not be received for 
administrative 
reasons 

INVITE requests from 
Alice should not be 
received for 
administrative reasons 

4.1 Architecture Components Interaction 
The filter is the first component to receive the incoming VoIP 
traffic. It helps classify the traffic into signaling and media 
packets, and forward packets to the right verifier. The packet 
verifier receives packets from the filter and parses them. The 
parsing process examines the packet in terms of its size and 
structure. Too big and malformed packets are rejected by the 
packet verifier in order not to deplete the processing power of the 
endpoint. After examining the general structure of the packet the 
verifier starts checking the header fields individually. It checks 
whether mandatory fields are present, and if their values are 
within the limits defined by the protocol specifications. After 
checking compliance with specifications for a certain field, the 
system retrieves all the records of the field from the field table to 
perform signature detection. If approved, packets are sent to the 
behavior observer. The behavior observer keeps track of the 
session and whether it progresses according to specifications. This 
session awareness is achieved by keeping an EFSM for the 
protocols involved to guard against any unacceptable behavior 
that violates proper protocol semantics. When reaching a certain 
state in the EFSM, the system retrieves all the records of that state 
from the state table to perform further checks on semantics 
violations. Clearly, detecting and reporting attacks take place in 
real-time. 

5. IMPLEMENTED ATTACKS 
We implement six attacks to demonstrate the functionality of the 
intrusion detection system. The attacks are launched exploiting 



various vulnerabilities in SIP as a signaling protocol and RTP as 
media transport protocol. The implemented attacks can be 
classified either as flooding attacks, message flow attacks, or 
parser attacks. Such attacks are common in VoIP environments 
since current SIP specifications do not mandate authentication for 
all types of requests used by the protocol. Furthermore, existing 
security mechanisms that guarantee message integrity, 
confidentiality, and origin authentication can only protect against 
outsiders and not against insiders who abuse their privileges. The 
rest of this section discusses the attacks and the detection 
methodology for each. 

5.1 The BYE Attack 
As mentioned earlier, a BYE request can be sent by either the 
caller or the callee to terminate the session. An attacker can abuse 
this feature by sending this message to either the caller or the 
callee to fool them into tearing down the session prematurely. The 
User Agent that receives the faked BYE message will 
immediately stop sending RTP packets, whereas the other User 
Agent will continue sending its RTP packets. BYE attack is 
common in VoIP environments and can be accomplished either 
by sniffing the network or performing a man-in-the-middle attack 
to insert a BYE request into the session. Wherever there is no 
authentication mechanism in place, and considering the attacker’s 
ability to discover the current session parameters, this attack can 
be launched successfully. BYE attack is considered a Denial of 
Service (DoS) attack. 

Table 3. BYE Attack Signature 

Although BYE attack occurs within the signaling protocol (SIP), 
checking the status of RTP flow in the endpoint is vital in the 
detection process. A genuine BYE sender will stop sending RTP 
packets immediately after sending a BYE message. Receiving 
RTP packets from the original sender on the original port after 
seeing the BYE message is an indicator of a BYE attack. To 
detect such an attack, we store a signature in the state table of our 
database. The stored signature represents the state of a SIP session 
upon receiving a BYE message. We set a value to the Timer field 
in the signature. The Recommended Action includes a cross-
protocol detection procedure that checks RTP status after 
receiving the BYE message. If the system receives any RTP 
packets before the timer expires, it is an indication a BYE attack 
is taking place. Table 3 shows the signature. The quasi-code of 
BYE_Procedure( ) which is the recommended action appears in 
figure 5. 

Procedure BYE_Procedure ( ) 
    while (Timer > 0) 
       { if (RTP packets are received from original address) 
              Raise_Alarm (BYE_attack) 
          else 
              Timer = Timer -1   } 

Figure 5. Quasi-code for BYE attack detection. 

A point worth noting is that network conditions could scupper the 
aforementioned strategy. If RTP packets are delayed beyond the 
average time after receiving a legitimate BYE request due to 
network congestion, our database will generate a false positive. 

5.2 The Re-INVITE Attack 
Another name for this attack is Call Hijacking. SIP clients use Re-
INVITE message if they want to move the phone call from one 
device to another without tearing down the session. This feature is 
called call migrating. An attacker can abuse this feature by 
sending a Re-INVITE message to one of the parties involved in a 
session to fool it into believing that the other party is going to 
change its IP address to a new address. The new address is 
controlled by the attacker. This attack can be seen as a DoS 
attack. Furthermore, it breaches the privacy of the call since the 
attacker will be able to receive voice that is not meant for it. Lack 
of authentication enables attackers to launch this attack against 
endpoints. 
To detect Re-INVITE attacks we use an approach similar to the 
one used to detect BYE attacks. Clearly, continuing to receive 
RTP packets from the original address on the original port after 
receiving a Re-INVITE denotes a call hijacking attempt. We 
create a signature in the state table denoting the system state upon 
receiving a Re-INVITE. Similar to the approach used in BYE 
attack, we set a value to the Timer field in the signature. 
Similar to BYE attack, if a benign Re-INVITE arrives before RTP 
packets due to taking a different path or any other network 
conditions, the system will raise a false flag. Packets between two 
endpoints in an IP-based network are not confined to a certain 
route. Such a scenario is rare although it is possible. 

5.3 The CANCEL Attack 
CANCEL message is sent if the caller decides not to proceed with 
the call attempt. It asks the callee to cease processing the previous 
request and generate an error response designating that request. It 
is sent usually after receiving a provisional response from the 
callee. Provisional responses indicate that the request has been 
received, and is being processed by the callee. Without proper 
authentication, the receiving UA cannot differentiate a faked 
CANCEL message from a genuine one, which leads to a denial of 
communication between user agents. 
Our system detects this attempt by carefully monitoring the 
signaling protocol behavior in the behavior observer. Sending a 
CANCEL after receiving OK response or not receiving a 
provisional response would be incorrect protocol behavior. 
Deploying our IDS prototype on all components of the network 
guarantees that CANCEL is sent only if a provisional response is 
received and any OK response is not received. This way the 
attack is detected early on the attacker side. This detection 

Field Name Field Content 1 
Protocol ID 53 

State ID 30 

State Name BYE Received 

Description The system state after receiving BYE 

Threshold Null  

Time Unit Null  

Timer 20 MSEC 
Recommended 

Action BYE_Procedure( )  

Impact Such action causes Denial of Service 
(DoS) at the endpoint 



methodology shows the statefulness and compliance to 
specifications of our system. 

5.4 The REGISTER Flooding Attack 
Overwhelming victim resources by flooding it with malicious 
traffic is the most basic and probably the most difficult to defend 
against DoS attack. A number of SIP clients can launch a 
REGISTER flooding attack to swamp a single registrar server 
within a short duration of time. REGISTER requests are accepted 
by registrar servers to store a binding between a user’s SIP 
address and the address of the host where the user is currently 
residing or wishing to receive requests. REGISTER flooding 
attack can be viewed as a DoS attack. Even proper authentication 
would not stop such an attack if the attackers are insiders with bad 
intentions. 
To detect this attack, we create a signature in the state table 
denoting the system state upon receiving a REGISTER request. 
Two values are set to the Threshold and Time Unit fields 
respectively. Whenever the number of REGISTER requests 
exceeds the threshold within the specified time unit, the system 
raises a REGISTER flooding attack flag. 

5.5 Malformed Messages Attack 
Attackers can create extra-long messages with fields of increased 
length, or huge message body. They can also omit some of the 
mandatory fields in the messages being sent. Such an attack 
targets the protocol parser at the endpoint, and aims at depleting 
its processing power and increasing its network utilization. 
Different implementations of the protocol could respond to such 
messages in different ways. It is likely that attackers try various 
malformed message combinations to discover a flaw in the end 
system. In addition, such malformed messages could lead some 
endpoints to crash which is considered a DoS situation. 
Malformed messages attack targets both signaling and transport 
protocols. 
To detect such attacks the packet verifier provides input 
validation for the incoming packets before they are passed to the 
parser. It checks every incoming packet for adherence to the 
protocol specifications in terms of field presence, length, and 
other criteria. 

5.6 Voice Injection Attack 
This attack targets RTP which is used to carry call data such as 
voice and video. Lack of integrity checking could allow an 
attacker to inject an alternative RTP stream to one of the parties 
involved in a session. An attacker can send artificial RTP packets 
with higher sequence numbers than the original ones, which 
causes the receiver to play the artificial ones instead. 
To detect such an attack we can store a signature in the state table 
to denote the system state upon receiving an RTP packet. A 
special procedure in the Recommended Action field should 
compare the sequence number of the packet to that of the previous 
one. Whenever there is an increase that exceeds the number in the 
Threshold field, an alarm is raised. Table 4 shows the signature. 
A similar signature can be created with the Threshold targeting 
the timestamp value in the RTP packet. 

6. SIMULATION ISSUES 
We use OMNeT++ [11] simulator as the platform for our design. 
OMNeT++ is a discrete event simulation tool that uses a modular 

structure. It may be used to simulate nearly any kind of 
communication networks and distributed systems. Several 
research groups at the University of Karlsruhe developed MMSim 
[10] which is a model to simulate multimedia protocols using 
OMNeT++. We use MMSim to implement our design. OMNeT++ 
uses two programming languages, namely NED and C++. NED 
language is used to describe the topology of a network and its 
modules, whereas C++ is used for the actual implementation of 
the modules. In addition, OMNeT++ provides a high degree of 
parameterization through the use of NED and initialization files 
and a solid support for Finite State Machines in the form of ready-
to-use classes and functions. 

Table 4. Voice Injection Signature 

6.1 Topology and Configuration 
Figure 6 shows the simulated network topology. Our network 
comprises two domains each with a Proxy and Registrar Server. 
Each domain also contains a set of User Agents (endpoints) which 
are connected to the servers by a 10Base-T Ethernet. We use the 
Audio/Video profile with minimal control (RTP/AVP), with UDP 
as the underlying protocol. Our payload type is static with the 
identification number 32, and the clock rate 8000 Hz. Endpoints 
in a domain make calls to other endpoints in the other domain 
randomly and without predefined durations. Our IDS is installed 
on all endpoints and servers in both domains. The Internet 
connection between the two domains is assumed to have a delay 
of 40 ms and a packet loss of 0.2%. We run the experiment for 60 
minutes. 

6.2 Attack Implementation and Detection 
Using the Simulator 
OMNeT++ enjoys the support of several Random Number 
Generators that can be configured in the initialization files. All 
attacks are given identification numbers, which are stored in an 
array-like structure. The code that launches attacks chooses a 
number randomly from the range of the identification numbers, 
and launches the associated attack accordingly. Furthermore, the 
attack launching code itself is activated in the endpoints based on 
a randomly selected number that should exceed a certain 
threshold. This technique guarantees that the majority of the 
simulated network traffic remains benign. 
Message manipulation functions provided by protocol modules 
allow for creating malformed packets easily. The simulator library 

Field Name Field Content 1 
Protocol ID 54 

State ID 7 

State Name RTP Received 

Description The system state after receiving an RTP 
packet 

Threshold 50 

Time Unit Null  

Timer Null  
Recommended 

Action RTP_inj_Procedure( )  

Impact  Receivers play artificial stream instead 
of real one 



contains various functions to set the value of different fields, and 
the length of the entire message. 
Events in the simulator environment can be controlled to occur at 
a specific time. Message/event related functions can be used to 
send messages to other modules, schedule an event, or delete a 
scheduled event. This feature facilitates launching attacks that 
require accurate timing.  
MMSim module provides interaction between SIP and RTP which 
makes cross-protocol detection possible. RTP protocol attributes 
can be captured by SIP through a specialized function that can be 
called from SIP module. On the other hand, C++ streams which 
are associated with files are used to emulate our signature 
database with links to specific functions that perform the 
recommended actions. 
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Figure 6. Simulated Network Topology.

7. RESULTS AND ANALYSIS 
7.1 Detection Accuracy 
Table 5 summarizes the detection accuracy results. The table 
shows how various components in the proposed architecture 
contributed to detecting all attacks launched during the 
experiment. Some of the attacks such as CANCEL and 
Malformed packets were unknown to the IDS prior to the 
experiment. We believe the more details we put in our 
implementation following protocol specifications, the more 
unknown attacks we detect, since unknown attacks are mostly 
protocol violations. 

Table 5. Detection Accuracy Results 

Attack Name Instances Attacks 
Detected 

Detecting 
Module 

BYE 7 7 State Table 

Re-INVITE 4 4 State Table 

CANCEL 2 2 Behavior 
Observer 

REGISTER 
flooding 6 6 State Table 

Malformed 
packets 4 4 Packet Verifier 

Voice Injection 3 3 State Table 

During the experiment we simulated false BYE and Re-INVITE 
attacks by delaying RTP packets in both after receiving a BYE 
message, and a Re-INVITE request respectively. Our IDS raised 
false flags on both occasions. We believe abnormal network 
conditions are to blame for these false positives, and not our 
detection mechanism. Delay as a result of propagation, handling, 
or queuing is a major issue in packet-based VoIP environments. 
However, our parameterized State Table can be used to overcome 
such situations. The choice of the values for timers and thresholds 
is left to the discretion of the system administrator. Hence, system 
administrators can set these values in a way that reflects the 
conditions of the underlying network to avoid unwanted false 
alarms. 

7.2 Performance Evaluation 
It is vital that any security measure to be implemented in a VoIP 
network does not impede the performance of the network or affect 
it badly. Quality of service (QoS) is very important to the 
operation of VoIP networks. The implementation of various 
security measures in a VoIP network can introduce some 
complications that can degrade QoS. These complications range 
from delaying call setups to delaying delivery of data packets. 
In this section we evaluate the performance of the proposed 
architecture, and show its effect on the network. Our discussion 
will focus on three main issues, namely, end-to-end delay, call 
setup delay, and packet loss. Before we start discussing these 
three issues in detail, we show in figure 7 the number of call 
requests as captured at the Proxy Server of one of the domains. 
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Figure 7. Call Requests at a Proxy Server.

End-to-end delay in VoIP refers to the time it takes for a voice 
transmission to go from its source to its destination. The ITU-T 
G.114 standard describes that a 150 milliseconds one-way delay 
is acceptable for high voice quality [5]. Every element along the 
voice path adds to this delay. This includes switches, routers, and 
public Internet connections. Figure 8 shows the end-to-end delay 
experienced by an endpoint in the network with and without our 
IDS installed. The figure shows end-to-end delay for individual 
RTP voice packets. Our IDS added about 2.6 milliseconds on 
average to the voice transmission delay. As shown in the figure, 
the overall delay remains considerably less than the upper bound 
of 150 milliseconds. The delay variation (jitter) remains at 2 
milliseconds with a slight addition of 3 * 10-5 seconds by our IDS. 
Therefore, our IDS has a trifling impact on end-to-end delay. 
Call setup delay in VoIP environments is the period that starts 
when a caller dials the last digit of the called number and ends 
when the caller receives the last bit of the response. VoIP systems 
are expected to give a performance comparable of that of PSTNs. 
Users may be annoyed with a setup process that requires more 



than a few seconds. Figure 9 shows the call setup delay 
introduced by our IDS at a certain endpoint during the simulation. 
The operation of the IDS adds about 68 milliseconds to the call 
setup process. Such an increase in the call setup time is tolerable 
by VoIP users. Furthermore, the overall call setup delay remains 
within the limit of one or two seconds mentioned in [6]. 

0.11
0.115
0.12

0.125
0.13

0.135
0.14

0 1000 2000 3000 4000

Simulation Time

P
ac

ke
t D

el
ay

 (s
ec

)

With IDS Without IDS

 
Figure 8. End-to-end delay.
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Figure 9. Call Setup Delay at an Endpoint.

Ideally, there should be no packet loss for VoIP. Losses of 3 and 4 
percent could place the quality in VoIP networks encoded by 
certain codecs at a level below the quality of service level of 
PSTNs. Part of the problem in VoIP environments is their reliance 
on RTP which uses the unreliable UDP for transport with its 
unguaranteed packet delivery. Figure 10 shows the packet loss 
rate at servers and endpoints buffers with and without our IDS for 
various amounts of traffic. The packet loss rate with our IDS is 
only 0.02 % higher than the rate without it on average. The 
overall packet loss remains at 0.04% on average, which is 
considerably less than the 1 percent level specified by many 
codecs as the upper limit. 
The good performance figures shown by our architecture can be 
attributed to two main factors: Firstly, the Behavior Observer 
implements finite state machines in switch-like statements, which 
makes memory management efficient. Considering the 
expensiveness of creating objects, there is no need in this scheme 
to create a new object for each transition or state in the finite state 
machine. Information that identifies calls uniquely can be stored 
at the cost of a few hundred bytes per call. This low cost allows 
servers to accommodate hundreds of calls simultaneously without 
degrading the performance of the system. Secondly, retrieving 
from the database requires going through only one level of 
hierarchy. Specification-based modules directly retrieve from 
Field and State tables which contain the actual signatures. In 
addition, Administrators can store more than one procedure in the 
Recommended Action Field of the database for a single record. 

Therefore, the database can store in one record multiple 
signatures with slight variations. 
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Figure 10. Packet loss.

8. RELATED WORK 
Hybrid IDSs can trace their origins back to systems such as IDES 
[9], NADIR [7], and W&S [20]. These systems combined 
anomaly detection with penetration identification. However, it 
was difficult to establish proper behavior patterns, resulting in a 
relatively large number of false alarms. Using system 
specifications as the detection baseline in our architecture reduces 
the false alarm rate significantly.  
STAT [4] and NetSTAT [21] adopted state transition analysis for 
host and network-based detection respectively. Being only 
signature-based limited the ability of these systems to detect new 
attacks. On the other hand, J. M. Orset, B. Alcalde, and A. Cavalli 
[13] proposed an EFSM-based IDS that uses specifications of 
routing protocol OLSR to detect anomalies in Ad Hoc networks. 
However, their solution was not complemented by a signature-
based component, which made it difficult to detect attacks such as 
DoS attacks. These shortcomings are addressed in our architecture 
which has a specification-based module working in conjunction 
with a signature-based one. 
Our signature database can be compared to systems such as Snort 
[17]. The Snort database design defines the lowest level of detail 
as an event, which is the combination of a collection of packet 
header and data, and an active Snort rule, called a signature. 
However, Snort’s approach falls short of providing a basis for 
semantics-aware signatures at the session level. Sommer and 
Paxon [18] proposed adding connection-level context to 
signatures to reduce false positives in misuse detection. However, 
their aim was to complement the most common form of signature 
matching, which is low-level string matching, with context. Our 
signature database combines both types of signatures, byte-level 
and semantics-aware. Our semantics-awareness is based on 
describing attacks using state transition diagrams which allow us 
to represent attacks at the session level rather than lower and 
semantics-less levels. The lowest level of detail in our semantics-
based module is the state instead of the traditional event. This 
feature enables our database to store a higher-level abstraction of 
attacks than previous works, and support more general signatures.  
Several IDSs have been proposed to meet the special needs of 
VoIP environments. SCIDIVE [23] is a stateful, and cross-
protocol IDS for VoIP. SCIDIVE can be considered a signature 
based detection system rather than an anomaly based system. This 
limitation is addressed by vIDS [16]. Instead of relying entirely 
on a rule database, vIDS is based on interacting protocol state 



machines. This design covers the issues relating to semantics 
anomaly detection, while not addressing syntax anomaly 
detection properly. vFDS [15] is an online statistical detection 
mechanism designed for VoIP systems. vFDS relies on pure 
statistical anomaly approaches which affect its sensitivity 
negatively. In addition, vFDS is limited to detecting flooding 
attacks. Our design provides a combination of specification-based 
and signature-based detection techniques to bring the false alarm 
rate to its lowest level. It also addresses syntax and semantics-
related issues to cover a wider range of attacks. 

9. CONCLUSION AND FUTURE WORK 
We have proposed a hybrid, host-based intrusion detection 
architecture that combines specification and signature-based 
detection techniques for VoIP systems. Our architecture caters for 
stateful detection, and allows protocols to exchange useful 
information to improve detection efficiency. Our signature-based 
module supports a high-level of abstraction for attacks which 
helps bring semantics awareness into attack description. Various 
experimental results show excellent detection capabilities, and 
low runtime impact on VoIP endpoints and servers. 
VoIP environments share the same infrastructure with IP-based 
networks, and consequently they inherit all the security 
weaknesses of IP. Our future work involves applying the same 
techniques to lower layers such as transport and network layer. 
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