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ABSTRACT 
We present our Service Directory Placement Protocol (SDPP), a 

multi-directory scheme for service discovery in Mobile Ad-hoc 

Networks (MANETs). SDPP promotes the use of both fixed and 

mobile directories co-existing in a hybrid setting comprised of 

devices with different memory availability. Our proposed system 

is based on a heuristic approach, whose performance is optimized 

by formulating the directory-placement problem as a Semi-

Markov Decision Process solved by Q-Learning. Performance 

evaluations reveal typical performance gains ranging between 

15% and 75% of SDPP compared with a default broadcast 

approach for MANETs comprised of hosts moving at pedestrian 

speeds. A two-step process for practical implementation based on 

“off-line” computer simulations is also described. 

Categories and Subject Descriptors 
C.2. [Network Architecture and Design]: Wireless 

communication, C.2.2 [Network Protocols]: Protocol 

architecture, I.2.6 [Learning]: Parameter Learning. 

General Terms 

Algorithms, Performance, Design, Experimentation. 

Keywords 

Service discovery, Mobile Computing, Machine Learning. 

 

1. INTRODUCTION 
The increasing popularity of low-cost radio interfaces 

continues to drive research geared towards ad-hoc 

communications of miniaturized electronic devices. However, 

significant design issues arise due to the existing plethora of 

device types and user mobility, as the traditional data-forwarding 

role of computer networks shifts into that of ubiquitous service-

providers [1]. Unlike their fixed-topology counterparts, Mobile 

Ad-hoc Networks (MANETs) are comprised of devices whose 

place in the network varies in time, making it harder for peer hosts 

to locate each other. In addition, open-access MANETs need to 

possess self-configurable features, including those that pertain to 

service advertisement, discovery and provision. To this effect, 

open-access MANETs should be able to efficiently self-manage in 

a seamless fashion, so that certain hosts can discover and access 

the services or digital assets currently being shared by other hosts. 

In this paper, we are interested in service discovery issues in 

MANETs, and in particular, finding an efficient technique that 

reduces consumed bandwidth and improves the service discovery 

success rate. An important motivation for this is that the possible 

applicability of existing protocols for service discovery to 

MANETs is uncertain. For instance, protocols such as Universal 

Plug and Play (UPnP) [2] and Jini [3] were designed for static 

networking environments. Consequently, alternative solutions 

have been recently proposed by academia. Among the most 

significant contributions is GSD, a high-level ontology-based 

approach that enables selective forwarding of service discovery 

queries in MANETs and reduces packet overhead [4]. GSD’s 

effectiveness depends heavily on whether all MANET hosts 

support this higher level of information abstraction. Though 

conceptually similar, a field-theoretic approach was presented in 

[5], where service discovery queries are modelled as electrostatic 

particles that are routed to service providers. The efficiency of this 

system depends on the accuracy with which the Capacity of 

Service parameter of service providers is assessed among 

MANET hosts. Other approaches exist too, which rely on 

surrogate or volunteer hosts that process service discovery queries 

in a proxy-like fashion [6], [7].  

One significant shortcoming seen in these and other 

approaches that promote the use of directories for service 

discovery is that they are unable to adapt to topology changes in 

MANETs. This has a clear impact on the system’s effectiveness as 

the MANET’s topology changes from one configuration into 

another (e.g., Fig. 1.1(a) into Fig. 1.1(b)), causing some hosts to 

become physically more distant from their service providers. In 

earlier work, we advanced the Service Directory Placement 

Algorithm (SDPA) to tackle this issue. SDPA promotes the 

directory’s roaming through the network to get service 

information closer to the MANET hosts that might need it [8]. In 

this paper, we enhance SDPA and propose the Service Directory 

Placement Protocol (SDPP), a methodology whereby fixed service 

directories coexist with a variable number of mobile directories 

that roam the MANET in an intelligent manner. As exemplified in 
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Fig. 1.2, a change in the MANET’s topology from (a) to (b) 

triggers the replication of fixed directories to mobile devices, 

bringing service information closer to hosts in remote network 

regions. However, this approach gives rise to the issue of when 

and where to clone directories. To obtain an efficient decision-

making policy, we model this sequential directory placement 

problem as a semi-Markov Decision Process (SMDP). The policy 

employed for these decisions is obtained by employing a learning 

system that is exposed to a variety of situations driven by service 

querying patterns, host mobility, and physical memory 

availability. This enables the number of duplicate directories and 

their placement to effectively adapt to the prevailing network 

conditions. 

The formulation of SDPP as an SMDP is based on the 

assumption that the rate of MANET topology changes is slow 

enough to allow the learning algorithm’s convergence to an 

optimal decision policy. We believe that this is a reasonable 

assumption given that the existing technologies that facilitate 

MANET deployment (e.g., WiFi or Bluetooth) only support host 

movement at low speeds given their reduced transmission range. 

In other words, these technologies do not support rapid topology 

reconfiguration. To ensure that SDPP provides a practicable 

solution, we propose a two-step implementation approach. In it, 

the system is first put to learn “off-line” (i.e., as a computer 

simulation) to find in a relatively short period of time a suitable 

decision-making policy that directories can employ when roaming 

the MANET. In the second step, the numeric values that comprise 

these decision-making thresholds can be incorporated along with 

SDPP into mobile hosts (i.e., as an add-on module), for use in a 

working MANET. The advantages and disadvantages of this 

approach are discussed later. 

We also introduce a Service Entry Ranking System (SERS) to 

grade the spatiotemporal popularity of all available services to 

prioritize their advertisement order in the directories. This simple 

approach leverages the learning system ability to maximize the 

time-average performance by reducing packet overhead attributed 

to the directory localization processes. The rest of this paper is 

organized as follows. Section 2 explains the operation principles 

of SDPP. The formulation of the learning system is given in 

Section 3, and Section 4 introduces SERS. The simulations’ setup 

and performance evaluations are presented in Sections 5 and 6, 

respectively. Implementation aspects are discussed in Section 7, 

and Section 8 concludes this paper. 

2. THE SERVICE DIRECTORY 

PLACEMENT PROTOCOL 
In this section, we introduce the foundations that enable a 

scalable multi-directory architecture for service discovery in 

MANETs. SDPP is designed to leverage IETF’s Service Location 

Protocol v2 (SLPv2) [9] for its possible use in a peer-to-peer 

fashion. The basic architecture of SLPv2 consists of User Agents 

(UAs) in individual hosts, Service Agents (SAs) associated with 

service providers, and Directory Agents (DAs) that maintain 

service directories. SAs register their service information with one 

of the existing DAs, which in turn periodically broadcasts 

DA_ADVERT packets to advertise services. Consequently, DAs 

act as proxies for UAs attempting to discover services. In this 

regard, UAs individually broadcast service request queries 

(SRV_RQST) to DAs, which reply with the corresponding service 

information contained in a SRV_RPLY packet. In addition, 

attribute reply packets (ATTR_RPLY) follow attribute request 

queries (ATTR_RQST).  

For the incorporation of SDPP into SLPv2 as an add-on 

module, we further categorize DAs as Fixed Directories (FDs), or 

Mobile Directories (MDs) that are deployed to mobile hosts as 

needed. To accomplish this, UAs append to SRV_RQST queries 

special meta-data of localized network conditions. Upon receiving 

the corresponding query, a DA passes this meta-data to the local 

host’s SDPP module, whereas the service query is routinely 

processed by the SLPv2 module. FD duplication follows 

depending on whether the decision policy determines that this 

action yields performance improvements in the MANET as a 

whole. To avoid possible conflicts, FDs wishing to duplicate their 

contents first send a request to the recipient host candidate, which 

chooses one of these FDs to initiate the copy. This approach 

becomes advantageous when a cluster of hosts that are physically 

distant from a FD enter a pattern in which several service queries 

are concurrently and repeatedly being issued.  

We also contend that SLPv2’s operational principles can be 

enhanced to support peer-to-peer interaction between DAs in a 

relatively straightforward manner. In this regard, the SDPP 

module at the local host can coordinate communications with 

remote DAs by controlling SLPv2 through the use of APIs. In 

other words, SDPP can instruct SLPv2 to issue the corresponding 

signals for service (de-)registration (SRV_REG/DEREG) as 

needed, in addition to those required to discover the presence of 

other DAs, as explained shortly. Since we propose SAs and DAs 

co-existing at the local service provider, remote DAs may process 

regular SLPv2 signals issued by the local SAs to comply with the 

IETF specification.  

We propose a simple procedure for the maintenance of the 

peer-to-peer FD (DA) network. Here, FDs discover peers to form 

a “volatile” backbone, whose links may depend on mobile hosts 

that fracture the current topology when they move. Our objective 

is to ensure that any given FD remains logically linked to at least 

one more neighbour FD insofar as the MANET’s current topology 

allows it. To achieve this, we introduce a LOCATE_PEERS 

packet type. SAs broadcast a LOCATE_PEERS packet in a 2k 

incremental-hop fashion in order to control the search depth for 

FD neighbours at the k-th search attempt. FDs reply with a 

LOCATE_PEERS_RPLY packet accordingly, causing the FD 

peer discovery process to stop. FDs then proceed to exchange 

service-related information. The inter-directory update procedure 

itself is realized by employing SLPv2’s existing service 

registration signals (SRV_REG) in a prioritized manner as 

  

 

 

 

 

 

 

Figure 1. Static vs. mobile directories in a MANET setting 
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recently mentioned. The reason for this is that memory-

constrained FDs might be unable to store all of the service 

descriptions and attributes. Finally, unanswered service queries 

previously sent onto the backbone network trigger a timeout, 

causing the local neighbour table’s erasure, followed by another 

peer discovery process as previously described. 

3. THE MULTI-DIRECTORY LEARNING 

SYSTEM 

3.1. Foundations and Rationale for the Use of 

Markov Decision Processes 
We assume a high degree of individuality in users’ subjective 

behaviours, their mobility patterns, and their movement history. 

We also assume that the number of queries received at the current 

directory’s location varies in accordance to users’ independent 

preferences and needs. Therefore, if the long-term spatial 

distribution of hosts remains statistically homogeneous, we find 

no constraints for any particular topology or service query 

condition from recurring sometime into the future [10], [11]. 

Furthermore, the time until a mobile service directory revisits any 

given condition (state) will be finite if the circumstances 

surrounding a MANET environment warrant a limited number of 

observable conditions. These assumptions are pertinent for hosts 

moving at low speeds in small to moderately sized networks [12], 

and are justified in situations where hosts cooperate to facilitate 

MANET packet forwarding. 

Additionally, the lack of memory of previous events indicates 

that the limiting probabilities of finding the system in any given 

state will converge to a certain value once it has been operating 

for a long time. Therefore, our performance improvement 

objective can be maximized on a time average basis if a suitable 

policy is employed to dynamically relocate MDs in accordance to 

the users’ combined mobility and service querying patterns. 

Hence, we can approach this sequential decision-making process 

by modeling SDPP as a Markov Decision Process (MDP). 

MDPs consist of several elements: a learning agent (not to be 

confused with the agents in SLPv2), states, actions, transition 

probabilities and a reward [13]. In essence, the agent is a decision-

maker exposed to the system that we wish to control, which can 

be described as being in one of a potentially large number of 

states. The agent takes actions in an attempt to steer the system 

into a more desirable state, each of which is assigned a subjective 

value of its worthiness. Because the behaviour of the system is 

considered stochastic, there is a certain probability of the system’s 

falling into a given state after a certain action is taken. The 

objective of the agent is thus to maximize the accrued sum of 

rewards, also known as the return R, received over the long term, 

at which point the steady-state transition probabilities are 

obtained. The transition time elapsed between the agent’s 

decisions instants (τi- τi-1) is known as the decision epoch, which 

in our case is defined as being real-valued, effectively turning our 

system into a semi-Markov Decision Process (SMDP). 

We solve the SMDP by means of a Reinforcement Learning 

(RL) technique known as Q-learning [14], whose objective is to 

gradually adjust the initially arbitrary values of a Value Function 

(VF) to its optimal ones. In our case, this result can be achieved 

by allowing the agent to learn which directory-copy actions 

produce the highest reward in the long run. Here, a slow-

decreasing discounting factor γ with an initial value in the range 

(0,1) is used to reduce the weight of future rewards r accrued into 

R at time t. An optimal policy π for the state-value function V(s) is 

found when the final value of any state s equals the expected sum 

of rewards E{R} for the process starting at an initial state s, after 

choosing an action a from the set A(s) that yields the largest 

reward [13]: 

 

  In Q-learning, state-action pairs (s,a) are mapped to their 

corresponding maximum reward value according to the Bellman 

Optimality Equations [14]: 

 

Here, P(s’|s,a) denotes the probability of going from state s to 

state s’ when an action a is taken. For the case of SMDPs solved 

by means of Q-learning, the discount factor γ must be re-defined, 

since the states’ sojourn time is a continuous random variable. 

Thus, integrals replace summations to compute the expected 

return [15]: 

 

This expression yields the following result to account for the 

real-valued sojourn time between state transitions: 

 

Here, a learning rate α is introduced to allow the algorithm to 

converge on one of possibly several existing policies, and β 

controls the rate of exponential decay. The model of Q-Learning 

is shown in Fig. 2. An appealing feature of Q-learning is that it 

does not require formulating a model of the underlying system’s 

environment. Therefore, the need to compute the states’ transition 

probabilities is eliminated. This is particularly appealing for the 

case of SDPP, since distinct mobility models can be employed. 

3.2 Formulation of SDPP as an SMDP 
In SDPP, the delivery of SRV_RQST queries at a FD marks 

the end of one decision epoch and the beginning of a new one, at 

which point, the learning agent takes an action. The elements of 

the RL process for SDPP are described next. 

 

 

 

 

 

Figure 2. The Q-learning model 
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States: The state of the network at time epoch τi is an abstract 

representation that incorporates the following factors as measured 

for the duration τi -τi-1.: 

 The difference between the number n of neighbouring hosts at 

both the location of the querying node U and in the current 

location of the directory V at time t. 

 The hop distance between the querying host U and the directory 

V at time t. 

 The average hop distance traversed by queries q generated at U 

hosts received by the directory V in its current host location at 

time t. 

 The difference between the number of queries q generated in 

the neighbourhood of the querying host U and those processed 

by the directory V in its current location at time t. 

 The total directory memory g available at the host U where 

duplication is being pondered. 

Actions: Only two possible actions are considered for this system, 

and are described as A(s)={copy directory, do not copy 

directory}. 

Reward: The reward function that we employ incorporates the 

following elements: 

 J ATTR_RQST queries (QH) received from up to I mobile 

hosts. 

 L ATTR_RQST queries (QD) received from up to K MDs.  

 One SRV_RQST query received from any given host that 

marks the end of the decision epoch. 

 M ATTR_RQST packets (PH) received from up to I mobile 

hosts, and their corresponding ATTR_RPLY packets. 

 N ATTR_RQST packets (PD) received from up to K MDs and 

their corresponding ATTR_RPLY packets. 

 H packets transferred when a service directory is copied to a 

host in the current decision epoch. 

 

(5) 

The reward signal r(s,s’,a) (5) is thus obtained by dividing the 

total number of service discovery queries for the current time 

epoch over the number of packets generated by these same queries 

resulting for the current epochs, the latter of which ends when the 

corresponding SRV-RQST query is received at the local FD. This 

indicates that the LA’s reward increases when it sees a larger 

number of queries with respect to the number of packets, and can 

be achieved when an FD is copied to a host that ends up servicing 

more queries from neighbouring hosts. However, if the new MD 

possesses limited memory to accommodate a sizable number of 

service descriptions and corresponding attributes, then the FD that 

duplicated the directory will inevitably observe rely ATTR_RQST 

queries originating from the new MD that yield unwanted 

overhead traffic, for which the LA is accordingly penalized. 

However, the LA will eventually infer the threshold memory 

value at which the amount of saved bandwidth surpasses the 

overhead attributed to relied ATTR_RQST onto the backbone. 

4. THE SERVICE ENTRY RANKING 

SYSTEM 
SERS is built on the premise that it is counter-intuitive to copy 

service description/attributes that are seldom being queried in the 

recent time frame. Doing otherwise ultimately leads the MD’s into 

relaying ATTR_RQST queries onto the backbone network. 

Therefore, we propose SERS to rank the popularity of individual 

directory entries based on the frequencies with which they have 

been recently queried (contrary using to the number of queries that 

each entry receives). This makes the system fairer to those 

services that have been available only for a short portion of the 

time. Otherwise, services that have been available for longer 

periods would see their ranking unfairly favoured even if their 

current popularity is low. Individual service entry ranking (SER) 

values are locally kept and updated. The more often an entry is 

queried, the higher its value grows, whereas a lack of queries 

lowers this value according to expression (6): 

  

Here, SER entry i will see its value adjusted in proportion to 

the rate  with which it is being queried, and it’s normalized to the 

sum of each weighted value of up to n entries at the local 

directory. Therefore, the query interarrival time for each 

respective entry is recorded at the local directory (either FD, or 

MD), since this value is referenced for the recurrent SER 

calculation. Consequently, a directory entry for a particular 

service will see its SER value increased or decreased to reflect its 

current spatiotemporal popularity in the MANET.  

As mentioned before, SLPv2’s existing service registration 

(SRV_REG) messages can be readily employed to copy entries 

from the sender FD to the target device (the new MD). However, 

memory limitations in hardware-constrained devices might 

impede performing a full directory copy. Thus, priority is given to 

entries that possess the highest SER values during the copy 

process. If the attributes’ memory footprint of the current entry is 

too big to fit into the target memory space, then only the service 

description is copied, and the process continues to copy the 

following entries with the highest SER. This process is repeated 

until either all of the local entries have been copied should the 

new MD have an equal or greater amount of memory, or if the 

available memory at the target host is depleted. Both the 

interarrival query time and the SER value for the directory’s 

entries become part of their attributes. Later, entries with lower 

SER values are replaced at the local FD/MD by entries with 

higher SER values fetched from other FDs upon receiving an 

ATTR_RPLY packet in response to a previously relayed 

ATTR_RQST query onto the backbone network. 

5. IMPLEMENTATION AND SIMULATION 

SETUP 
Our simulations employed the Mobility Framework of the 

OMNeT++ Network Simulator [16]. We probed the behaviour of 

the proposed system with networks of 100 and 200 mobile hosts, 

plus a fixed number of stationary service providers whose 

physical position in the network is uniformly distributed. Mobile 

hosts are dispersed in areas of 700 m2 and 1000 m2 respectively, 

and remain within the area’s boundaries during the simulation (not 

a toroid), as we would expect to see real users behave in a real 

setting. Hosts move according to the well-known random 

waypoint mobility model, with travel speeds of 1 or 2 m/s, and 

pause times of 900 seconds. Although this mobility model is 

known to yield a heavier concentration of elements in the 

deployment area’s center [11], it provides a better approximation 

to real user mobility than simpler random walk-based models. 

Hosts’ transmission range is limited to 100 m, which yields a 
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multi-hop network. The packet length at the network layer is 

arbitrarily set at 1500 bytes, and the query interarrival time is 

exponentially distributed with a mean of 2 minutes. We employ a 

generic MAC layer, and we assume that collisions in the wireless 

medium are rare. Experiments run for a total of 3000 hours of 

simulated time, which includes a 600-second warm-up period 

wherein service providers are sequentially enabled to allow for a 

gradual discovery of their peers. The learning system remains 

disabled during this “warm-up” period, after which user hosts 

begin issuing service discovery queries and both the learning and 

SER systems at the DAs are enabled.  

We also measure the performance penalties paid by the service 

discovery system when having a limited RAM memory available 

at the hosts for use by MDs. This provision has been entirely 

ignored in existing research. We assume that this amount of 

simulated memory exists in banks of 2n kilobytes, where, n 

assumes a value within the range [7…11] for MANETs of 100 

hosts, and within the range [9…13] for MANETs of 200 hosts. 

Each service entry is comprised of a single description and an 

arbitrary number of attributes that occupies a geometrically-

distributed number of bytes. Therefore, the total byte-count per 

service entry results in an Erlang-distributed value, which is a 

special case of the Gamma distribution that we use to represent 

integer-type memory footprints. Given the lack of actual 

information on service entries’ memory footprints, we arbitrarily 

employ values of 64 and 128 KB. Also, the probability of each 

service entry being queried is uniformly distributed.  

FDs and learning agents coexist as symbiotic pairs in the 

service providers. This allows reward values to be individually 

attributed to each of the agent’s actions. A small value of 0.1 is 

initially set for both α and β in equation (4) at each of the FDs’ 

respective learning systems, which in turn perform their work in a 

non-cooperative fashion (individually from other learning agents). 

Therefore, the obtained polices are not shared with one another. In 

addition, each MD computes the number of service queries that it 

is able to successfully process. If an MD observes more packets 

relayed onto the backbone network than those that are locally 

processed (resulting in a negative balance), then the MD 

surrenders its role. In this case, all directory-related information is 

flushed, and the host assumes a regular status. 

We tested SDPA with a slightly modified version of SLPv2 so 

that, upon receiving a SRV_RPLY packet, a regular host 

broadcasts a DA_ADVERT to its 1-hop neighbours to inform 

them of the DA’s location just discovered. Although, this task is 

originally performed by the DAs, in SDPP neither FDs nor MDs 

issue any DA_ADVERT signal. Other than that, service/attribute 

requests/replies are routinely processed according to the 

corresponding IETF specification. In addition, our simulation 

implements a nearly-generic loop-free routing scheme wherein 

paths are discovered on-demand. This allows us to isolate the 

effect that any particular routing algorithm might have on our 

system, and therefore measure the effectiveness of our approach in 

a reasonably unbiased fashion.  

6. SIMULATION RESULTS AND 

DISCUSSIONS 
We evaluated the packet overhead incurred by SDPP, as well 

as the directory location/discovery success rate. Evidently, the 

fewer packets attributed to service discovery queries while 

maintaining a high success rate for directory localization, the 

better. We gauge these performance metrics against a baseline 

broadcast flooding (where no MDs are employed). We also 

evaluate SDPP against existing multi-directory approaches. 

However, accurate comparisons are not straightforward given the 

variety in methodologies, evaluation platforms, simulation 

parameters and performance metrics employed. As a result, the 

existing literature on SDPs for MANETs also reports comparisons 

against a default broadcast-flooding approach [4]-[7].  

Service discovery packets are counted in a moving-window 

fashion by sampling their number every 10 simulated hours, at 

which point the count is reset to 0. Figs. 3 and 4 illustrate the 

typical behaviour of a sample set of measured data in our system 

once SDPP is put into action in a 100-host MANET under the 

specified simulation parameters. Our first observation is that the 

learning system is only incapable of finding an efficient copy 

decision policy that yields better system performance when the 

average memory available for use by an MD is relatively small. In 

this case, the constant swapping in and out of the low-SER entries 

at the directories causes oscillation in the learning system when 

only 128KB of RAM are available for MD use at the hosts. 

 

 

 

 

 

 

 

 

Figure 4. Compound System behaviour with parameters 

100H, 64 KB, 10 P, 1 m/s 

 

 

 

 

 

 

 

 

Figure 3. Compound System behaviour with parameters 

100H, 64 KB, 10 P, 1 m/s 
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However, for the remaining of test cases, the plots show a gradual 

packet overhead reduction attributed to the learning system, which 

takes place approximately one-third into the simulation period.  

Figs. 5-8 summarize the performance of SDPP against the 

broadcast approach by comparing the average number of packets 

observed in 10-hour periods during the last third of their 

corresponding simulations (which in the broadcast case remains 

constant). For instance, the average number of packets observed in 

the last third of each curve shown in Fig. 3 yields one dot in the 

plot for SDPP that is shown in Fig. 5(a). These curves depict how 

the packet overhead behaves as the DA memory window is 

gradually increased. We can observe a dramatic decrease in packet 

overhead when the maximum allotted memory space is increased 

from 128KB to 256 KB (from one simulation outcome to the 

next), service entries’ memory footprint average 64 KB, hosts 

move at 1 m/s, and there are 10 service providers in the network. 

For 100-host MANETs, SDPP’s performance shows packet 

reductions between 18% and 75% over the broadcast flooding 

scheme as shown in Figs. 5 and 6. Overall, SDPP outperformed 

the baseline approach roughly 75% of the time for this simulation 

set. Nonetheless, our best results were obtained in the 200-host 

simulations, with 90% of the results favouring SDPP’s use over 

the baseline approach. As in the 100-host case, performance 

improvements are highly variable too. Improvements range from 

being fairly conservative to others spanning nearly a whole order 

of magnitude, as depicted in the 512 KB case of Fig. 7(a).  

We ascribe these variations in performance to two main 

factors. The first one deals with the distinct parameters that we 

employed in our simulations. Whereas some of these parameters 

were arbitrarily chosen (due to the lack of realistic information in 

the literature), others attempt to mimic the possible conditions 

observed in a real MANET setting. In particular, the RAM 

memory window allocated for MD use at the hosts played an 

important role in the simulations’ results, which yielded the best 

results after being increased in the 200-host cases. The reason for 

this is that a larger number of MANET hosts translates into 

service entries being queried more often at the FDs, thus causing 

more frequent swapping of service entries and increased 

bandwidth consumption. This results in the individual learning 

systems abstaining from delegating MD duties to regular hosts. In 

the extreme case, no MDs are employed, and the pure-FD 

approach is favoured. Nonetheless, by increasing the DAs’ 

memory window, we allow for more entries that can be kept for 

longer periods of time, thus reducing traffic. In fact, it can be seen 

that there are instances in which the system seems to reach a 

stabilization point when the upper-limit of the memory window 

allocated to the DA reaches 1 MB. In general, MANETs in our 

experiments see improved performance as mobile hosts allocate 

memory on the higher end of the memory window, which can be 

confirmed in Figs. 5(d), 6(c) and 7(a), wherein the limited number 

of service entries can be effectively handled by a surplus of 

simulated RAM at the hosts. We observe that, in certain cases, 

hosts have enough memory to store all of the available services’ 

information in the MANET. This leads to the unrestricted 

replication of the directories to all mobile hosts until they all 

become MDs, and SRV_RQST queries are no longer issued. 

Therefore, each mobile host has a local directory copy that it can 

reference to enquire about any of the available MANET services. 

This suggests that performance variations are not necessarily 

attributable to SDPP, but to the operating parameters of the 

MANETs hosts. Hence, SDPP system learns to work in a best-

effort fashion, instantiating as many MDs with larger directory 

memory allocations as there are available improve performance. 

In addition to the above, our results suggest that performance 

variations between the 100- and 200-host MANETs arise as a 

result of the actual physical distribution of FDs in the MANET. 

Given that FDs are randomly distributed, a portion of them may 

sometimes suffice to cover the MANET deployment area, 

rendering the use of MDs as unnecessary. Conversely, FDs in a 

different simulation might end up more or less clustered within a 

particular deployment area. In such cases, the MANET benefits 

from the use of MDs servicing the voids left by the irregular 

(random) distribution of FDs in the deployment area. At present, 

the learning system is unable to deal with this issue because the 
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Figure 5. Summarized system behaviour for 100 hosts moving at 1 m/s. 
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Figure 6. Summarized system behaviour for 100 hosts moving at 2 m/s. 
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current system state representation conveys no information about 

the FDs’ actual position that can employ in making MD-cloning 

decisions. Although this issue is straightforward to solve in a 

simulation setting, it is not the case in a in a real MANET setting. 

Therefore, we decided to simulate the real MANET setting to 

examine the behaviour of SDPP in such circumstances. 

Our results also reveal that SDPP is more scalable than its 

SDPA predecessor. SDPP also compares well with existing 

approaches under somewhat similar simulation parameters. For 

instance, Fig. 13(c)/(d) of the GSD approach yields a network load 

that amounts to roughly 100,000 messages in a 100-host MANET 

after 75 simulated minutes [4]. SDPP’s performance parallels this 

result for the same simulated time when the hosts allocate 512KB 

on average for directory copies. However, GSD’s messages are 

not network layer packets, but application layer messages. It is 

unclear from the available information how many TCP packets 

their messages would yield. Similarly, SDPP produces half as 

many packets than those reported in [6], even when the number of 

MANET hosts considered in our SDPP evaluation is twice as 

large. Table 2 shows the directory localization success rates often 

approaching the 100% efficiency mark in a 200-host MANET, 

meeting or exceeding the results in Table 1, and those reported in 

the referenced approaches. For instance, a success rate of 96% is 

attained when hosts that move at 1 m/s allocate an average of 128 

KB of directory memory space, there are 10 services are available 

in the MANET, and the average memory footprint of a service 

description plus its attributes averages 64 KB. Results for the 100-

host MANET experiments (not shown) are similar. 

7. PRACTICAL CONSIDERATIONS 
As mentioned in Section 1, it is evident that the learning 

system cannot be implemented “as-is” in real MANETs, given the 

long time it would take for the Q-function to approach optimality. 

Therefore, we propose a simple two-step process for the 

implementation of SDPP in a real MANET scenario. In the first 

step, the system is put to learn “off-line” (i.e., as a simulation) in 

order to populate the Q-function with the values that yield average 

maximized performance for a predefined host mobility model as 

deemed suitable. In this regard, the host mobility model should be 

carefully designed in order to reflect the expected conditions as 

realistically as possible. In the second step, the Q-function 

obtained from these simulations can be loaded into real service 

providers for use by SDPP. In this case, not all of the state-action 

pairs need to be stored. Instead, this reference table would be 

comprised only by the subset of states with the smallest 

cardinality (e.g., either the relocate, or do not relocate subset). We 

believe this to be a practicable approach, since our Q-function 

tables yield less than 20,000 states, which would require only a 

few tens of kilobytes of ROM space. On the other hand, DA 

information can be stored in RAM space as available in the 

mobile devices’ corresponding hardware. The information needed 

to assemble the system’s state abstraction can be readily obtained 

through cross-layer communications with the Medium Access 

Control (MAC) layer, and with the routing layer. 

We also observe that a number of service discovery schemes 

based on the so called web-services framework have been recently 

proposed. Network services are accordingly described and 

categorized in a highly-structured and information-rich fashion in 

an attempt to facilitate service matching. However, this leads to 

increased memory footprints for service descriptions, becoming a 

problem in MANETs comprised by thin devices with memory 

limitations. This is a consideration of particular importance for 

media-rich service information that may include audio, images or 

even video. In this regard, the contribution introduced by SDPP 

becomes apparent. 

8. SUMMARY AND CONCLUSIONS 
We have shown the effectiveness and limitations of 

employing both fixed and mobile directories for service discovery 

in mobile computing environments. The formulation of SDPP’s as 

an SMDP and its solution through the Q-learning technique 

proved helpful in defining a directory-copy policy that can save 

bandwidth. We also showed that allowing directories to become 

mobile leverages the performance of the service discovery system, 
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Figure 7. Summarized system behaviour for 200 hosts moving at 1 m/s. 
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Figure 8. Summarized system behaviour for 200 hosts moving at 2 m/s. 
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which depends on the hosts’ speed and the memory size of the 

service directory. Still, SDPP effectively minimizes performance 

degradation in a best-effort manner by enabling the service 

discovery system to dynamically adjust to the current MANET’s 

circumstances. We also note that the effectiveness of the Q-

learning approach depends on whether the Markovian property of 

the underlying environment holds. Therefore, SDPP’s degree of 

efficiency depends in part on the accuracy with which the host 

mobility model describes the movements of real people. However, 

we note that mobility models that do not adhere to the Markovian 

property may still yield sub-optimal results when solving the 

SMDP [13]. We believe that our proposed approach provides the 

necessary elements that motivate further explorations into the 

applicability of machine learning for service discovery in 

MANETs. SDPP also proved to be much more scalable than its 

predecessor, SDPA. We outlined the groundwork for SDPP to be 

employed in MANETs of slow-changing topology. However, 

SDPP can be foreseeable employed in any MANET in which the 

topology change rate is low enough to allow the learning system 

to respond accordingly before going into oscillation. Ultimately, 

the applicability of SDPP depends on the relative mobility 

between hosts in any MANET, provided that the hosts’ speeds and 

transmission ranges are proportionately increased. 
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        Table 1. Broadcast directory localization rate 

Success rate for 200 hosts moving @ 1 m/s 

Avg. entry footprint 64 KB Avg. entry footprint 128 KB 

Directory 

size 

Providers 

(10/ 20) 

Directory 

size 

Providers 

(10/20) 

512KB 0.88 / 0.95 512KB 0.92 / 0.93 

1024KB 0.90 / 0.95 1024KB 0.85 / 0.95 

2048KB 0.96 / 0.96 2048KB 0.92 / 0.96 

4096KB 0.88 / 0.96 4096KB 0.90 / 0.95 

8192KB 0.94 / 0.96 8192KB 0.84 / 0.96 

Success rate for 200 hosts moving @ 2 m/s 

Avg. entry footprint 64 KB Avg. entry footprint 128 KB 

Directory 

size 

Providers 

(10/ 20) 

Directory 

size 

Providers 

(10/20) 

512KB 0.90 / 0.91 512KB 0.84 / 0.95 

1024KB 0.92 / 0.92 1024KB 0.89 / 0.95 

2048KB 0.92 / 0.94 2048KB 0.88 / 0.96 

4096KB 0.94 / 0.96 4096KB 0.89 / 0.94 

8192KB 0.79 / 0.93 8192KB 0.91 / 0.93 
 

             Table 2. SDPP directory localization rate 

Success rate for 200 hosts moving @ 1 m/s 

Avg. entry footprint 64 KB Avg. entry footprint 128 KB 

Directory 

size 

Providers 

(10/ 20) 
Directory size 

Providers 

(10/20) 

512KB 0.96 / 0.96 512KB 0.96 / 0.95 

1024KB 0.96 / 0.96 1024KB 0.95 / 0.97 

2048KB 0.99 / 0.98 2048KB 0.98 / 0.99 

4096KB 0.97 / 0.97 4096KB 0.96 / 0.98 

8192KB 0.98 / 0.99 8192KB 0.96 / 0.96 

Success rate for 200 hosts moving @ 2 m/s 

Avg. entry footprint 64 KB Avg. entry footprint 128 KB 

Directory 

size 

Providers 

(10/ 20) 
Directory size 

Providers 

(10/20) 

512KB 0.95 / 0.94 512KB 0.95 / 0.97 

1024KB 0.96 / 0.97 1024KB 0.96 / 0.97 

2048KB 0.97 / 0.98 2048KB 0.96 / 0.98 

4096KB 0.97 / 0.99 4096KB 0.96 / 0.97 

8192KB 0.96 / 0.97 8192KB 0.96 / 0.98 
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