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Abstract

Adaptive techniques based on machine learning and data mining are gaining relevance in self-
management and self-defense for networks and distributed systems. In this paper, we focus on
early detection and stopping of distributed flooding attacks and network abuses. We extend the
framework proposed by Zhang and Parashar (2006) to cooperatively detect and react to abnormal
behaviors before the target machine collapses and network performance degrades. In this frame-
work, nodes in an intermediate network share information about their local traffic observations,
improving their global traffic perspective. In our proposal, we add to each node the ability of learn-
ing independently, therefore reacting differently according to its situation in the network and local
traffic conditions. In particular, this frees the administrator from having to guess and manually
set the parameters distinguishing attacks from non-attacks: now such thresholds are learned and
set from experience or past data. We expect that our framework provides a faster detection and
more accuracy in front of distributed flooding attacks than if static filters or single-machine adap-
tive mechanisms are used. We show simulations where indeed we observe a high rate of stopped
attacks with minimum disturbance to the legitimate users.

1 Introduction

Nowadays, networks and autonomous systems have reached a high level of sophistication, and
the same way failures, attacks, and the corresponding protection mechanisms have reached a high
level of complexity too. Autonomic computing and its network-oriented area autonomic net-
working, are working on self-organizing, self-optimizing, self-healing, and self-defense methods,
in order to protect networks against these attacks, abuses, and failures. Also machine learning
and artificial intelligence are finding their place as important ingredients to achieve these self-*
capabilities with higher accuracy, allowing adaptation and adjustment when simple and static al-
gorithms can not be applied for. For this automatization, data mining tehcniques are being used
to allow systems and networks to recognise patterns in the system’s behavior and act accurately.
Many techniques are available for categorizing and mining such patterns when they occur at a sin-
gle site. But on large distributed systems, interesting patterns may be itself themselves distributed,
i.e., not visible at once from a single site, so harder to detect.

Distributed attacks, floodings, and abuses are a forms of attacks that sometimes are hard to
detect because their resemblance to legitimate connections or traffic. Distributed denial of services
and flooding attacks overwhelm networks and resources sending a great amount of usual-looking



packets, opening many usual-looking connections or requesting many hard queries to specific
services, simultaneously from a large amount of requesters. This scheme makes difficult to detect
each single attacker because of the apparently normal behavior of each individual requester. Also,
it cannot easily be stopped from the bordergate access points of the victim network because each
router in the network only sees a part of the attack, even a negligible part in the case of access
points. For this type of attacks, one must look for methods where information about suspected
attacks spreads quickly among the intermediate elements before the attack reaches the victim in
full.

DDoS attacks can occur in popular sites and networks, motivated by interest or vandalism.
DDoS became famous in 1996 when SYN floods took down Web servers by attacking the root
nameservers. With only 1000 zombie machines and the trin00 DDoS toolkit [15], a critical server
from the University of Minessota was disabled and denied access to a very large university net-
work. The increasing appearance of DDoS toolkits and trojans make it necessary to protect net-
works and critical services from these attacks, because with a reduced number of machines and
a downloadable toolkit a distributed denial of service can be performed easily against any given
site.

In our approach we present a mechanism where, using information sharing and machine learn-
ing, a network is able to stop and avoid a distributed attack, abuse, or flooding. Each element
shares with its neighbors information about the status of the network, and aggregates its local in-
formation and the one received to model and classify the traffic it is receiving. Our mechanism
lets each element learn about the behavior of its portion of network, adjusting its classifiers to its
location in the network and the traffic it typically sees.

In Section 2 we discuss previous work and approaches to this area. In Section 3 the architecture
of the framework and each mechanism are detailed. In Section 4 we explain the how the classifiers
work and how they adapt to their environment. In Section 5 we describe some experiments to
validateour approach. Finally, in Section 6 we draw some conclusions and anticipate some of our
future work.

2 Related Work

Our main reference is the work of Zhang and Parashar [1]. They defined a cooperative frame-
work for the detection of DDoS attacks, in which a subset of the network nodes (the overlay
network) is selected. Nodes in the overlay network maintain detection mechanisms for abnor-
mal situations, and exchange and aggregate information about traffic condition in different parts
of the network. The results were very satisfactory in the sense that information sharing between
intermediate network nodes allow them to detect attacks with more accuracy and timeliness.

More technically, the detection mechanism used in [1] was the well-known CUSUM (cumulated
sum) algorithm [13] applied to traffic volume. When a node detected that local traffic became sus-
piciously high, it immediately gossiped to p selected neighbors the key-pair (victim,confidence),
indicating the victim target and the confidence (or degree of suspicion) computed by its detectors.
Also each node used the sum of confidences of the received gossips and the confidence of its own
detector to declare that a victim is under attack. Therefore, note that there are at least three param-
eters that have to be set, either for all nodes at once, or for each node separately: the threshold that
triggers gossiping, the amount p of gossip spread, and the threshold on the gossips that triggers an
attack declaration. It is, in general, hard to anticipate a priori the best values for these parameters.

With a different goal in mind, Poggi et al. [2] proposed AUGURES, an architecture used to
model users and streams of user requests to websites. The system prioritizes incoming users and
sessions according to their expected utility to the system (e.g., expected revenue) so that, in case
of a system overload, only users with high utility are effectively admitted to the system. They used



machine learning techniques (such as decision trees or Naive Bayes classifiers) to learn to assign
priorities from weblogs of past activities, and showed that even with simple learners one can have
nontrivial predictive power about user’s future intentions.

Other techniques have been previously developed in order to stop denial of service attacks. In
[8], nodes closest to the source are equipped with traffic ratio detectors. When the traffic ratio
mismatches with the usual one, traffic is limited for the specific connection retaining the weight
of the attack as far from the victim as possible. Also, a technique using machine learning has been
developed in [3] using as information the ratio of TCP flags and TCP connections. Furthermore,
heuristics and data mining mechanisms, such as MULTOPS [4], have been developed in order to
stop bandwidth attacks using statistical information about the traffic.

For our approach, we will use the infrastructure purposed in [1], complementing it with the
power of adaptivity provided by machine learning induction, and in particular applying techniques
similar to those in [2]. Furthermore, in order to restrict the attack strike to the network borders
we have added to the model a backward warning system (not present in [1]) to stop the attack
as close to the source as possible. So, our network elements will learn to determine whether the
situation is normal or abnormal, and use this status to determine whether a message to a particular
node should be forwarded or blocked, if a flooding attack to that node is suspected. This way,
attacks can be stopped much before they reach the victim, and even very close to the borders of
the network.

3 Network Architecture

3.1 The Overlay Network

In our approach, a subset of the intermediate network nodes are chosen to belong to an overlay
network. Nodes in the overlay network will be equipped with detection and classification capa-
bilities, and will exchange gossiping about possible threats and warnings about declared threats.
It is important that nodes in the overlay network are key nodes (like backbone routers, firewalls,
bordergate nodes, and high adjacency nodes) that see most of the traffic for the most requested
services. In the extreme case, all routing nodes from the network would be chosen to belong to
the overlay network, although this may be unfeasible in practice.

3.2 Classifiers and Detectors

We use detectors and classifiers to distinguish patterns of normal traffic patterns from attacks
and abuses. Classifiers are models that produce predictions, and in particular those that can be
trained using statistical or machine learning techniques. Detectors react to changes in specific
traffic measures, such as “amount of traffic towards a given node”, “relation between amount of
traffic sent/received to a particular service”, or others depending on protocols, message headers,
or specific behavior patterns. In this work we have used only the first, amount of traffic towards a
given node. In particular, for the moment we do not analyze at all the headers or contents of the
messages. This is partly due to the complexity of performing this analysis, but also because we
want to concentrate on the particular case of distributed flooding attacks which, by definition, have
“large amount of traffic” as the only common feature. However, our framework could handle well
additional information about the packets, if available, and this could be potentially be very useful
in protecting from flooding and other types of attacks.

In this work we will use CUSUM algorithm to determine when the traffic towards a particular
node changes significantly, but other detection algorithms can be used. As classifiers, we will use
the well-known Naive Bayes method, which will integrate the local information plus that shared



with the neighbors to declare when an attack is occurring. More details about classifiers and how
they are used at the nodes are given in Section 4.1.

3.3 Information Sharing

To improve the accuracy in classification, each node must have the maximum global knowledge
about traffic. For this approach there are two kind of messages that will be shared: gossips, indi-
cating suspicion of a flooding attack, and warnings, indicating high certainty of an ongoing attack.
An important difference is that gossips are sent to and received from neighbors in any direction of
the overlay network, while warnings are sent only in the direction of (apparent) attackers, in order
to strangle attacks as close to the source as possible.

When a detector (the CUSUM algorithm for traffic volume) considers that traffic to a victim is
increasing in an abnormal way, a gossip is spread among the neighbors indicating that a victim can
be under attack. In one extreme, all neighbors will receive the gossip, and in the other extreme,
only the next-step-node will receive the gossip. The message contains the possible victim ID and
the confidence, that is, the number of gossips received referring to the same possible victim. Also,
when a classifier determines that a victim is under attack while classifying a message destinated
to it, a warning is sent to node from which the message was received (i.e., towards the source of
the attack), and sent too to the neighbors if required. Each node uses the aggregated gossips and
warnings received as inputs to its classifier.

In other words, the idea of this scheme is the following: With the warnings, victim-closest nodes
will indicate to the bordergate nodes to stop the attack flow, and with the gossips, the source-closest
nodes will indicate to the intermediate network nodes that the aggregated traffic is still attempting
to enter the network, instead of letting the attack flow in. The result should be both to improve the
accuracy in classification, but also, when an attack is detected, to stop undesired traffic as close to
the sources as possible, thus freeing resources in the network.

3.4 Node and Network Algorithm

Each node contains the algorithm for classifying each message passing through it. The algo-
rithm compares the accumulated sum of means for each time unit with a characteristic threshold
for each destination. When a message arrives, the accumulated mean for its destination is renewed
and if it reaches the threshold, a gossip is added for that destination. Then, each node accumulates
self-gossips and neighbor-gossips and for each time unit the number of confidences is checked. If
confidences for a service are above a concrete threshold, a gossip is sent to the next node in the
service path, and also is sent to p neighbors. Also, for each time unit (empty time units included)
means and accumulated means are updated according the last time-unit statistics.

After getting all the statistics of traffic to the message destination, a classifier evaluates the
message attributes including the gossips for the destination and the warnings for the source. If
classifier concludes that the message belongs to an attack, the message is not forwarded and also
a warning is sent to the backward node. The evaluation algorithm is given in Figure 1.

4 Network Learning and Classification

Given that each node on the network has different characteristics depending on the context and
the network situation, configuring with accuracy a classifier becomes a problem. The classifier
must be adjusted to the node detectors, the level of trust to a concrete gossip, and the amount or
type of usual traffic passing through the node.



For each received message do:
if accumulated mean > destination threshold:
—increment gossip for destination
endif
if time unit changes:
if gossips for destination > confidence threshold for destination:
-send gossip with confidence to forward node
endif
—-renew the traffic mean
-renew the accumulated mean
—clean gossips and warnings
endif
—evaluate line <message, gossips for dest., warnings for source>
if classified as attack:
—increment warning for source
-send warning to backward node
else
—forward message to destination
endif
endfor

Figure 1. Message evaluation algorithm in each node

4.1 Training the Network

Each node is equipped with a learner/classifier, so machine learning can give each node the
ability to adapt their thresholds of gossip trusting and detection mechanisms for each victim or
source to the node situation. The only thing that needs to be done is to train each node on its
typical traffic and in situations denoting an attack. For that, a training data set must be obtained
capturing samples of traffic and samples of attacks or abuses. If not available, simulations or
workloads can be used, that clearly reflect different the volumes of traffic corresponding to attacks
and non-attacks.

To model the traffic and the context of the intermediate network, for reduce each message
to a tuple of only four attributes: destination, source, warnings received about the source being
an attacker, and gossips about suspicion of attack to the victim. One could add more relevant
attributes depending on the level at which the message is analyzed (link, IP, TCP, application, ...),
although we have not done it so far in our experiments.

We next describe the particular learning and classifier we have used, the Naive Bayes method. In
this method, the different message attributes are supposed to be statistically independent. Although
obviously they are not, this assumption leads to an efficient and simply classifier that usually does
well in practice, so it is a good starting point before more complex classifiers are tried out.

To describe the method, we use the following notation for converting a boolean value to an
integer: given two numbers a and b, we denote

1 ifa >0,

<p=
@=> 0 ifa<b.

Given a message m, regarded a a tuple (src, warn, dest, gossip), the Naive Bayes method com-

putes estimates of Pr(attack|m) and Pr(noattack|m) and simply predicts “attack” if Pr(attack|m) <

Pr(noattack|m), and “no attack” otherwise. These two probabilities are computed using Bayes’

Theorem, e.g.:

Pr(mlattack) - Pr(attack)
Pr(m)

Observe that Pr(m) can be desregarded because we only care about the ratio of Pr(attack|m)
and Pr(nonattack|m). Pr(attack) and Pr(nonattack) can be estimated from the training data,

Pr(attack|m) =

ey



locally to each node. To estimate Pr(m/|attack) we use the independence assumption, as follows:

Pr(m|attack) = Pr({src,warn,dest,gossip)|attack)
= Pr(src,warn|attack) - Pr(dest, gossip|attack).

Note that we have grouped source and warning together since naturally a message arrives to this
node with information about its source and the number of warnings for the source, while the level
of current gossip for a particular destination is added to it by the node from the table kept locally.
Thus, it does not make much sense to further split the probability in four. Now again, these two
probabilities can be estimated from the empirical distribution of messages in the training data as
follows:

Pr(src,warn,attack)
Pr(attack)

* Pr(src,warnl|attack) =

__ Pr(dst,gossip,attack)

* Pr(dst, gossip|attack) Pr(attack)

* Pr(attack) is the attack ratio at this node.

All in all when an attack occurs, one can expect the following three phases, which we have
indeed observed in our simulations:

* A ramp-on phase, where the malicious load increases abnormally. The attack is not yet de-
tected but the of gossips increases. Nodes aggregate all the knowledge about neighborhood
traffic against the victim.

* The detection and reaction phase. The number of gossips triggers some classifiers and
attacking traffic is increasingly. Traffic decreases but gossips and warnings keep circulating
in substitution of the attack load (volume of gossips and warnings is extremely lower than
the attack volume).

» The stabilization of the attack. Warnings arrive to bordergate nodes, and the attack is stopped
very close to the border. Gossips keep all the bordergate nodes informed about the continu-
ation of the attack.

5 Experiments

In this section we describe our experiments in this framework. The goal of these experiments
is to check that the detection and classification algorithms behave as we expect, and to test the
effectiveness of the method at detecting and stopping attacks early.

For the detection algorithms, we will trace the volume of traffic produced during a normal status
and during an attack, to check the evolution of gossip messages and confidence, and the relation
with the volume of normal traffic. For the classifier we will check the effectiveness of this during
the whole test and monitor both true detections and false alarms (false positives).

5.1 Environment

For the experimentation, a simulated network using the Objective Modular Network Testbed
in C++ (OmNET++) [11] has been built. We use the OmNET online simulator because of its
generic and flexible architecture, and the capability of simulating real networks with maximum
detail, controlling time variables and having implemented protocols from each TCP/IP stack layer.
We have used the high-level topology of the network of the Technical University of Catalonia,



and as traffic model we have used logs of normal HTTP 1.1 sessions from different entrance
point of the network to an HTTP server inside. The network will run in normal status until a
distributed denial of service attack begins, flooding the path to the service and interfering with
normal connections. Also, we have equipped the intermediate network nodes and the bordergate
nodes with the detection mechanisms and the classifiers described in the previous sections. The
paths clients-to-service are shown in Figure 2.
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Figure 2. The Network Structure, with the victim service, intermediate network, exterior
network, and clients and attackers

For simplicity, we have chosen a single destination (service) as potential victim (on the left
of the figure), and view the rest of the network as a tree-like structure from a bunch of clients
(on the right of the figure) to the service. Therefore, the distributed-attack critical points, where
the attack will be detected first, will be those closest to the service. The network consists of a
gigabit ethernet. It contains the bordergate routers, the access points to our network, as well as
intermediate nodes connecting these access points to services. Each client can be understood as
an access point for several clients, and not only as a single and final client, just like the attackers
can be understood as access points for several attackers. The gossiping level for our test is just
gossiping the confidence to the successor node in the path to the victim, and also for the warning
level, sending warnings only to the previous node. Also, clients have been modeled as HTTP
clients, with variable thinking times and session times. The attackers are configured to make
requests continuously without waiting any response, with a reason of 500-1000 attack packets
against each legitimate package.

5.2 Experiments and Results

First of all, once the system has been set up with the detection and information sharing devices,
it must be trained. For this learning phase we will run the network with well-behaved client
request streams to collect non-attacking data, and some attacks to collect the attack behaviors
to be modeled. The advantage of using OmNET is that this toolkit comes with usual client and
service patterns, and these patterns can be adjusted to HTTP, FTP and other existing or wanted
models. Also, random factors can be added in order to randomize in a common range some client
and service variables like thinking time, start time, request sizes, intervals between sessions, and
more, so each run becomes lightly different letting us to not overadjust our models and not being
restricted to a only one concrete situation. So, training must be done while gossips are enabled,



and warnings should be set temporarily disabled (we are not depending on classifiers yet).

Looking at the results of the Naive Bayes machine learner, it can be observed what was ex-
pected: First, the attack probability for warnings increases with the number of warnings, while the
probability of non-attack decreases attack. Second, for a low number of gossips, the probabilities
remain stable until a relative high number of gossips, where the attack probability increases, be-
coming zero the no attack probability. Also, the source and destination conditional probabilities
follow the expected behavior too. The fact that each attribute has its own probability chart will
ensure to us that the system will not only memorize the attack destinations for classifying traffic.

For traffic behavior, Figure 3 shows the mean number of received messages for each node.
Comparing the network with and without discrimination mechanism at the nodes, we can observe
that messages are reduced during the attack, except on the bordergate nodes, where all attack ar-
rives but does not pass through. Also, bordergate nodes receive the extra amount of messages
referring to the retransmission from rejected messages. Evidently a gossip message can not be
compared to the flooding messages. And for the gossip system, we tested the behavior of the
algorithm in front of usual traffic and attacks, and it was just as expected too. In Figure 4 the
accumulated traffic behavior is shown, and we can observe that without the mechanism, during an
attack all nodes receive attacking traffic, while using the classification mechanism only the border-
gate nodes receive its impact, but stop it almost completely, thus freeing the intermediate network
and the victim server of being flooded.
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Figure 3. Messages received for each node, without and with the mechanism
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Figure 4. Aggregated Traffic for each node, without and with the mechanism

In Figure 5 we show the evolution of attack confidences (level of gossip) over time. The two
plots in each represent the accumulated traffic at bordergate nodes and at intermediate nodes.



At time 400, an attack starts flooding the paths to the target service. The level of traffic at the
bordergate nodes remains high until the end of attack. Without the detection mechanism, it can be
seen that the accumulated traffic at intermediate nodes is essentially the same as that received in
the bordergates, since no messages are blocked. On the other hand, with the detection mechanism,
the traffic seen by the intermediate nodes is a fraction of the traffic at the bordergate nodes.
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Figure 5. Evolution of Confidences at nodes

Finally, for the machine learner, observing the results of classification we can see that the Naive-
Bayes classifier has high accuracy (above 95%) and all classification mistakes are false negatives,
that is, some attacking messages are let through. We observe no false positives: when no attack is
occurring, all traffic arrives to the destination service. Moreover, most of the mistakes in one node
are corrected in the next node in the path to the victim.

As a result, our experiments have demonstrated that detection and classification systems work
as well, stopping all flooding traffic as close to the source as possible, freeing the intermediate net-
work of flooding traffic and preventing service overload during the attack. The classifiers classified
flooding traffic with accuracy above 95%, with no false positives. The false negatives (attacking
messages not classified as such) at the bordergate nodes are stopped in the intermediate network,
but far enough from victim service. More precisely, in these experiments less than 1% of the
attacking messages arrived at its destination.

6 Conclusions and Future Work

In order to avoid distributed denial of service attacks and flooding attacks or abuses, we have
presented a mechanism based on sharing information and machine learning, which enables the
network to stop these attacks early and close to the sources. Previous approaches that we are
aware of used static techniques or adaptive techniques based on collecting information and treating
it with predefined, pre-tunes, models. In our approach, a learning component lets the system
create, adjust, and renew the behavior models. Each element of the network learns from its local
traffic patterns and shares this information with the other elements so that each one has aggregated
information about the network. This information is collected in a local model or classifier. At
prediction time, again information about the state of the network circulates among the nodes, but
the information is this time passed through the classifier, which determines with high confidence
whether messages for a given destination belong to an attack.



We have tested the method simulating the topology of the Technical University of Catalonia
and real volumes of attacking and nonattacking traffic with OmNET++ and attacking it. Our
mechanism produces good results: attacking traffic is identified as such with accuracy over 95%,
and most of it is stopped essentially at the bordergate nodes. Less than 1% of the unwanted traffic
arrived to the victim server, thus essentially posing no thread. When no attack is taking place, all
of the legitimate traffic arrives to its destination.

There are a good number of issues to be investigated further. One could of course try more ad-
vanced methods for message classification. Given the very sketchy information we now consider
about each message (source, warnings, destination, and gossips) there is little point in trying to
improve on the (extremely high) accuracy. Observe that one of the main drawbacks of our ap-
proach so far is that, when a service is under attack, all traffic to it is blocked. This is unavoidable
if only the traffic volume is taken into account. So the problem of interest is to open up the mes-
sages and use information the packets inside for finer classification, that is, really discriminating
on a message-per-message basis whether it is legitimate or malicious. This classification problem
has of course been studied elsewhere; our goal in this work was, for the moment, designing and
validating the information-sharing scheme.

Another issue before the system becomes practical at large networks is that of memory usage at
each node. Right now, each node keeps a table of all source and destination nodes it has seen. This
is all right for nodes of moderate size, where the number of access points and destination services
is in the order of, say, hundreds. For large-scale networks, this is of course impossible. We
plan on using so-called skefching techniques for keeping only information about those addresses
generating and receiving the highest volumes of traffic at any given period, which are precisely
those that are involved in flooding attacks.
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