
Performance of Wireless Network Simulators - A Case
Study

Dalimir Orfanus
University of Paderborn

Faculty of Computer Science
and Mathematics

33102 Paderborn, Germany
orfanus@upb.de

Johannes Lessmann
University of Paderborn

Faculty of Computer Science
and Mathematics

33102 Paderborn, Germany
lessmann@upb.de

Peter Janacik
University of Paderborn

Faculty of Computer Science
and Mathematics

33102 Paderborn, Germany
pjanacik@upb.de

Lazar Lachev
University of Paderborn

Faculty of Computer Science
and Mathematics

33102 Paderborn, Germany
lachev@mail.upb.de

ABSTRACT
Designing protocols for wireless networks is a challenging
task. Combined with the fact that such networks are often
deployed for critical missions like forest fire detection in the
WSN scenario or have to function properly and efficiently
for an extended period of time, it is desirable to thoroughly
test, analyze and evaluate newly developed communication
protocols before deployment. In order to do this, simula-
tions are a good compromise between cost/complexity and
accuracy of the results. Since there are many simulators for
wireless networks, it is often difficult to decide which one to
choose. Therefore, we present a case study in which four
common wireless network simulators were used to evaluate
a well-known topology control protocol (SPAN). Within the
case study, we describe the strengths and weaknesses of the
examined network simulators: First, we evaluate the usabil-
ity of the simulators in terms of different parts of the pro-
tocol developer’s work process. Moreover, we also focus on
the simulator’s support for reusability and maintainability
of simulation models by measuring particular model proper-
ties. For this purpose, we have proposed a model of quality
for network simulators. The model of quality defines which
properties of models to measure and how to interpret them.
As opposed to other simulator comparisons, we do not fo-
cus on the correlation of the individual simulation results.
Through this paper, we aim at providing a basis for finding
an adequate simulator for a particular task.

Categories and Subject Descriptors
C.2 [Computer-communication networks]: Network Ar-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PM2HW2N’08, October 31, 2008, Vancouver, BC, Canada.
Copyright 2008 ACM 978-1-60558-239-9/08/10 ...$5.00.

chitecture and Design—Wireless communication; C.2 [Com-
puter-communication networks]: Network Architecture
and Design—Network topology

General Terms
Design, Performance

Keywords
J-Sim, OMNeT++, SPAN, ShoX, case study, maintainabil-
ity, model of quality, model properties, network simulators,
ns-2, reusability, wireless network

1. INTRODUCTION
Typically, nodes in wireless networks, i.e. ad hoc and wire-

less sensor networks, cooperate to achieve a common goal
like environmental monitoring, communication, etc. The
unreliable channel between nodes, the possibility of node
movement and network sizes of 100s or 1000s of nodes incur
a high amount of complexity. Further, since wireless nodes
are often resource-constrained, it is also generally not fea-
sible to implement algorithms requiring a high amount of
processing power or large memory footprint. All this makes
designing protocols for wireless networks a challenging task.
Combined with the fact that such networks are often de-
ployed in scenarios which require reliable operation, it is
inevitable to thoroughly test, analyze and evaluate protocol
behavior before real-world deployment.

First there is the possibility of testbed implementation, to
achieve this aim. While testbeds yield rather accurate re-
sults, there are the following drawbacks: (1) Hardware cost
in the light of large deployment scenarios, (2) special issues
involved with specific hardware, (3) unpracticability and in-
feasibility of this test method in large networks due to the
immense complexity and (4) a lack of realistic environment
with deployment-like propagation properties and network
dynamics. Secondly, there is the possibility of wireless net-
work simulation with a model of the physical world avoid-
ing the above-described drawbacks. Nevertheless, there is
the following disadvantage: the limited capability of models

59

to capture reality which implies a lower accuracy of simu-
lation results. This disadvantage has its roots in the high
cost involved with the amount of work that has to be put
into making models precise and the constrained capabilities
of simulation hardware on which the simulation has to be
executed.

There is a large number of commercial and freely-available
wireless network simulators with different strengths, weak-
nesses, foci and popularity. Therefore, choosing an adequate
simulator for one’s own needs is not a simple task. To pro-
vide a basis for finding an adequate simulator, in our case
study, we implemented and evaluated the topology control
protocol SPAN [3] with the simulators J-Sim, OMNeT++,
ns-2, and ShoX. Our focus was not on the comparison of
quality of simulation results, as in other comparison studies
[15, 2], but we are focused on the usability level of simulators
and quality of simulation models itself.

A simulator which supports seamless reusability and main-
tainability of simulation models is more desirable for a pro-
tocol designer and simulator user because it helps to decrease
the overall development time and costs. Reusability stands
for the property of being able to easily reuse already de-
veloped parts of the model from previous projects which in
turn considerably decreases the overall development time of
a new model. In the case of maintainability, we talk about
the ability to easily interchange parts of the model, what is
also desirable if we want to modify or improve current de-
signs. These two qualities are mostly influenced by the sim-
ulator’s architecture which should support reusability and
easy maintainability in a straightforward way.

Reusability and maintainability of a simulation model are
abstract and not tangible qualities which cannot be seen or
even measured directly from the model. In this paper, we
present our newly developed model of quality for network
simulators which resembles this abstract terms into a set of
easily measurable software properties.

The remainder of this paper is organized as follows. In
Section 2, we introduce previous work related to our study
(i.e. other simulator comparisons). In Section 3, we briefly
review SPAN in order to be later able to refer to certain
aspects of SPAN when it comes to outstanding or missing
simulator features. Our quality model for reusability and
maintainability is described in Section 4. Sections 5 and 6
are the main sections of this paper where the four simulators
and our findings are discussed in detail. The paper closes
with a summary in Section 7.

2. RELATED WORK
There are several surveys, comparisons, and also some

case studies about wireless network simulators. They all
differ with respect to the selection of evaluated simulators,
the intention of the work (description or comparison), the
focus of the potential comparison (credibility of results, fea-
tures, performance, etc.) and the level of detail. Table 1
provides a short overview.

Actually, all of the works listed in Table 1 consider differ-
ent simulators or differ in their scope from this paper. The
ones that are closest to our work are [8, 11, 10, 4, 1] as they
include at least the three simulators J-Sim, OMNeT++ and
ns-2, which we also consider. However, [8] examines their
suitability for simulating the failure of critical infrastruc-
tures like electricity or telecommunication networks. This
is very unrelated to what we present here. [11] and [4], al-

Table 1: Overview of some previous network simu-
lator comparisons

Paper Type Simulators Focus

[20] comparison Opnet,ns-2 setup,result accuracy

[19] case study ns-2, Opnet, GloMoSim architecture, results

[17] comparison ns-2, cnet, JNS, Opnet,
AdventNet, NCTUns

features (limited)

[16] case study J-Sim, ns-2, SSFNet scalability, speed, mem-
ory requirements

[8] comparison Opnet, ns-2, QualNet,
OMNeT++, J-Sim,
SSFNet

suitability for critical
infrastructures

[14] comparison ns-2, Avrora, Opnet,
GloMoSim

architecture, function-
ality, extensibility, re-
source requirements

[12] comparison ns-2, TOSSIM architecture, com-
ponents, models,
visualization

[11] description GloMoSim, ns-2, DI-
ANEmu, GTNetS,
J-Sim, Jane, NAB,
PDNS, OMNeT++,
Opnet, QualNet,
SWANS

overview

[10] comparison SSF, SWANS, J-Sim,
NCTUns, ns-2, OM-
NeT++, Ptolemy,
ATEMU, EmStar,
SNAP, TOSSIM

models, type of visual-
ization

[9] description OMNeT++, REAL,
ns-2, C++Sim, cnet,
SSFNet, CLASS,
SMURPH

overview

[4] description ns-2, GloMoSim, Op-
net, SensorSim, J-Sim,
Sense, OMNeT++,
Sidh, Sens, TOSSIM,
ATEMU, Avrora,
EmStar

overview

[1] comparison Opnet, ns-2, OM-
NeT++, SSFNet,
QualNet, J-Sim, Totem

availability/credibility
of models, usability

[15] case study Opnet, ns-2, testbed accuracy of results

[2] case study Opnet, ns-2, GloMoSim accuracy of results

though their list of simulators is huge, do not give a compar-
ative study. Rather, they provide more or less unstructured
descriptions of each of the simulators independently. In this
paper, we aim at comparing simulators according to certain
metrics. In [10], the authors give an overview about different
issues in wireless sensor networks on a general basis. Only
at the end of their work they present a table comparing the
considered simulators according to their language, the avail-
able modules, and whether they have GUI support or not.
Aside from the table, no detailed comparisons between the
individual simulators are given.

The most detailed comparison is presented in [1]. The au-
thors describe a variety of simulators including J-Sim, OM-
NeT++ and ns-2 according to the criteria listed in Figure
3. However, there are a number of important differences:
(1) They consider all simulators from an industrial research
point of view, hence, they focus on issues such as support
for certain models (which are required for their project in
mind), quality of human support, etc., which are rather less
relevant for academic researchers. (2) They do not con-
sider certain aspects which are important here, like installa-
tion issues, and discuss visualization and statistics only very
briefly. (3) Their case study misses practical simulations and
experiences: there are no practical experiences regarding in-
stallation, familiarization or implementation issues. This,
however, is the focus of our case study.

3. SPAN
SPAN [3] is a topology control algorithm aiming at sav-

ing power without reducing the network capacity or loosing

60

connectivity. It does so by electing and constantly adjusting
a set of active nodes called coordinators. The coordinators
form a forwarding backbone of the underlying network while
the non-coordinator nodes can switch their radios to sleep
mode. From time to time the non-coordinator nodes check
if they should become coordinators. Similarly, the coordi-
nator nodes regularly check whether there are enough other
coordinators in their neighborhood in which case they can
go to sleep mode.

In [3], SPAN is implemented on top of the 802.11 MAC
layer’s power-saving mode. For the routing layer, the au-
thors of SPAN chose a simple greedy geographic forwarding
approach, similar to GPSR [13], but without perimeter rout-
ing around voids. Principally, each routing protocol would
do as well. As SPAN has to interact with both routing and
MAC layer, in [3] it is implemented in the logical link con-
trol layer of the ISO OSI stack. For our implementations in
the case study, we will follow their example.

4. MODEL OF QUALITY FOR REUSABIL-
ITY AND MAINTABILITY

To evaluate which simulator offers better support for re-
usability and maintability, we have to measure qualities of
designs which are developed by simulators. To measure
and to interpret such abstract qualities we need a quality
model. A quality model describes the way how qualities
can be measured and interpreted. In our case, we modi-
fied the quality model for reusability and maintability from
[?] where instead of Aspect-Oriented metrics suite we used
Object-Oriented metric suite. Used metric suite is inspired
by metric presented in [?] which we modified for the pur-
poses of our four network simulators. The final model of
quality is depicted on Figure 1. Given model of quality we
have also formally specified in specification and modeling
language AsmL [?].

Figure 1: Model of quality

Reusing and maintenance involves the same cognitive tasks.
It means that reusability and maintability are influenced
by common factors namely understanbility and flexibility.
Each of these factors is related to several internal attributes,
in our case: (i) Coupling (ii) Cohesion and (iii) Size. There
are various sets of software metrics to measure such at-
tributes. In our quality model we used as follows:

4.1 Size metrics
Measures the size of the model and predicts how much of

effort is needed to understand it.

Vocabulary size (VS): Number of components of which
the model consists. Because all simulators are Object-
Oriented, this is the number of classes of the model.

Lines of code (LOC): It counts the total number of non-
empty lines from all classes.

Lines of configuration (LOConf): It measures the size
of all configuration files needed by the model.

Number of children (NOC): It counts number of all di-
rect children of a class.

Weighted methods per class (WMC): Measures over-
all complexity of methods per class. Access methods
has zero complexity while other have 1.

4.2 Coupling metrics
They measure degree of dependency of a class to another

class. Loosely coupled classes are easy to maintain and to
reuse contrary to tightly coupled classes.

Depth of inheritance tree (DIT): It measures the max-
imum length from a node to the root of inheritance
tree.

Coupling between objects (CBO): It counts number of
classes to which an object coupled.

4.3 Cohesion metrics
Cohesion refers to the internal consistency within parts

of the design. Classes with high cohesion are more robust,
suitable for reuse and easy to maintain while opposite is less
preferable for reuse.

Lack of cohesion in methods (LCOM): It measures the
amount of methods which do not access the same in-
stance attribute set.

5. CASE STUDY
For our case study, we selected four different network sim-

ulators to implement the wireless topology control protocol
SPAN described in the previous section. The four simula-
tors we chose were J-Sim [6], OMNeT++ [21], ns-2 [5] and a
relative newcomer, ShoX [7]. The main reason why we chose
the former three simulators is because of their popularity in
the research community. While other simulators like Opnet
[18] are also popular, for our case study we only considered
simulators which are freely available.

As opposed to J-Sim, OMNeT++ and ns-2, which are well
established, ShoX is comparably new. However, it is one of
those simulators which offer a comprehensive graphical user
interface for configuration, visualization and statistics. Ad-
ditionally, it was developed from the beginning with wireless
networks in mind, whereas most other popular simulators
(including J-Sim, OMNeT++, ns-2 and Opnet) initially con-
centrated on wired networks and were only later extended
to the wireless domain. Hence, for ShoX, there is no special
wireless package as with the others, all functionality per-
taining to wireless is an integral part of the software. This
is why we chose to include ShoX in our case study. We were

61

interested to see in how far the focus on wireless instead of
wired network simulation has any impact on ease of use and
the learning curve.

The case study was performed by four people (the au-
thors). To ensure fairness, only one of them did the actual
installation and implementation task for all four simulators.
This was to rule out any influences caused by potentially dif-
ferent programming proficiency or knowledge of computer
network protocols. For all simulators, implementation of
SPAN was done under Linux (Fedora 7) using the open-
source platform Eclipse 3.3. The responsible student was
not familiar with either of the four simulators before the case
study. He had sufficient knowledge of popular programming
languages like Java or C++, and fair knowledge of (wireless)
computer networks. Before the start of the case study, he
familiarized himself with SPAN, so that understanding prob-
lems with SPAN itself were not an issue during the imple-
mentation phase. During the case study itself, he carefully
recorded each necessary step, questions that arose, efforts it
took to find answers to them, features of the simulator that
were helpful or confusing, and the times for the individual
parts. His progress and experiences were discussed weekly
among the authors.

The following section will introduce each of the four sim-
ulators from an architectural point of view. Then, we suc-
cessively cover installation and documentation, implemen-
tation, visualization and statistics collection in more detail.

5.1 Overview

5.1.1 J-Sim
J-Sim (formerly JavaSim) is a network simulator writ-

ten in Java. It is built according to the component-based
software paradigm. In J-Sim terminology, this is called au-
tonomous component architecture (ACA). Everything in J-
Sim is a component : a node, a link, a protocol. Each compo-
nent can be atomic or composed of other components. Con-
nection between components is done through ports. Actu-
ally, there are three possible ways to connect ports: one-to-
one, one-to-many, and many-to-many. On a more abstract
level, J-Sim distinguishes two layers. The lower layer Core
Service Layer (CSL) comprises every OSI layer from net-
work to physical, the higher layer comprises the remaining
OSI layers.

For wireless network simulations, J-Sim offers the Wire-
less Extension. Here, several components and their relation-
ships are defined and extend the general CSL. Figure 2 gives
an overview of the most important components. The only
available MAC layer component in the Wireless Extension
is 802.11 MAC.

When a node wants to send a message, it goes through
802.11 MAC which decides when the packet is sent to the
WirelessPhy. The latter determines the nodes current posi-
tion from the MobilityModel and adds that position, the
current transmission power and the antenna gain to the
MAC frame. The receiving node’s WirelessPhy consults the
RadioPropagationModel to decide if the packet should be
passed to the MAC. The EnergyModel is a collection of five
energy consumption values (radio states send, receive, idle
and off). When the energy is depleted, no packets can be
sent and received anymore.

Figure 2: Overview of components in J-Sim’s wire-
less extension.

5.1.2 OMNeT++
OMNeT++ is a simulation platform written in C++. Like

J-Sim, it has a component-based, modular and extensible ar-
chitecture. Thus, its structure shares many properties with
J-Sim’s. The basic entity in OMNeT++ is a module. Mod-
ules can be composed of submodules or they can be atomic.
Only atomic modules capture the actual behavior. Modules
communicate with each other via messages through gates.
Gates are linked to each other using connections. A connec-
tion can be associated with a propagation delay, error rate
and data rate. Unlike J-Sim’s ports, gates in OMNeT++
support only one-to-one communication.

Regarding simulation of wireless ad hoc networks, OM-
NeT++ relies on external extensions. The two most promi-
nent ones are the INET Framework (IF) and the Mobility
Framework (MF). While the latter is an extension explicitly
designed for mobile ad hoc networks we chose it for our case
study.

����������	
���������	�
��

�����
�����	�
��

���������
���������

��������

��������������

������������

��

���

����

�
����������

������

Figure 3: Overview of the basic modules in OM-
NeT++/(INET Framework).

62

Figure 3 depicts the structure of OMNeT++/IF. Aside
from the most important OSI layers, OMNeT++/IF pro-
vides two modules called blackboard and mobility. A black-
board is used to share cross-layer data. The mobility part
is responsible for providing and updating a node’s current
position and establishing communication channels. MAC
and PHY layers are composed into a single NIC (network
interface card) module. The physical layer is split into a
module which determines SNR characteristics and another
one responsible for deciding whether a packet can be passed
upwards.

5.1.3 ns-2
The network simulator ns-2 is based on two languages:

an object-oriented simulator, written in C++, and an OTcl
(an object-oriented extension of Tcl) interpreter to execute
user’s command scripts. There are two class hierarchies: a
compiled C++ one (which captures the protocol behavior)
and an interpreted OTcl one for binding to the OTcl scenario
configuration script.

Ns-2 offers a reduced OSI layer model in which the pre-
sentation and session layers are left out. For wireless net-
work simulations, ns-2 offers a variety of features. It has
an energy model, and both, traffic and movement patterns,
can be easily generated. However, as opposed to the other
three candidates, traffic and mobility are typically produced
before the actual simulation start and are not so much an
integral part of ns-2’s architecture.

5.1.4 ShoX
ShoX is an object-oriented network simulator written in

Java, which was targeted at wireless networks from the be-
ginning. By default, its architecture follows the OSI seven-
layer model, although only five of them are present by de-
fault. However, all layers are derived from an abstract super-
class and are defined by LayerType objects. Hence, it is
straightforward to include additional layers at any position
in the stack for special purpose simulations. ShoX does not
use components as e.g. J-Sim or OMNeT++. Rather, pro-
tocols, energy management, propagation or mobility models,
etc. are all derived from abstract super-classes which define
the minimum interface and functionality. The different enti-
ties in ShoX communicate through events. Devices are spe-
cial kinds of components of a node like the network interface
card, the power manager, the CPU or attached sensors.

In addition to the abstract OSI layer classes, there is a
special “layer” called AirModule. Here, all channel related
issues are handled (e.g. signal interference). PhysicalModel
and InterferenceHandler of ShoX resemble the SNR Evalua-
tor and Decider in OMNeT++. As Opposed to OMNeT++,
forward error correction is handled by the actual layer im-
plementations, which appears to more resemble reality.

Like J-Sim and ns-2, ShoX has an energy manager com-
ponent. However, in ShoX, the energy manager is far more
advanced making use of the concept of a device: different de-
vices can be registered as power suppliers (e.g. solar panel)
or power consumers (e.g. CPU, sensors).

5.2 Installation

5.2.1 J-Sim
Once J-Sim is downloaded, it can be easily imported into

Eclipse using Eclipse’s ”Java Project from Existing Ant Build-

file”. However, some additional java archives for XML han-
dling (jaxp, xalan and crimson) must be installed before
J-Sim can be executed. The whole installation and configu-
ration process took approximately 1,5 days, mainly because
of the JVM problems.

5.2.2 OMNeT++
OMNeT++ (3.3) is installed using configure and make

scripts. Before installing OMNeT++, the two additional
packages Tcl/Tk and BLT (set of new commands and wid-
gets) must be installed. Even though BLT was already in-
stalled on our system, it was somehow not found by the
installation script. Wireless extensions are installed using
command line make commands.

The time it took for installing OMNeT++ and import-
ing to Eclipse was approximately three days. Some of the
delay was caused by a “problem” with BLT. Another issue
was to figure out how to integrate the IF with OMNeT++
(it slightly changes the build process but that is not docu-
mented well).

5.2.3 ns-2
There are basically two ways to obtain ns-2: by download-

ing the all-in-one package or only selected components and
libraries. Unfortunately, each time the user code is modified,
ns-2 itself will be recompiled. Our solution to this problem
was to compile our code into a separate shared library and
link that to the ns-2 kernel. The lengthy ns-allinone instal-
lation attempt, the manual selection of packages, and the
compilation environment setup made installing ns-2 consid-
erably more time-consuming than J-Sim and OMNeT++.

5.2.4 ShoX
ShoX can be downloaded as a source package. However,

we followed the recommendation on the website to instead
directly use the more recent CVS version, since the release
version (0.2) is rather outdated. Using Eclipse’s “Projects
from CVS”, it is principally straightforward to import the
CVS code into the tool. Unfortunately, no documentation
is provided on the website on how to configure CVS, hence,
the corresponding Sourceforge documentation must be con-
sulted. After the setup in Eclipse, ShoX is started through
Eclipse’s run dialog. Despite the fact that a sufficiently de-
tailed documentation is missing, trying to figure out the
right configuration took us approximately half a day.

5.3 Implementation and Documentation

5.3.1 J-Sim
J-Sim offers good introductory material with overviews

and examples for small scenarios. However, it lacks a com-
prehensive manual. Several more specific questions remain
undocumented, for example how to send broadcast. Also, we
did not find any hint as to how a new packet is to be defined.
The problem was that the MAC layer, which had to commu-
nicate with SPAN (see Section 3), assumed out SpanPacket
to have certain fields and parameters which were nowhere
clearly expressed, but led to erroneous behavior nonetheless.

J-Sim uses Tcl for configuration of simulation scenarios.
This requires a certain learning overhead. The binding be-
tween Java and Tcl (to be able to access Java objects and
methods from Tcl) is pretty intuitive. There is also a graph-
ical editor for the Tcl configuration files called gEditor.

63

The familiarization with the configuration part took us
around two days. Another three days were spent to solve
the problems mentioned above. The implementation itself,
simulator-specific problems aside, took ten days. J-Sim of-
fers both AODV and GPSR, therefore testing of SPAN was
quite simple.

5.3.2 OMNeT++
OMNeT++ has a well-written fairly large user manual

while IF has only an API documentation. OMNeT++ is
very complex, thus careful consultation of the available doc-
uments is needed. To understand and run small examples
took us approximately three days. Scenario configuration is
done in so-called network description files.

One major drawback of OMNeT++ is that it does not
have an energy model. Thus, while OMNeT++ certainly
is a feature-rich and powerful simulation platform, it was
not possible to implement and test SPAN completely. An-
other issue was finding a suitable routing protocol for test-
ing. While there is an AODV implementation listed on the
website, the referenced page refused to load. Whereas the
MF includes AODV, the IF does not and GPSR is not avail-
able with OMNeT++. Hence, we decided to use DYMO
which integrates well with IF. These issues, especially the
search for a suitable MAC and AODV implementation added
another two days to our simulator-specific overhead time.
Implementation itself (to the extent possible) lasted nine
days.

5.3.3 ns-2
From all the four simulators we tested, ns-2 clearly has

the steepest learning curve, even though its documenta-
tion is comprehensive. For ns-2, there is a manual which
is regularly updated. Further, there is an API for the C++
and OTcl classes (although the latter are not explained very
thoroughly). Still, working with ns-2 requires learning many
concepts. This starts with the object-oriented version of Tcl
called OTcl which is used for scenario configuration. It also
includes the structure of the configuration environment it-
self. This is unfortunately not as intuitive as with other
simulators. We needed approximately eight days to become
familiar enough with the complete environment.

In ns-2, the not very easy-to-use OTcl handles the task
of describing the simulation scenario. To construct a bind-
ing between OTcl and the actual C++ classes, each C++
class must be accompanied by a corresponding OTcl class,
causing a considerable overhead. For the implementation
itself, we needed about 3.5 days. The short length of this
timespan is due to the fact that we simply had to adapt
our C++ classes from the ones we already wrote for OM-
NeT++. One of the major advantages of ns-2 is the huge
pool of available features, offering a large number of external
protocols already implemented.

5.3.4 ShoX
Although missing a user manual, ShoX provides an API

documentation which contains explanations for most of the
classes and their members. Getting familiar with ShoX took
us about two days.

Scenario generation in ShoX is done through its GUI. Un-
like in gEditor or gNED, there are no modules and links to
be drawn. The configuration UI in ShoX is a wizard leading
through the necessary steps for all needed elements. It ap-

pears that ShoX focuses on ease of use, which in some cases
(e.g. configuration) reduces the amount of available possibil-
ities. However, for our chosen protocol, SPAN, the approach
is completely sufficient. We needed three days to implement
SPAN. Again, we could adopt a lot of code from our J-
Sim classes. Unfortunately, while the energy management
of ShoX is the most advanced among all four simulators, its
802.11 MAC does not support the power-save mode.

5.4 Visualization and Statistics

5.4.1 J-Sim
J-Sim has no tool for network visualization itself. How-

ever, it allows generating trace files which conform to ns-2’s
nam (network animator) format. To plot simulation statis-
tics, a special plot component is provided. Because of this
concept, only statistic values over time can be output. Other
x-axis values are not possible. Also, the plot component is
not able to write the received data to a file. If this is desired,
the user must do it himself.

5.4.2 OMNeT++
OMNeT++ is the only simulator with online visualiza-

tion. Hence, users can pause the simulation and inspect or
even directly change values in the models. It is also possi-
ble to change a node’s appearance (color, size, shape, etc.)
to reflect an inner state which the user wants to visualize.
Statistics can be written to a trace file and displayed with
external but commonly available tools like prove.

5.4.3 ns-2
In order to visualize network behavior in ns-2, one must

first of all call two scripts: one to generate a traffic trace
file and another one to create a movement trace file. These
two trace files can then be referenced as an input in the
Tcl configuration for the actual simulation process (i.e. the
network is simulated with the specified traffic and movement
patterns). The simulation in turn generates a log file which
can then be visualized using ns-2’s network animator (nam).
nam is similar to OMNeT++ in the way that it can visualize
not only nodes, links, movements, packets, etc. but also
changing node states by adapting the graphical appearance
of the node. However, the possibilities in nam regarding a
dynamic change of appearance are rather limited.

For plotting statistics, a function in the OTcl configura-
tion file is used, which is called initially at simulation start
time (or any other time), and which periodically calls itself.
In each execution of this function, some statistical values
may be written to a file. After the simulation end, an ap-
propriate external tool (we used xgraph) is used for plotting
the data.

5.4.4 ShoX
Regarding visualization and statistics, ShoX is the most

powerful and integrated simulation platform among the four
candidates. It includes both, a network and a statistics vi-
sualizer, in the same GUI (from which also the configuration
is done and the simulation started). Like OMNeT++ and
nam, ShoX can visualize node movements, links and packets.
Regarding node state representation, the mapping between
the node state (which is logged in the simulation log file) and
the desired graphical representation of that state in terms of
node color, size, shape, labels, border color and border width

64

can be changed retroactively and even while the visualiza-
tion is running. In addition to the node state visualization,
ShoX supports visualizing link states by changing the link
appearance in the same fashion. ShoX also offers a statistics
chart generation with three different chart types.

6. RESULTS
On the Figures 4 and 5 are summarized results of our

studies. As we can see there is no clear winner in all areas.
J-Sim is attractive because of its flexible component-based
architecture while OMNeT++ shined at GUI support which
helps while developing one’s own protocol. ns-2 profits from
the large number of available models which can be taken to
compare own protocols to others once the former are ready.
ShoX is the youngest simulator but is outstanding when it
comes to visualization. Concerning the amount of effort it
takes to become familiar with a simulator, we observed a
clear order from ns-2, over OMNeT++ to J-Sim and ShoX.
While we think this is on the one hand due to architectural
decisions, part of it stems from the feature richness or ns-2
or OMNeT++, especially regarding their scenario configu-
ration capabilities.

������ ��	
� ������ ���� 	���

���������	�
 � � � �

���������������� � � � �

���������
���	 � � � �

���� � � � �

�� � � � �

!�� � � � �

�"�#�
"$��"��

����"��"��

�������%�

���&������

����������'"
�(
����������

��
"����"�%���	�

"������"��(������
)��&(��"�#
��"��
�#���)���������	

������'"
�(����
)���"���	
�"�%����

������'"
�(�"������

�"����

��
"����
��(
�*����"������'"
�
�#���)��	���
)��#���

������'"
�(�����)�
	"��
���	��"�%
�
���

���'"
�(����
)��	"��
���	
�"�%�*����%

����"��"���'"
�(
"������
��"����
����*�������
��#�
��

+�'
�*")"
"��
+�,����)���	

+����#�"��
+���	�
�"������"��
+�!-.��#�����

+���	�
�)���
+�#����)���

+�!-.��#�����
+��"�#�
"$��"��
+����%"����#��

��!-.��#�����
���"�#�
"$��"��
������)"
"�"��

�����������	�

��/�0�������"����

���1�
�
�����%"����#��

��	��#������"��
��
��&��'���	�
�

Figure 4: Simulator feature matrix.

������������ 	
������
��
��
��

����
�
�
�������

������������
���
��
��

�

�

�

�

�

�

�

�

�

�

��

��

 ��
!���"������

#�$��

�%&
 ��

����

$��'

Figure 5: Comparison of consumed time.

On the Figure 6 we can see results of used metrics to mea-
sure reusability and maintability which were introduced in
Section 4. In the Figure we omit metrics which gave null
or zero values. Considering the size of the model, ShoX
has the best values while other three simulators have mod-
els of similar size. In the case of coupling, we got better
results with OMNeT++ and ns-2 because their vocabulary
is smaller. The worst cohesion has the model from J-Sim.
The reason is, that the configuration of interconnection be-
tween components is located inside classes as opposite to
other simulators.

J-Sim OMNeT++ ns-2 ShoX

VS 6 5 5 6

LOC 873 942 1037 791

LOConf 255 253 180 76

WMC 44 46 47 42

CBO 9 8 8 9

LCOM 108 6 7 2

Figure 6: Measured values of the quality model

7. CONCLUSION
In this paper, we have presented the results of a case study

in which we compared the wireless network simulators J-
Sim, OMNeT++, ns-2 and ShoX by implementing a sim-
ple topology control algorithm called SPAN. We evaluated
strengths and weaknesses of each simulator with respect to
installation, implementation issues and visualization capa-
bilities. To compare which simulator offers better support
for reusability and maintability, we have proposed model of
quality to measure them. We have seen that none of the four
simulators is the single best candidate in all areas. Rather,
each simulator has fields where it is stronger than the oth-
ers. Each of them also showed areas of particular weakness
compared to the other candidates.

8. REFERENCES
[1] L. Begg, W. Liu, K. Pawlikowski, S. Perera, and

H. Sirisena. Survey of simulators of next generation
networks for studying service availability and
resilience. Technical Report TR-COSC 05/06,
Department of Computer Science & Software
Engineering, University of Canterbury, Christchurch,
New Zealand, February 2006.

[2] D. Cavin, Y. Sasson, and A. Schiper. On the accuracy
of manet simulators. In Proceedings of Principles of
Mobile Computing (POMC) 2002, Toulouse, France,
October 2002.

[3] B. Chen, K. Jamieson, H. Balakrishnan, and
R. Morris. Span: An energy-efficient coordination
algorithm for topology maintenance in ad hoc wireless
networks. Wireless Networks, 8(5):481–494, September
2002.

[4] D. Curren. A survey of simulation in sensor networks.
Student project,
www.cs.binghamton.edu/~kang/teaching/cs580s/

david.pdf, 2007.

65

[5] DARPA/NSF. The network simulator - ns-2.
http://www.isi.edu/nsnam/ns/.

[6] T. J.-S. developers. J-sim. http://www.j-sim.org.

[7] T. S. developers. Shox - a scalable ad hoc network
simulator. http://shox.sourceforge.net.

[8] S. Duflos, G. L. Grand, A. A. Diallo, C. Chaudet,
A. Hecker, C. Balducelli, F. Flentge, C. Schwaegerl,
and O. Seifert. Deliverable d 1.3.2: List of available
and suitable simulation components. Technical report,
École Nationale Supérieure des Télécommunications
(ENST), September 2006.

[9] V. Efthimia. Free tools for network simulation.
Master’s thesis, University of Macedonia,
Thessaloniki, 2006.

[10] E. Egea-Lopez, J. Vales-Alonso, A. Martinez-Sala,
P. Pavon-Mario, and J. Garcia-Haro. c. IEEE
Communications Magazine, 44(7):64–73, July 2006.

[11] L. Hogie, P. Bouvry, and F. Guinand. An overview of
manets simulation. In Electronic Notes in Theoretical
Computer Science, Proc. of 1st International
Workshop on Methods and Tools for Coordinating
Concurrent, Distributed and Mobile Systems
(MTCoord 2005), LNCS, pages 81–101, Namur,
Belgium, April 2005. Elsevier.

[12] M. Karl. A comparison of the architecture of network
simulators ns-2 and tossim. In Proceedings of
Performance Simulation of Algorithms and Protocols
Seminar. Institut fr Parallele und Verteilte Systeme,
Abteilung Verteilte Systeme, Universität Stuttgart,
2005.

[13] B. Karp and H. Kung. Gpsr: Greedy perimeter
stateless routing for wireless networks. In Proceedings
of the Sixth Annual ACM/IEEE International
Conference on Mobile Computing and Networking.
2000.

[14] A. Lemke and A. Sarkohi. Werkzeuge zur
netzwerksimulation. In G. Wittenburg, editor,
Proceedings of Seminar Technische Informatik. Freie
Universität Berlin, June 2006.

[15] G. F. Lucio, M. Paredes-Farrera, E. Jammeh,
M. Fleury, and M. J. Reed. Opnet modeler and ns-2 -
comparing the accuracy of network simulators for
packet-level analysis using a network testbed. WSEAS
Transactions on Computers, 2(3):700–707, July 2003.

[16] D. Nicol. Comparison of network simulators revisited.
http://www.ssfnet.org/Exchange/gallery/

dumbbell/dumbbell-performance-May02.pdf, May
2002.

[17] P. Novák. Simulation of network structures. Master’s
thesis, Department of Software Engineering, Charles
University in Prague, August 2006.

[18] I. Opnet Technologies. Opnet. http://www.opnet.com.

[19] R. Repp. Vergleich der verfahren simulation und
emulation fr die evaluation von protokollen. Master’s
thesis, Institut fr Parallele und Verteilte Systeme
(IPVS), Universitäts Stuttgart, December 2003.

[20] B. Schilling. Qualitative comparison of network
simulation tools. Technical report, Institute of Parallel
and Distributed Systems (IPVS), University of
Stuttgart, January 2005.

[21] A. Vargas. Omnet++ - discrete event simulation
system. http://www.omnetpp.org.

66

