
On The Performance of a Hybrid Intrusion Detection
Architecture for Voice over IP Systems

Bazara I. A. Barry
University of Cape Town

Department of Electrical Engineering
Rondebosch, 7701

+27216502813

barry@crg.ee.uct.ac.za

 H. Anthony Chan
University of Cape Town

Department of Electrical Engineering
Rondebosch, 7701

+27216502813

h.a.chan@ieee.org

ABSTRACT
Voice over IP (VoIP) environments pose challenging threats to
Intrusion Detection Systems (IDSs). Services over VoIP systems
are provided by multiple interacting protocols, each with its own
vulnerabilities. This scheme could result in novel and more
complex attacks, and requires cross-protocol aware IDSs.
Furthermore, VoIP devices may suffer a full or partial service loss
if the syntax or semantics of the aforementioned protocols are
violated. Usually, a single detection approach is suited to identify
a subset of the security violations to which a system is subject in
VoIP environments. Therefore, a hybrid approach that combines
the strengths and avoids the weaknesses of various approaches is
needed. In this paper, we discuss the performance and the
detection accuracy of a hybrid, host-based intrusion detection
system suitable for VoIP environments. Our system has two
combined detection modules, namely, a specification-based and a
signature-based module. Both modules use State Machines and
State Transition Analysis Techniques to model proper protocols’
behaviors and potential attacks. Both modules address the issues
related to syntax and semantics anomaly detection for the
monitored protocols. In addition, our architecture provides a
cross-protocol framework for various protocols to exchange
useful detection information in real time. We implement our
proposed architecture in a network simulator, alongside
implementing a variety of attacks to test the credibility of the
design. The implemented IDS shows an excellent detection
accuracy, and low runtime impact on the performance of the VoIP
system.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Unauthorized access

General Terms
Performance, Security

Keywords
intrusion detection, VoIP, hybrid detection, performance

evaluation.

1. INTRODUCTION
Anderson, who introduced the concept of intrusion detection in
1980, defined an intrusion attempt or a threat to be the potential
possibility of a deliberate unauthorized attempt to access
information, manipulate information, or render a system
unreliable or unusable [1]. Intrusion detection systems can be
classified based on the detection techniques into three main types.
The first one, anomaly detection, explores issues in intrusion
detection associated with deviation from normal system or user
behavior. Anomaly detection’s philosophy is that, if we could
establish a normal profile for a system, we could in principle
report all system states varying from the normal profile as
intrusion attempts. Anomaly detection has the advantage of
detecting previously-unknown attacks but at the cost of relatively
high false alarm rate, which is due to the fact that systems often
exhibit legitimate but previously-unseen behavior. A main issue
in anomaly detection is to select the threshold upon which we
measure the deviation from the normal profile. The second
detection technique is signature detection which uses attack
signatures to discriminate between normal and anomalous
behavior. Signature detection is capable of detecting all known
attack patterns, but is of little use for unknown ones [12].

A third technique that has been overtaking both previous
approaches is intrusion detection by static program analysis which
was first proposed by Wagner and Dean [22]. This technique
performs a static analysis of the program to create an abstract
automata model of the functions and system calls. The program’s
behavioral specifications are used to create the model and as a
basis to detect attacks. If the program executes a function or
invokes a system call which violates the model, the IDS assumes
that an intruder has corrupted the program. This approach has
become more mature with the inputs of Balepin et al [2], and has
had the name specification-based intrusion detection.
Specification-based technique has the capacity to detect
previously-unseen attacks with the lowest false alarm rate. This
advantage is due to the programmatic nature of the IDS, which
contains a model that represents all possible legal paths through
the program or the protocol session, ensuring that any detected
deviation from the model is not caused by the program’s code but
by code inserted by a bug or an attacker.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

In a narrow sense, specification-based detection means looking
for behavior in network traffic that is peculiar in terms of the
specification for the protocol the traffic is using. In this case,
detection is interested in syntax violation. In a broader sense, the

Conference name: SecureComm 2008, September 22 - 25, 2008,
Istanbul, Turkey.
Copyright © 2008 ACM ISBN # 978-1-60558-241-2.

term could mean applying anomaly detection on the semantics of
traffic as expressed using the protocol. In this approach, traffic is
not peculiar due to a particular protocol element it is using, but
rather what in aggregate it is trying to achieve with the protocol.
Semantics violations are the main concern here.

Considering the resources they monitor, IDSs can also be
differentiated popularly as: (a) Network IDS (NIDS) which is a
dedicated monitoring component on a network, and (b) Host IDS
(HIDS) which monitors a host computer only.

IP forms the decisive difference between traditional circuit-
switched networks and VoIP networks. It is used in VoIP
networks to carry voice alongside ordinary data. VoIP networks
break voice and data into packets that are routed to a certain
destination using multiple independent paths. This feature can
benefit the network in terms of self-recovery with failed link
paths, but has some security implications as will be shown in the
implementation section. Clearly, such a difference entails changes
in the infrastructure and protocols used.

Components in VoIP infrastructure can be generally classified
into servers, endpoints, and routing nodes. VoIP servers are the
components responsible for various duties aiming at maintaining
the service and enhancing it such as address resolution,
registration, and call redirection. Endpoints (also known as User
Agents UAs) are the devices capable of initiating or terminating a
call. Routing nodes in VoIP environments have the capacity to
connect IP networks to either other IP networks or circuit-
switched networks.

H.323 and SIP are the most dominant VoIP multimedia suites.
Both protocols are used for signaling, and with them come other
protocols that cater for functions other than signaling. Signaling
protocols are responsible for call setup, tear down, and
modification. Media transport protocols are involved in end-to-
end transport of voice and multimedia data. In addition to that,
support protocols are used to enable services and features required
for proper network operation. A major source of vulnerabilities in
these protocols is that they transmit packet headers and payloads
in clear text by default due to the absence of built-in
authentication and encryption [23]. It is therefore easy for
attackers to cause call termination and call flooding as well as to
spoof caller ID or to exercise other attacks.

Our approach takes advantage of a combination of technologies to
enhance the efficiency of intrusion detection in VoIP
environments. It starts with developing host-based specifications
for the protocols involved in SIP-based IP telephony, namely
Session Initiation Protocol (SIP) and Real-time Transport
Protocol (RTP). The tendency towards a host-based architecture is
encouraged by the current shift of interest in VoIP environments
from the center to the edges of the network. The specifications are
derived from Request For Comment documents (RFCs) which
describe the protocols. The developed specifications form the
basis of our specification-based detection modules which are
aided by signature-based ones to store more complex, and specific
attack patterns. This hybrid approach helps to improve the
efficiency of the system and lower the false alarm rate.

Both specification-based and signature-based modules combine
protocol syntax and protocol semantics anomaly detection
techniques. Such a feature is vital in the detection process to

cover all aspects of the protocols being monitored. It allows us to
report any violations of the standards in the protocol packets,
alongside reporting any deviation from the expected protocol
behavior during a session.

Our specification-based detection modules are developed in part
based on the Communicating Extended Finite State Machines
(CEFSMs) model which allows us to represent each of the
involved protocols as an Extended Finite State Machine (EFSM).
An EFSM is a suitable structure to model the control flow of the
protocol and its data, and to spot any deviation from the expected
behavior. The Communicating Extended Finite State Machines
model enables a combination of stateful and cross-protocol
intrusion detection. Stateful detection implies building up relevant
state within a session and across sessions and using the state in
matching for possible attacks. Cross-protocol detection allows the
IDS to access packets from multiple protocols in a system to
perform its detection. Both types of detection are important to
keep the state of the session and to guard against anomalies of
involved protocols.

On the other hand, our signature-based detection modules are
based in part on describing an attack at the session level as a
sequence of actions that the attacker performs to compromise the
security of a computer system. This sequence of actions is best
modeled by state transition analysis techniques which represent
an attack as well defined states and transitions between these
states. This representation allows signatures to complement the
EFSM-based module in the specification-based component, and to
overcome some of its shortcomings. It also allows the creation of
semantics-aware signatures.

The rest of the paper is organized as follows. Section 2 discusses
State Transition Analysis Techniques alongside State Machine
models, and their use in intrusion detection. SIP suite and its
security concerns are discussed in Section 3. Section 4 sheds
some light on the system design. The implemented attacks used to
test our system are detailed in Section 5 followed by discussing
some simulation issues in Section 6. The detection and
performance evaluation results are presented in Section 7 before
mentioning the related works in Section 8. The paper is concluded
in Section 9.

2. STATE TRANSITION ANALYSIS AND
STATE MACHINES
State Transition Analysis was developed by the Reliable Software
Group at University of California, Santa Barbara to represent
computer penetrations. State transition analysis provides a method
of representing the sequence of actions that the attacker performs
to achieve a security violation. A major advantage of using this
approach is its ability to foresee an incoming penetration based on
the current system state. This advantage allows IDSs to limit the
damage before it occurs. This important feature is shown in figure
1. The figure shows a state transition diagram of a certain attack.
To successfully execute the attack, the attacker needs to reach the
system state State0, have Assertion 1 and Assertion 2 hold, and
perform a sequence of actions represented by State1 and State2. If
the system reaches State0 and finds the specified assertions hold,
the signature-based detection mechanism can raise an alarm
warning about the potential impending Compromised State. The
intermediate states State1 and State2 can be used to represent

variants of the penetration. A State Transition Diagram (STD) is
the graphical representation that the state transition analysis uses
to represent a penetration. This representation is useful for
describing attacks in that it provides an interesting level of
abstraction to the analyst: just above the system call and below
English description [4]. This level of abstraction allows for
higher-level and semantics-aware representation of the attack
scenario. A state diagram can take the form of a directed graph
which consists of: labeled circles to represent system states, input
symbols to represent the input at each state, output symbols to
represent the output from each state, edges to represent transitions
between states, a start state, and a final state. State diagrams are
the common factor between State Transition Analysis and State
Machines.

State2

State1

State0

Compromised
State

1. Assertion 1
2. Assertion 2

1. Assertion 3
2. Assertion 4

Figure 1. State Transition Diagram of an Attack.

2.1 Extended Finite State Machines
A communication protocol can be modeled as a Finite State
Machine (FSM) that produces outputs on its state transitions after
receiving inputs. However, FSMs are not powerful enough to
model variables and operations based on variable values which
form an important part of any protocol design. These limitations
led to extending FSMs into Extended Finite State Machines
(EFSMs).
An Extended finite state machine (EFSM) M is a quintuple:
 M = (I, O, S, x, T)
where I, O, S, x, and T are finite sets of input symbols, output
symbols, states, variables, and transitions respectively. Each
transition t in the set T is a 6-tuple:

t= (st, qt, at, ot, Pt, At)
where st, qt, at, and ot are the start (current) state, end (next) state,
input, and output, respectively. Pt (x) is a predicate on the current
variable values and At (x) gives an action on variable values.
Initially, the machine is in an initial state s S with initial
variable values: xinit. Suppose that at a state s the current variable
values are x. Upon input a, the machine follows a transition t = (s,
q, a, o, P, A) if x is valid for P: P(x) = TRUE. In this case, the
machine outputs o, updates the current variable values by action
x: = A(x), and moves to state q [8].
We can build elaborate systems of interacting machines by
connecting the output signals of one machine to the input signals
of another to form communicating extended finite state machines
[3].

2.2 EFSMs in Specification-based Detection
Internet protocols can be easily modeled as EFSMs. A protocol
can be viewed as a sequence of processes (states) chained by a set
of events (transitions). A running protocol EFSM receives packets
(input signals) through one of the available ports. Packets usually
contain header fields with values (input parameters). Upon
receiving a packet, a check is performed to identify the packet
type (predicate), and to determine the appropriate event
(transition). Some transitions represent unexpected packets, which
usually occur due to network failures or an attack. Similarly,
absence of expected packets, and the consequent transition on a
timeout event, suggests a failure or an attack. Another source of
input to a protocol state machine could be a signal sent by another
protocol state machine (synchronization signals). The execution
of the chosen event (transition) could result in producing and
sending a packet with its header values (parameterized output
signal) by a dedicated function (output parameter function). The
protocol then updates its state information (context variables) by a
pre-defined set of instructions (context update function).

Figure 2 shows a state transition diagram (STD) for a protocol
that has three states and two transitions based on its
specifications. When the state machine is in state 1, and upon
receiving input signal (inp1), a predicate is computed to choose
the appropriate transition which leads to state 2. The dotted
transition which leads to the attack state represents an unexpected
input received at state 1. The unexpected input results in the
predicate failing to enable a legitimate transition, and the machine
raising a protocol violation flag.

0

1

23

Inp0/Outp0

Inp1/Outp1

attack

Figure 2. A state transition diagram that shows normal and

potential abnormal protocol behavior.

Despite the remarkable convenience STDs provide for the EFSM
model in specification-based IDSs, there are also problems with
this approach in this type of detection:

1. It can model abnormal behavior as a simple and
straightforward sequence of events, rather than more
complex forms. This limitation will become clear when we
discuss some of the complex cross-protocol attacks in the
implementation section such as BYE and Re-INVITE
attacks.

2. Some attacks, which are launched by abusing legitimate
features of the system, can pass EFSM-based anomaly

detection without being detected. This limitation is the
reason why STD-based EFSMs cannot directly detect attacks
such as Denial of Service and failed logins in anomaly mode
[19].

Clearly, a signature-based module that is based on a flexible state
transition analysis is needed to assist specification-based module
to detect such attacks.

3. SIP-BASED VOIP AND THREAT
MODEL
Session Initiation Protocol (SIP) is a standard signaling protocol
for VoIP, and is appropriately coined as the “SS7 of future
telephony.” It was developed by the Internet Engineering Task
Force (IETF) in RFC 2543 which was updated by RFC 3261. SIP
was designed to address some important issues in setting up and
tearing down sessions, such as user location, user availability, and
session management. Its simplicity and versatility make it the
choice of instant messaging, video conferencing, and multiplayer
game applications among others. SIP uses other protocols to
perform various functions during a session such as Session
Description Protocol (SDP) to describe the characteristics of end
devices, Resource Reservation Setup Protocol (RSVP) for voice
quality, and RTP for real-time transmission.

3.1 SIP Session
Figure 3 shows the establishment of a SIP session between two
users in the same domain. When turning on their devices, both
users register their availability and their IP addresses with the SIP
proxy server using REGISTER request. The proxy server then
sends this information to the relevant Registrar server. The caller
tells the proxy server that he/she wants to contact a certain callee
using INVITE request. The SIP proxy server relays the caller’s
invitation to the callee. The callee informs the proxy server that
the caller’s invitation is acceptable with OK response. The SIP
proxy server communicates this response to the caller who sends
ACK response establishing a session. The users then create a
point-to-point RTP connection enabling them to interact. Any of
the parties involved in a session can end it by sending a BYE
request.

3.2 SIP and RTP Threat Model
SIP is susceptible to the following threats and attacks:

• Denial of service: The consequence of a DoS attack is that
the entity attacked becomes unavailable. DoS attacks include
scenarios like targeting a certain UA or proxy and flooding
them with requests.

• Eavesdropping: If messages are sent in clear text, any
malicious user can eavesdrop and get session information,
making it easy for them to launch a variety of hijacking-style
attacks.

• Tearing down sessions: An attacker can insert messages like
a CANCEL request to stop a caller from communicating
with someone else. It can also send a BYE request to
terminate the session.

• Session hijacking: An attacker can send an INVITE request
within dialog requests to modify requests en route to change
session descriptions and direct media elsewhere.

• Man in the middle: This attack is where attackers tamper
with a message on its way to a recipient [14].

Caller

Callee

SIP Proxy Server

Registrar Server

INVITE

Query

Response to
Query

INVITE
OK

OK
ACK

ACK

RTP packets

REGISTER

REGISTER

Figure 3. Establishment of a typical SIP session.

With regard to RTP, attackers can inject artificial packets with
higher sequence numbers that will cause the injected packets to be
played in place of the real ones [23]. Flooding with RTP packets
not only deteriorates the perceived quality of service (QoS) but
also may cause phones dysfunctional and reboot operations [16].

4. THE PROPOSED ARCHITECTURE
The proposed architecture of our host-based intrusion detection
system is shown in figure 4. The following is a detailed
description of the architecture components.

Incoming VoIP traffic

Filter

State Table

Field Table

Admin

Packet verifier

SIPRTP

Behavior observer

Admin

Protocol
Table

Figure 4. System Architecture.

1. The Filter: It classifies the incoming VoIP traffic into
signaling and media packets. Currently, the filter supports
SIP for signaling and RTP for media delivery.

2. The Packet Verifier: Its purpose is to validate compliance
with protocol syntax according to standards. It checks the
length of the fields, validates in terms of mandatory fields,
and examines the structure of the message. This way, many
unknown attacks can be detected such as attacks aiming at
exploiting a vulnerability in the endpoint implementation by
sending invalid protocol fields, which can lead to inadvertent
leakage of sensitive network topology information, call
hijacking, or Denial of Service (DoS) attacks.

3. The Behavior Observer: The main duty of the behavior
observer is to guard against semantics anomalies. It performs
stateful detection by keeping the Extended Finite State
Machines of the protocols involved in a call. Protocol
EFSMs are designed based on protocol specifications, so
they can detect any deviation from normal protocol behavior.
This way, the behavior observer can detect unknown attacks.
Each protocol EFSM is provided with getter functions, so
that other protocol EFSMs can get values of header fields
and protocol state, which benefits detection accuracy.

4. The Protocol Table: This table is responsible for defining
protocols at a high-level of abstraction. Each record in this
table defines a specific protocol supported by the system,
and each field defines a high-level attribute of the protocol.
This table is meant for organizational purposes and to add
some normalization to the design of the signature database.
Table 1 shows an example of the content of two records from
the protocol table. The table shows how our database defines
SIP and RTP at a high level. The Protocol ID field gives
each protocol a unique identifier, and is used to join various
tables as will be shown shortly.

Table 1. Example of Protocol Table Contents

Field Name Field Content 1 Field Content 2
Protocol ID 53 54

Protocol Name SIP RTP

Layer Application Layer Application Layer

Description A protocol used for
session initiation

A protocol used for
real-time
transmission

5. The Field Table: Each record in this table represents a
certain field in the protocol’s header and a suspicious pattern
associated with it. Multiple records in this table can be used
to form a signature that spans across many fields and
protocols. Table 2 depicts an example of the content of the
field table. It shows two records representing a signature that
includes two SIP’s header fields, namely, the start line and
from fields. The signature indicates that the system should
raise an alert whenever an INVITE request is received from
sip:alice@domain.com. A field worth noting in the field
table is the Stand-Alone field which determines whether the
pattern associated with the header field forms a signature on
its own, or as part of other header fields. A false in this field
instructs the retrieval system to retrieve the record with the
Next Protocol ID and Next Field ID to form the full signature
with the current field. Null values in Next Protocol ID and
Next Field ID denote the end of the retrieval process.

6. The State Table: Each record in this table represents a state
in the protocol’s EFSM. When a session reaches a certain
protocol state, the IDS retrieves all the records associated
with that state from the state table. A record could contain
various values suitable for threshold detection such as the
upper limit for the number of requests allowed within a
specific amount of time at that state, to avoid Denial of
Service saturation attacks. Furthermore, a record could
contain a stored procedure to be executed upon arriving at
the certain state. Such a procedure is meant to predict an
impending compromise at the current system’s safe state,
and to limit the damage before it occurs. This strategy stems

from the fact that for multi-step attacks, there are benign
steps that precede the attack sequence. The administrator can
provide the state table with the necessary procedures to be
taken at the safe state that precedes the attack. It should be
obvious from the aforementioned description that this table
deals with input that has the perfect syntax, but is trying to
achieve something that violates the semantics of the
protocol. Hence, it is the semantics-based component of the
database. Some examples of the contents of this table will be
shown in the section on implemented attacks.

Table 2. Example of Field Table Contents

Field Name Field Content 1 Field Content 2
Protocol ID 53 53

Field ID 1 5

Field Name Start Line From

Description
To distinguish
requests from
responses

The sender of the
message

Type String String

Pattern INVITE sip:alice@domain.com

Stand-alone False False

Next Protocol ID 53 Null

Next Field ID 5 Null

Impact

INVITE requests
from Alice should
not be received for
administrative
reasons

INVITE requests from
Alice should not be
received for
administrative reasons

4.1 Architecture Components Interaction
The filter is the first component to receive the incoming VoIP
traffic. It helps classify the traffic into signaling and media
packets, and forward packets to the right verifier. The packet
verifier receives packets from the filter and parses them. The
parsing process examines the packet in terms of its size and
structure. Too big and malformed packets are rejected by the
packet verifier in order not to deplete the processing power of the
endpoint. After examining the general structure of the packet the
verifier starts checking the header fields individually. It checks
whether mandatory fields are present, and if their values are
within the limits defined by the protocol specifications. After
checking compliance with specifications for a certain field, the
system retrieves all the records of the field from the field table to
perform signature detection. If approved, packets are sent to the
behavior observer. The behavior observer keeps track of the
session and whether it progresses according to specifications. This
session awareness is achieved by keeping an EFSM for the
protocols involved to guard against any unacceptable behavior
that violates proper protocol semantics. When reaching a certain
state in the EFSM, the system retrieves all the records of that state
from the state table to perform further checks on semantics
violations. Clearly, detecting and reporting attacks take place in
real-time.

5. IMPLEMENTED ATTACKS
We implement six attacks to demonstrate the functionality of the
intrusion detection system. The attacks are launched exploiting

various vulnerabilities in SIP as a signaling protocol and RTP as
media transport protocol. The implemented attacks can be
classified either as flooding attacks, message flow attacks, or
parser attacks. Such attacks are common in VoIP environments
since current SIP specifications do not mandate authentication for
all types of requests used by the protocol. Furthermore, existing
security mechanisms that guarantee message integrity,
confidentiality, and origin authentication can only protect against
outsiders and not against insiders who abuse their privileges. The
rest of this section discusses the attacks and the detection
methodology for each.

5.1 The BYE Attack
As mentioned earlier, a BYE request can be sent by either the
caller or the callee to terminate the session. An attacker can abuse
this feature by sending this message to either the caller or the
callee to fool them into tearing down the session prematurely. The
User Agent that receives the faked BYE message will
immediately stop sending RTP packets, whereas the other User
Agent will continue sending its RTP packets. BYE attack is
common in VoIP environments and can be accomplished either
by sniffing the network or performing a man-in-the-middle attack
to insert a BYE request into the session. Wherever there is no
authentication mechanism in place, and considering the attacker’s
ability to discover the current session parameters, this attack can
be launched successfully. BYE attack is considered a Denial of
Service (DoS) attack.

Table 3. BYE Attack Signature

Although BYE attack occurs within the signaling protocol (SIP),
checking the status of RTP flow in the endpoint is vital in the
detection process. A genuine BYE sender will stop sending RTP
packets immediately after sending a BYE message. Receiving
RTP packets from the original sender on the original port after
seeing the BYE message is an indicator of a BYE attack. To
detect such an attack, we store a signature in the state table of our
database. The stored signature represents the state of a SIP session
upon receiving a BYE message. We set a value to the Timer field
in the signature. The Recommended Action includes a cross-
protocol detection procedure that checks RTP status after
receiving the BYE message. If the system receives any RTP
packets before the timer expires, it is an indication a BYE attack
is taking place. Table 3 shows the signature. The quasi-code of
BYE_Procedure() which is the recommended action appears in
figure 5.

Procedure BYE_Procedure ()
 while (Timer > 0)
 { if (RTP packets are received from original address)
 Raise_Alarm (BYE_attack)
 else
 Timer = Timer -1 }

Figure 5. Quasi-code for BYE attack detection.

A point worth noting is that network conditions could scupper the
aforementioned strategy. If RTP packets are delayed beyond the
average time after receiving a legitimate BYE request due to
network congestion, our database will generate a false positive.

5.2 The Re-INVITE Attack
Another name for this attack is Call Hijacking. SIP clients use Re-
INVITE message if they want to move the phone call from one
device to another without tearing down the session. This feature is
called call migrating. An attacker can abuse this feature by
sending a Re-INVITE message to one of the parties involved in a
session to fool it into believing that the other party is going to
change its IP address to a new address. The new address is
controlled by the attacker. This attack can be seen as a DoS
attack. Furthermore, it breaches the privacy of the call since the
attacker will be able to receive voice that is not meant for it. Lack
of authentication enables attackers to launch this attack against
endpoints.
To detect Re-INVITE attacks we use an approach similar to the
one used to detect BYE attacks. Clearly, continuing to receive
RTP packets from the original address on the original port after
receiving a Re-INVITE denotes a call hijacking attempt. We
create a signature in the state table denoting the system state upon
receiving a Re-INVITE. Similar to the approach used in BYE
attack, we set a value to the Timer field in the signature.
Similar to BYE attack, if a benign Re-INVITE arrives before RTP
packets due to taking a different path or any other network
conditions, the system will raise a false flag. Packets between two
endpoints in an IP-based network are not confined to a certain
route. Such a scenario is rare although it is possible.

5.3 The CANCEL Attack
CANCEL message is sent if the caller decides not to proceed with
the call attempt. It asks the callee to cease processing the previous
request and generate an error response designating that request. It
is sent usually after receiving a provisional response from the
callee. Provisional responses indicate that the request has been
received, and is being processed by the callee. Without proper
authentication, the receiving UA cannot differentiate a faked
CANCEL message from a genuine one, which leads to a denial of
communication between user agents.
Our system detects this attempt by carefully monitoring the
signaling protocol behavior in the behavior observer. Sending a
CANCEL after receiving OK response or not receiving a
provisional response would be incorrect protocol behavior.
Deploying our IDS prototype on all components of the network
guarantees that CANCEL is sent only if a provisional response is
received and any OK response is not received. This way the
attack is detected early on the attacker side. This detection

Field Name Field Content 1
Protocol ID 53

State ID 30

State Name BYE Received

Description The system state after receiving BYE

Threshold Null

Time Unit Null

Timer 20 MSEC
Recommended

Action BYE_Procedure()

Impact Such action causes Denial of Service
(DoS) at the endpoint

methodology shows the statefulness and compliance to
specifications of our system.

5.4 The REGISTER Flooding Attack
Overwhelming victim resources by flooding it with malicious
traffic is the most basic and probably the most difficult to defend
against DoS attack. A number of SIP clients can launch a
REGISTER flooding attack to swamp a single registrar server
within a short duration of time. REGISTER requests are accepted
by registrar servers to store a binding between a user’s SIP
address and the address of the host where the user is currently
residing or wishing to receive requests. REGISTER flooding
attack can be viewed as a DoS attack. Even proper authentication
would not stop such an attack if the attackers are insiders with bad
intentions.
To detect this attack, we create a signature in the state table
denoting the system state upon receiving a REGISTER request.
Two values are set to the Threshold and Time Unit fields
respectively. Whenever the number of REGISTER requests
exceeds the threshold within the specified time unit, the system
raises a REGISTER flooding attack flag.

5.5 Malformed Messages Attack
Attackers can create extra-long messages with fields of increased
length, or huge message body. They can also omit some of the
mandatory fields in the messages being sent. Such an attack
targets the protocol parser at the endpoint, and aims at depleting
its processing power and increasing its network utilization.
Different implementations of the protocol could respond to such
messages in different ways. It is likely that attackers try various
malformed message combinations to discover a flaw in the end
system. In addition, such malformed messages could lead some
endpoints to crash which is considered a DoS situation.
Malformed messages attack targets both signaling and transport
protocols.
To detect such attacks the packet verifier provides input
validation for the incoming packets before they are passed to the
parser. It checks every incoming packet for adherence to the
protocol specifications in terms of field presence, length, and
other criteria.

5.6 Voice Injection Attack
This attack targets RTP which is used to carry call data such as
voice and video. Lack of integrity checking could allow an
attacker to inject an alternative RTP stream to one of the parties
involved in a session. An attacker can send artificial RTP packets
with higher sequence numbers than the original ones, which
causes the receiver to play the artificial ones instead.
To detect such an attack we can store a signature in the state table
to denote the system state upon receiving an RTP packet. A
special procedure in the Recommended Action field should
compare the sequence number of the packet to that of the previous
one. Whenever there is an increase that exceeds the number in the
Threshold field, an alarm is raised. Table 4 shows the signature.
A similar signature can be created with the Threshold targeting
the timestamp value in the RTP packet.

6. SIMULATION ISSUES
We use OMNeT++ [11] simulator as the platform for our design.
OMNeT++ is a discrete event simulation tool that uses a modular

structure. It may be used to simulate nearly any kind of
communication networks and distributed systems. Several
research groups at the University of Karlsruhe developed MMSim
[10] which is a model to simulate multimedia protocols using
OMNeT++. We use MMSim to implement our design. OMNeT++
uses two programming languages, namely NED and C++. NED
language is used to describe the topology of a network and its
modules, whereas C++ is used for the actual implementation of
the modules. In addition, OMNeT++ provides a high degree of
parameterization through the use of NED and initialization files
and a solid support for Finite State Machines in the form of ready-
to-use classes and functions.

Table 4. Voice Injection Signature

6.1 Topology and Configuration
Figure 6 shows the simulated network topology. Our network
comprises two domains each with a Proxy and Registrar Server.
Each domain also contains a set of User Agents (endpoints) which
are connected to the servers by a 10Base-T Ethernet. We use the
Audio/Video profile with minimal control (RTP/AVP), with UDP
as the underlying protocol. Our payload type is static with the
identification number 32, and the clock rate 8000 Hz. Endpoints
in a domain make calls to other endpoints in the other domain
randomly and without predefined durations. Our IDS is installed
on all endpoints and servers in both domains. The Internet
connection between the two domains is assumed to have a delay
of 40 ms and a packet loss of 0.2%. We run the experiment for 60
minutes.

6.2 Attack Implementation and Detection
Using the Simulator
OMNeT++ enjoys the support of several Random Number
Generators that can be configured in the initialization files. All
attacks are given identification numbers, which are stored in an
array-like structure. The code that launches attacks chooses a
number randomly from the range of the identification numbers,
and launches the associated attack accordingly. Furthermore, the
attack launching code itself is activated in the endpoints based on
a randomly selected number that should exceed a certain
threshold. This technique guarantees that the majority of the
simulated network traffic remains benign.
Message manipulation functions provided by protocol modules
allow for creating malformed packets easily. The simulator library

Field Name Field Content 1
Protocol ID 54

State ID 7

State Name RTP Received

Description The system state after receiving an RTP
packet

Threshold 50

Time Unit Null

Timer Null
Recommended

Action RTP_inj_Procedure()

Impact Receivers play artificial stream instead
of real one

contains various functions to set the value of different fields, and
the length of the entire message.
Events in the simulator environment can be controlled to occur at
a specific time. Message/event related functions can be used to
send messages to other modules, schedule an event, or delete a
scheduled event. This feature facilitates launching attacks that
require accurate timing.
MMSim module provides interaction between SIP and RTP which
makes cross-protocol detection possible. RTP protocol attributes
can be captured by SIP through a specialized function that can be
called from SIP module. On the other hand, C++ streams which
are associated with files are used to emulate our signature
database with links to specific functions that perform the
recommended actions.

Proxy ServerRegistrar Server

Hub
Router Router

Proxy ServerRegistrar Server

Hub

UA

UA

UA

UA

UA UA

UA

UA

UA

UA

Figure 6. Simulated Network Topology.

7. RESULTS AND ANALYSIS
7.1 Detection Accuracy
Table 5 summarizes the detection accuracy results. The table
shows how various components in the proposed architecture
contributed to detecting all attacks launched during the
experiment. Some of the attacks such as CANCEL and
Malformed packets were unknown to the IDS prior to the
experiment. We believe the more details we put in our
implementation following protocol specifications, the more
unknown attacks we detect, since unknown attacks are mostly
protocol violations.

Table 5. Detection Accuracy Results

Attack Name Instances Attacks
Detected

Detecting
Module

BYE 7 7 State Table

Re-INVITE 4 4 State Table

CANCEL 2 2 Behavior
Observer

REGISTER
flooding 6 6 State Table

Malformed
packets 4 4 Packet Verifier

Voice Injection 3 3 State Table

During the experiment we simulated false BYE and Re-INVITE
attacks by delaying RTP packets in both after receiving a BYE
message, and a Re-INVITE request respectively. Our IDS raised
false flags on both occasions. We believe abnormal network
conditions are to blame for these false positives, and not our
detection mechanism. Delay as a result of propagation, handling,
or queuing is a major issue in packet-based VoIP environments.
However, our parameterized State Table can be used to overcome
such situations. The choice of the values for timers and thresholds
is left to the discretion of the system administrator. Hence, system
administrators can set these values in a way that reflects the
conditions of the underlying network to avoid unwanted false
alarms.

7.2 Performance Evaluation
It is vital that any security measure to be implemented in a VoIP
network does not impede the performance of the network or affect
it badly. Quality of service (QoS) is very important to the
operation of VoIP networks. The implementation of various
security measures in a VoIP network can introduce some
complications that can degrade QoS. These complications range
from delaying call setups to delaying delivery of data packets.
In this section we evaluate the performance of the proposed
architecture, and show its effect on the network. Our discussion
will focus on three main issues, namely, end-to-end delay, call
setup delay, and packet loss. Before we start discussing these
three issues in detail, we show in figure 7 the number of call
requests as captured at the Proxy Server of one of the domains.

0

1

2

3

4

5

6

0 1000 2000 3000 4000

Simulation Time

Ca
ll

Re
qu

es
ts

Figure 7. Call Requests at a Proxy Server.

End-to-end delay in VoIP refers to the time it takes for a voice
transmission to go from its source to its destination. The ITU-T
G.114 standard describes that a 150 milliseconds one-way delay
is acceptable for high voice quality [5]. Every element along the
voice path adds to this delay. This includes switches, routers, and
public Internet connections. Figure 8 shows the end-to-end delay
experienced by an endpoint in the network with and without our
IDS installed. The figure shows end-to-end delay for individual
RTP voice packets. Our IDS added about 2.6 milliseconds on
average to the voice transmission delay. As shown in the figure,
the overall delay remains considerably less than the upper bound
of 150 milliseconds. The delay variation (jitter) remains at 2
milliseconds with a slight addition of 3 * 10-5 seconds by our IDS.
Therefore, our IDS has a trifling impact on end-to-end delay.
Call setup delay in VoIP environments is the period that starts
when a caller dials the last digit of the called number and ends
when the caller receives the last bit of the response. VoIP systems
are expected to give a performance comparable of that of PSTNs.
Users may be annoyed with a setup process that requires more

than a few seconds. Figure 9 shows the call setup delay
introduced by our IDS at a certain endpoint during the simulation.
The operation of the IDS adds about 68 milliseconds to the call
setup process. Such an increase in the call setup time is tolerable
by VoIP users. Furthermore, the overall call setup delay remains
within the limit of one or two seconds mentioned in [6].

0.11
0.115
0.12

0.125
0.13

0.135
0.14

0 1000 2000 3000 4000

Simulation Time

P
ac

ke
t D

el
ay

 (s
ec

)

With IDS Without IDS

Figure 8. End-to-end delay.

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35

0 1000 2000 3000 4000

Simulation Time

Ca
ll

S
et

up
 T

im
e

(S
ec

)

With IDS Without IDS

Figure 9. Call Setup Delay at an Endpoint.

Ideally, there should be no packet loss for VoIP. Losses of 3 and 4
percent could place the quality in VoIP networks encoded by
certain codecs at a level below the quality of service level of
PSTNs. Part of the problem in VoIP environments is their reliance
on RTP which uses the unreliable UDP for transport with its
unguaranteed packet delivery. Figure 10 shows the packet loss
rate at servers and endpoints buffers with and without our IDS for
various amounts of traffic. The packet loss rate with our IDS is
only 0.02 % higher than the rate without it on average. The
overall packet loss remains at 0.04% on average, which is
considerably less than the 1 percent level specified by many
codecs as the upper limit.
The good performance figures shown by our architecture can be
attributed to two main factors: Firstly, the Behavior Observer
implements finite state machines in switch-like statements, which
makes memory management efficient. Considering the
expensiveness of creating objects, there is no need in this scheme
to create a new object for each transition or state in the finite state
machine. Information that identifies calls uniquely can be stored
at the cost of a few hundred bytes per call. This low cost allows
servers to accommodate hundreds of calls simultaneously without
degrading the performance of the system. Secondly, retrieving
from the database requires going through only one level of
hierarchy. Specification-based modules directly retrieve from
Field and State tables which contain the actual signatures. In
addition, Administrators can store more than one procedure in the
Recommended Action Field of the database for a single record.

Therefore, the database can store in one record multiple
signatures with slight variations.

0

0.01

0.02

0.03

0.04

0.05

0.06

0 10000 20000 30000 40000 50000

Number of Packets

Lo
ss

 P
er

ce
nt

ag
e

(%
)

With IDS Without IDS

Figure 10. Packet loss.

8. RELATED WORK
Hybrid IDSs can trace their origins back to systems such as IDES
[9], NADIR [7], and W&S [20]. These systems combined
anomaly detection with penetration identification. However, it
was difficult to establish proper behavior patterns, resulting in a
relatively large number of false alarms. Using system
specifications as the detection baseline in our architecture reduces
the false alarm rate significantly.
STAT [4] and NetSTAT [21] adopted state transition analysis for
host and network-based detection respectively. Being only
signature-based limited the ability of these systems to detect new
attacks. On the other hand, J. M. Orset, B. Alcalde, and A. Cavalli
[13] proposed an EFSM-based IDS that uses specifications of
routing protocol OLSR to detect anomalies in Ad Hoc networks.
However, their solution was not complemented by a signature-
based component, which made it difficult to detect attacks such as
DoS attacks. These shortcomings are addressed in our architecture
which has a specification-based module working in conjunction
with a signature-based one.
Our signature database can be compared to systems such as Snort
[17]. The Snort database design defines the lowest level of detail
as an event, which is the combination of a collection of packet
header and data, and an active Snort rule, called a signature.
However, Snort’s approach falls short of providing a basis for
semantics-aware signatures at the session level. Sommer and
Paxon [18] proposed adding connection-level context to
signatures to reduce false positives in misuse detection. However,
their aim was to complement the most common form of signature
matching, which is low-level string matching, with context. Our
signature database combines both types of signatures, byte-level
and semantics-aware. Our semantics-awareness is based on
describing attacks using state transition diagrams which allow us
to represent attacks at the session level rather than lower and
semantics-less levels. The lowest level of detail in our semantics-
based module is the state instead of the traditional event. This
feature enables our database to store a higher-level abstraction of
attacks than previous works, and support more general signatures.
Several IDSs have been proposed to meet the special needs of
VoIP environments. SCIDIVE [23] is a stateful, and cross-
protocol IDS for VoIP. SCIDIVE can be considered a signature
based detection system rather than an anomaly based system. This
limitation is addressed by vIDS [16]. Instead of relying entirely
on a rule database, vIDS is based on interacting protocol state

machines. This design covers the issues relating to semantics
anomaly detection, while not addressing syntax anomaly
detection properly. vFDS [15] is an online statistical detection
mechanism designed for VoIP systems. vFDS relies on pure
statistical anomaly approaches which affect its sensitivity
negatively. In addition, vFDS is limited to detecting flooding
attacks. Our design provides a combination of specification-based
and signature-based detection techniques to bring the false alarm
rate to its lowest level. It also addresses syntax and semantics-
related issues to cover a wider range of attacks.

9. CONCLUSION AND FUTURE WORK
We have proposed a hybrid, host-based intrusion detection
architecture that combines specification and signature-based
detection techniques for VoIP systems. Our architecture caters for
stateful detection, and allows protocols to exchange useful
information to improve detection efficiency. Our signature-based
module supports a high-level of abstraction for attacks which
helps bring semantics awareness into attack description. Various
experimental results show excellent detection capabilities, and
low runtime impact on VoIP endpoints and servers.
VoIP environments share the same infrastructure with IP-based
networks, and consequently they inherit all the security
weaknesses of IP. Our future work involves applying the same
techniques to lower layers such as transport and network layer.

10. REFERENCES
[1] Anderson, J. P. 1980 Computer Security Threat Monitoring

and Surveillance. James P. Anderson Co. Fort Washington,
PA, (April 1980).

[2] Balepin, I., Maltsev, S., Rowe, J., and Levitt, K. 2003 Using
Specification-based Intrusion Detection for Automated
Response. In Proceedings of the Sixth International
Symposium, Recent Advances in Intrusion Detection
(RAID’03) (Pittsburg, PA, 2003).

[3] Holzmann, J. G. 1991 Design and Validation of Computer
Protocols. Prentice Hall, New Jersey, 166.

[4] Ilgun, K., Kemmerer, R. A., and Porras, P. A. 1995 State
Transition Analysis: A Rule-Based Intrusion Detection
Approach. IEEE Transactions on Software Engineering, 21
(3). 181-199.

[5] International Telecommunication Union –
Telecommunication Standardization Section
Recommendation G.114: One-way Transmission Time. May
2003. Retrieved March 2008, from ITU web site:
http://www.itu.int.

[6] Internet Engineering Task Force – Internet Draft: VoIP
Signaling Performance Requirements and Expectations. June
1999. Retrieved March 2008, from IETF web site:
http://tools.ietf.org.

[7] Jackson, K. A., DuBios, D. H., and Stalling, C. A. 1991 An
Expert System Application For Network Intrusion Detection.
In Proceedings of the 14th National Computer Security
Conference, (Baltimore, MD, October 1991).

[8] Lee, D. and Yannakakis, M. 1996 Principles and Methods of
Testing Finite State Machines. Proceedings of The IEEE, 84
(8). 1090-1123.

[9] Lunt, T. F., Tamaru, A., Gilham, F., Jagannathan, R., Jalali,
C., Neumann, P. G., Javitz, H. S., Valdes, A., and Garvey, T.
D. 1992 A Real-time Intrusion Detection Expert System
(IDES). Final Technical Report. Computer Science
Laboratory. SRI International. Menlo Park. CA.

[10] MMSim – Simulation of Multimedia Protocols using
OMNeT++. Retrieved January 2008, from
http://www.ibr.cs.tu-bs.de/projects/mmsim.

[11] OMNeT++ Simulator. Retrieved January 2008, from
OMNeT++ web site: http://www.omnetpp.org.

[12] Oppliger, R. 2002 Internet and Intranet Security. 2nd edition.
Artech House, Norwood, MA, 374.

[13] Orset, J. M., Alcalde, B., and Cavalli, A. 2005 An EFSM-
Based Intrusion Detection System for Ad Hoc Networks. In
Proceedings of The Third International Symposium,
Automated Technology for Verification and Analysis
(ATVA), (Taipei, Taiwan, October 2005).

[14] Poikselka, M., Mayer, G., Khartabil, H., and Niemi, A. 2004
The IMS: IP Multimedia Concepts and Services in the
Mobile Domain. Wiley, Sussex, 278.

[15] Sengar, H., Wijesekera, D., Wang, H., and Jajodia, S. 2006
Fast Detection of Denial-of-Service Attacks on IP
Telephony. In Proceedings of IEEE Fourteenth International
Workshop on Quality of Service, (New Haven, CT, 2006).

[16] Sengar, H., Wijesekera, D., Wang, H., and Jajodia, S. 2006
VoIP Intrusion Detection Through Interacting Protocol State
Machines. In Proceedings of the International Conference on
Dependable Systems and Networks (DSN’06), (Philadelphia,
USA, 2006).

[17] Snort – The de facto Standard for Intrusion
Detection/Prevention. Retrieved March 2008, from Snort
web site: http://www.snort.org.

[18] Sommer, R. and Paxon, V. 2003 Enhancing Byte-level
Network Intrusion Detection Signatures with Context. In
Proceedings of Tenth ACM Conference on Computer and
Communication Security, (Washington DC, 2003).

[19] Sundaram, A. 1996 An Introduction to Intrusion Detection.
ACM Crossroads Magazine, Special Issue on Computer
Security, 2 (4), 3-7.

[20] Vaccaro, H. S. and Liepins, G. E. 1989 Detection of
Anomalous Computer Session Activity. In Proceedings of
the IEEE Symposium on Research in Security and Privacy,
(Oakland, CA, May 1989).

[21] Vigna, G. and Kemmerer, R. 1998 NetSTAT: A Network-
based Intrusion Detection Approach. In Proceedings of the
14th Annual Computer Security Application Conference
(ACSAC), (Scottsdale, Arizona, 1998)

[22] Wagner, D. and Dean, R. 2001. Intrusion Detection via
Static Analysis. In Proceedings of IEEE Symposium on
Security and Privacy (Oakland, CA, May 2001).

[23] Wu, Y., Bagchi, S., Garg, S., Singh, N. and Tsai, T. 2004
SCIDIVE: A Stateful and Cross Protocol Intrusion Detection
Architecture for Voice-over-IP Environments. In
Proceedings of the 2004 International Conference on
Dependable Systems and Networks (DSN’04) (Florence,
Italy, 2004).

http://www.itu.int/
http://tools.ietf.org/
http://www.ibr.cs.tu-bs.de/projects/mmsim
http://www.omnetpp.org/
http://www.snort.org/

	1. INTRODUCTION
	2. STATE TRANSITION ANALYSIS AND STATE MACHINES
	2.1 Extended Finite State Machines
	2.2 EFSMs in Specification-based Detection
	3. SIP-BASED VOIP AND THREAT MODEL
	3.1 SIP Session
	3.2 SIP and RTP Threat Model

	4. THE PROPOSED ARCHITECTURE
	4.1 Architecture Components Interaction

	5. IMPLEMENTED ATTACKS
	5.1 The BYE Attack
	5.2 The Re-INVITE Attack
	5.3 The CANCEL Attack
	5.4 The REGISTER Flooding Attack
	5.5 Malformed Messages Attack
	5.6 Voice Injection Attack

	6. SIMULATION ISSUES
	6.1 Topology and Configuration
	6.2 Attack Implementation and Detection Using the Simulator

	7. RESULTS AND ANALYSIS
	7.1 Detection Accuracy
	7.2 Performance Evaluation

	8. RELATED WORK
	9. CONCLUSION AND FUTURE WORK
	10. REFERENCES

