
A Self-Adaptive Placement Protocol for Mobile

Directories in MANETs

Sergio Gonzalez-Valenzuela1
, Son T. Vuong2

, Victor C. M. Leung1

1
Department of Electrical and Computer Engineering

2
Department of Computer Science
The University of British Columbia
Vancouver B.C., Canada V6T1Z7

1+604+822-6932
1
, 1+604+822-6366

2

{sergiog,vleung}@ece.ubc.ca and vuong@cs.ubc.ca

ABSTRACT
We present our Service Directory Placement Protocol (SDPP), a

multi-directory scheme for service discovery in Mobile Ad-hoc

Networks (MANETs). SDPP promotes the use of both fixed and

mobile directories co-existing in a hybrid setting comprised of

devices with different memory availability. Our proposed system

is based on a heuristic approach, whose performance is optimized

by formulating the directory-placement problem as a Semi-

Markov Decision Process solved by Q-Learning. Performance

evaluations reveal typical performance gains ranging between

15% and 75% of SDPP compared with a default broadcast

approach for MANETs comprised of hosts moving at pedestrian

speeds. A two-step process for practical implementation based on

“off-line” computer simulations is also described.

Categories and Subject Descriptors
C.2. [Network Architecture and Design]: Wireless

communication, C.2.2 [Network Protocols]: Protocol

architecture, I.2.6 [Learning]: Parameter Learning.

General Terms

Algorithms, Performance, Design, Experimentation.

Keywords

Service discovery, Mobile Computing, Machine Learning.

1. INTRODUCTION
The increasing popularity of low-cost radio interfaces

continues to drive research geared towards ad-hoc

communications of miniaturized electronic devices. However,

significant design issues arise due to the existing plethora of

device types and user mobility, as the traditional data-forwarding

role of computer networks shifts into that of ubiquitous service-

providers [1]. Unlike their fixed-topology counterparts, Mobile

Ad-hoc Networks (MANETs) are comprised of devices whose

place in the network varies in time, making it harder for peer hosts

to locate each other. In addition, open-access MANETs need to

possess self-configurable features, including those that pertain to

service advertisement, discovery and provision. To this effect,

open-access MANETs should be able to efficiently self-manage in

a seamless fashion, so that certain hosts can discover and access

the services or digital assets currently being shared by other hosts.

In this paper, we are interested in service discovery issues in

MANETs, and in particular, finding an efficient technique that

reduces consumed bandwidth and improves the service discovery

success rate. An important motivation for this is that the possible

applicability of existing protocols for service discovery to

MANETs is uncertain. For instance, protocols such as Universal

Plug and Play (UPnP) [2] and Jini [3] were designed for static

networking environments. Consequently, alternative solutions

have been recently proposed by academia. Among the most

significant contributions is GSD, a high-level ontology-based

approach that enables selective forwarding of service discovery

queries in MANETs and reduces packet overhead [4]. GSD’s

effectiveness depends heavily on whether all MANET hosts

support this higher level of information abstraction. Though

conceptually similar, a field-theoretic approach was presented in

[5], where service discovery queries are modelled as electrostatic

particles that are routed to service providers. The efficiency of this

system depends on the accuracy with which the Capacity of

Service parameter of service providers is assessed among

MANET hosts. Other approaches exist too, which rely on

surrogate or volunteer hosts that process service discovery queries

in a proxy-like fashion [6], [7].

One significant shortcoming seen in these and other

approaches that promote the use of directories for service

discovery is that they are unable to adapt to topology changes in

MANETs. This has a clear impact on the system’s effectiveness as

the MANET’s topology changes from one configuration into

another (e.g., Fig. 1.1(a) into Fig. 1.1(b)), causing some hosts to

become physically more distant from their service providers. In

earlier work, we advanced the Service Directory Placement

Algorithm (SDPA) to tackle this issue. SDPA promotes the

directory’s roaming through the network to get service

information closer to the MANET hosts that might need it [8]. In

this paper, we enhance SDPA and propose the Service Directory

Placement Protocol (SDPP), a methodology whereby fixed service

directories coexist with a variable number of mobile directories

that roam the MANET in an intelligent manner. As exemplified in

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

MSWiM’08, October 27–31, 2008, Vancouver, BC, Canada.

Copyright 2008 ACM 978-1-60558-235-1/08/10...$5.00.

403

Fig. 1.2, a change in the MANET’s topology from (a) to (b)

triggers the replication of fixed directories to mobile devices,

bringing service information closer to hosts in remote network

regions. However, this approach gives rise to the issue of when

and where to clone directories. To obtain an efficient decision-

making policy, we model this sequential directory placement

problem as a semi-Markov Decision Process (SMDP). The policy

employed for these decisions is obtained by employing a learning

system that is exposed to a variety of situations driven by service

querying patterns, host mobility, and physical memory

availability. This enables the number of duplicate directories and

their placement to effectively adapt to the prevailing network

conditions.

The formulation of SDPP as an SMDP is based on the

assumption that the rate of MANET topology changes is slow

enough to allow the learning algorithm’s convergence to an

optimal decision policy. We believe that this is a reasonable

assumption given that the existing technologies that facilitate

MANET deployment (e.g., WiFi or Bluetooth) only support host

movement at low speeds given their reduced transmission range.

In other words, these technologies do not support rapid topology

reconfiguration. To ensure that SDPP provides a practicable

solution, we propose a two-step implementation approach. In it,

the system is first put to learn “off-line” (i.e., as a computer

simulation) to find in a relatively short period of time a suitable

decision-making policy that directories can employ when roaming

the MANET. In the second step, the numeric values that comprise

these decision-making thresholds can be incorporated along with

SDPP into mobile hosts (i.e., as an add-on module), for use in a

working MANET. The advantages and disadvantages of this

approach are discussed later.

We also introduce a Service Entry Ranking System (SERS) to

grade the spatiotemporal popularity of all available services to

prioritize their advertisement order in the directories. This simple

approach leverages the learning system ability to maximize the

time-average performance by reducing packet overhead attributed

to the directory localization processes. The rest of this paper is

organized as follows. Section 2 explains the operation principles

of SDPP. The formulation of the learning system is given in

Section 3, and Section 4 introduces SERS. The simulations’ setup

and performance evaluations are presented in Sections 5 and 6,

respectively. Implementation aspects are discussed in Section 7,

and Section 8 concludes this paper.

2. THE SERVICE DIRECTORY

PLACEMENT PROTOCOL
In this section, we introduce the foundations that enable a

scalable multi-directory architecture for service discovery in

MANETs. SDPP is designed to leverage IETF’s Service Location

Protocol v2 (SLPv2) [9] for its possible use in a peer-to-peer

fashion. The basic architecture of SLPv2 consists of User Agents

(UAs) in individual hosts, Service Agents (SAs) associated with

service providers, and Directory Agents (DAs) that maintain

service directories. SAs register their service information with one

of the existing DAs, which in turn periodically broadcasts

DA_ADVERT packets to advertise services. Consequently, DAs

act as proxies for UAs attempting to discover services. In this

regard, UAs individually broadcast service request queries

(SRV_RQST) to DAs, which reply with the corresponding service

information contained in a SRV_RPLY packet. In addition,

attribute reply packets (ATTR_RPLY) follow attribute request

queries (ATTR_RQST).

For the incorporation of SDPP into SLPv2 as an add-on

module, we further categorize DAs as Fixed Directories (FDs), or

Mobile Directories (MDs) that are deployed to mobile hosts as

needed. To accomplish this, UAs append to SRV_RQST queries

special meta-data of localized network conditions. Upon receiving

the corresponding query, a DA passes this meta-data to the local

host’s SDPP module, whereas the service query is routinely

processed by the SLPv2 module. FD duplication follows

depending on whether the decision policy determines that this

action yields performance improvements in the MANET as a

whole. To avoid possible conflicts, FDs wishing to duplicate their

contents first send a request to the recipient host candidate, which

chooses one of these FDs to initiate the copy. This approach

becomes advantageous when a cluster of hosts that are physically

distant from a FD enter a pattern in which several service queries

are concurrently and repeatedly being issued.

We also contend that SLPv2’s operational principles can be

enhanced to support peer-to-peer interaction between DAs in a

relatively straightforward manner. In this regard, the SDPP

module at the local host can coordinate communications with

remote DAs by controlling SLPv2 through the use of APIs. In

other words, SDPP can instruct SLPv2 to issue the corresponding

signals for service (de-)registration (SRV_REG/DEREG) as

needed, in addition to those required to discover the presence of

other DAs, as explained shortly. Since we propose SAs and DAs

co-existing at the local service provider, remote DAs may process

regular SLPv2 signals issued by the local SAs to comply with the

IETF specification.

We propose a simple procedure for the maintenance of the

peer-to-peer FD (DA) network. Here, FDs discover peers to form

a “volatile” backbone, whose links may depend on mobile hosts

that fracture the current topology when they move. Our objective

is to ensure that any given FD remains logically linked to at least

one more neighbour FD insofar as the MANET’s current topology

allows it. To achieve this, we introduce a LOCATE_PEERS

packet type. SAs broadcast a LOCATE_PEERS packet in a 2k

incremental-hop fashion in order to control the search depth for

FD neighbours at the k-th search attempt. FDs reply with a

LOCATE_PEERS_RPLY packet accordingly, causing the FD

peer discovery process to stop. FDs then proceed to exchange

service-related information. The inter-directory update procedure

itself is realized by employing SLPv2’s existing service

registration signals (SRV_REG) in a prioritized manner as

Figure 1. Static vs. mobile directories in a MANET setting

1(a)

2(b)

Mobile directories

1(b)

Fixed directories

2(a)

404

recently mentioned. The reason for this is that memory-

constrained FDs might be unable to store all of the service

descriptions and attributes. Finally, unanswered service queries

previously sent onto the backbone network trigger a timeout,

causing the local neighbour table’s erasure, followed by another

peer discovery process as previously described.

3. THE MULTI-DIRECTORY LEARNING

SYSTEM

3.1. Foundations and Rationale for the Use of

Markov Decision Processes
We assume a high degree of individuality in users’ subjective

behaviours, their mobility patterns, and their movement history.

We also assume that the number of queries received at the current

directory’s location varies in accordance to users’ independent

preferences and needs. Therefore, if the long-term spatial

distribution of hosts remains statistically homogeneous, we find

no constraints for any particular topology or service query

condition from recurring sometime into the future [10], [11].

Furthermore, the time until a mobile service directory revisits any

given condition (state) will be finite if the circumstances

surrounding a MANET environment warrant a limited number of

observable conditions. These assumptions are pertinent for hosts

moving at low speeds in small to moderately sized networks [12],

and are justified in situations where hosts cooperate to facilitate

MANET packet forwarding.

Additionally, the lack of memory of previous events indicates

that the limiting probabilities of finding the system in any given

state will converge to a certain value once it has been operating

for a long time. Therefore, our performance improvement

objective can be maximized on a time average basis if a suitable

policy is employed to dynamically relocate MDs in accordance to

the users’ combined mobility and service querying patterns.

Hence, we can approach this sequential decision-making process

by modeling SDPP as a Markov Decision Process (MDP).

MDPs consist of several elements: a learning agent (not to be

confused with the agents in SLPv2), states, actions, transition

probabilities and a reward [13]. In essence, the agent is a decision-

maker exposed to the system that we wish to control, which can

be described as being in one of a potentially large number of

states. The agent takes actions in an attempt to steer the system

into a more desirable state, each of which is assigned a subjective

value of its worthiness. Because the behaviour of the system is

considered stochastic, there is a certain probability of the system’s

falling into a given state after a certain action is taken. The

objective of the agent is thus to maximize the accrued sum of

rewards, also known as the return R, received over the long term,

at which point the steady-state transition probabilities are

obtained. The transition time elapsed between the agent’s

decisions instants (τi- τi-1) is known as the decision epoch, which

in our case is defined as being real-valued, effectively turning our

system into a semi-Markov Decision Process (SMDP).

We solve the SMDP by means of a Reinforcement Learning

(RL) technique known as Q-learning [14], whose objective is to

gradually adjust the initially arbitrary values of a Value Function

(VF) to its optimal ones. In our case, this result can be achieved

by allowing the agent to learn which directory-copy actions

produce the highest reward in the long run. Here, a slow-

decreasing discounting factor γ with an initial value in the range

(0,1) is used to reduce the weight of future rewards r accrued into

R at time t. An optimal policy π for the state-value function V(s) is

found when the final value of any state s equals the expected sum

of rewards E{R} for the process starting at an initial state s, after

choosing an action a from the set A(s) that yields the largest

reward [13]:

 In Q-learning, state-action pairs (s,a) are mapped to their

corresponding maximum reward value according to the Bellman

Optimality Equations [14]:

Here, P(s’|s,a) denotes the probability of going from state s to

state s’ when an action a is taken. For the case of SMDPs solved

by means of Q-learning, the discount factor γ must be re-defined,

since the states’ sojourn time is a continuous random variable.

Thus, integrals replace summations to compute the expected

return [15]:

This expression yields the following result to account for the

real-valued sojourn time between state transitions:

Here, a learning rate α is introduced to allow the algorithm to

converge on one of possibly several existing policies, and β

controls the rate of exponential decay. The model of Q-Learning

is shown in Fig. 2. An appealing feature of Q-learning is that it

does not require formulating a model of the underlying system’s

environment. Therefore, the need to compute the states’ transition

probabilities is eliminated. This is particularly appealing for the

case of SDPP, since distinct mobility models can be employed.

3.2 Formulation of SDPP as an SMDP
In SDPP, the delivery of SRV_RQST queries at a FD marks

the end of one decision epoch and the beginning of a new one, at

which point, the learning agent takes an action. The elements of

the RL process for SDPP are described next.

Figure 2. The Q-learning model

State

Lookup

Update

Computes

Reward

Policy

Q(s,a)

Take

Action

Environment

Agent

Modifies

Described by

405

States: The state of the network at time epoch τi is an abstract

representation that incorporates the following factors as measured

for the duration τi -τi-1.:

 The difference between the number n of neighbouring hosts at

both the location of the querying node U and in the current

location of the directory V at time t.

 The hop distance between the querying host U and the directory

V at time t.

 The average hop distance traversed by queries q generated at U

hosts received by the directory V in its current host location at

time t.

 The difference between the number of queries q generated in

the neighbourhood of the querying host U and those processed

by the directory V in its current location at time t.

 The total directory memory g available at the host U where

duplication is being pondered.

Actions: Only two possible actions are considered for this system,

and are described as A(s)={copy directory, do not copy

directory}.

Reward: The reward function that we employ incorporates the

following elements:

 J ATTR_RQST queries (QH) received from up to I mobile

hosts.

 L ATTR_RQST queries (QD) received from up to K MDs.

 One SRV_RQST query received from any given host that

marks the end of the decision epoch.

 M ATTR_RQST packets (PH) received from up to I mobile

hosts, and their corresponding ATTR_RPLY packets.

 N ATTR_RQST packets (PD) received from up to K MDs and

their corresponding ATTR_RPLY packets.

 H packets transferred when a service directory is copied to a

host in the current decision epoch.

(5)

The reward signal r(s,s’,a) (5) is thus obtained by dividing the

total number of service discovery queries for the current time

epoch over the number of packets generated by these same queries

resulting for the current epochs, the latter of which ends when the

corresponding SRV-RQST query is received at the local FD. This

indicates that the LA’s reward increases when it sees a larger

number of queries with respect to the number of packets, and can

be achieved when an FD is copied to a host that ends up servicing

more queries from neighbouring hosts. However, if the new MD

possesses limited memory to accommodate a sizable number of

service descriptions and corresponding attributes, then the FD that

duplicated the directory will inevitably observe rely ATTR_RQST

queries originating from the new MD that yield unwanted

overhead traffic, for which the LA is accordingly penalized.

However, the LA will eventually infer the threshold memory

value at which the amount of saved bandwidth surpasses the

overhead attributed to relied ATTR_RQST onto the backbone.

4. THE SERVICE ENTRY RANKING

SYSTEM
SERS is built on the premise that it is counter-intuitive to copy

service description/attributes that are seldom being queried in the

recent time frame. Doing otherwise ultimately leads the MD’s into

relaying ATTR_RQST queries onto the backbone network.

Therefore, we propose SERS to rank the popularity of individual

directory entries based on the frequencies with which they have

been recently queried (contrary using to the number of queries that

each entry receives). This makes the system fairer to those

services that have been available only for a short portion of the

time. Otherwise, services that have been available for longer

periods would see their ranking unfairly favoured even if their

current popularity is low. Individual service entry ranking (SER)

values are locally kept and updated. The more often an entry is

queried, the higher its value grows, whereas a lack of queries

lowers this value according to expression (6):

Here, SER entry i will see its value adjusted in proportion to

the rate with which it is being queried, and it’s normalized to the

sum of each weighted value of up to n entries at the local

directory. Therefore, the query interarrival time for each

respective entry is recorded at the local directory (either FD, or

MD), since this value is referenced for the recurrent SER

calculation. Consequently, a directory entry for a particular

service will see its SER value increased or decreased to reflect its

current spatiotemporal popularity in the MANET.

As mentioned before, SLPv2’s existing service registration

(SRV_REG) messages can be readily employed to copy entries

from the sender FD to the target device (the new MD). However,

memory limitations in hardware-constrained devices might

impede performing a full directory copy. Thus, priority is given to

entries that possess the highest SER values during the copy

process. If the attributes’ memory footprint of the current entry is

too big to fit into the target memory space, then only the service

description is copied, and the process continues to copy the

following entries with the highest SER. This process is repeated

until either all of the local entries have been copied should the

new MD have an equal or greater amount of memory, or if the

available memory at the target host is depleted. Both the

interarrival query time and the SER value for the directory’s

entries become part of their attributes. Later, entries with lower

SER values are replaced at the local FD/MD by entries with

higher SER values fetched from other FDs upon receiving an

ATTR_RPLY packet in response to a previously relayed

ATTR_RQST query onto the backbone network.

5. IMPLEMENTATION AND SIMULATION

SETUP
Our simulations employed the Mobility Framework of the

OMNeT++ Network Simulator [16]. We probed the behaviour of

the proposed system with networks of 100 and 200 mobile hosts,

plus a fixed number of stationary service providers whose

physical position in the network is uniformly distributed. Mobile

hosts are dispersed in areas of 700 m2 and 1000 m2 respectively,

and remain within the area’s boundaries during the simulation (not

a toroid), as we would expect to see real users behave in a real

setting. Hosts move according to the well-known random

waypoint mobility model, with travel speeds of 1 or 2 m/s, and

pause times of 900 seconds. Although this mobility model is

known to yield a heavier concentration of elements in the

deployment area’s center [11], it provides a better approximation

to real user mobility than simpler random walk-based models.

Hosts’ transmission range is limited to 100 m, which yields a

406

multi-hop network. The packet length at the network layer is

arbitrarily set at 1500 bytes, and the query interarrival time is

exponentially distributed with a mean of 2 minutes. We employ a

generic MAC layer, and we assume that collisions in the wireless

medium are rare. Experiments run for a total of 3000 hours of

simulated time, which includes a 600-second warm-up period

wherein service providers are sequentially enabled to allow for a

gradual discovery of their peers. The learning system remains

disabled during this “warm-up” period, after which user hosts

begin issuing service discovery queries and both the learning and

SER systems at the DAs are enabled.

We also measure the performance penalties paid by the service

discovery system when having a limited RAM memory available

at the hosts for use by MDs. This provision has been entirely

ignored in existing research. We assume that this amount of

simulated memory exists in banks of 2n kilobytes, where, n

assumes a value within the range [7…11] for MANETs of 100

hosts, and within the range [9…13] for MANETs of 200 hosts.

Each service entry is comprised of a single description and an

arbitrary number of attributes that occupies a geometrically-

distributed number of bytes. Therefore, the total byte-count per

service entry results in an Erlang-distributed value, which is a

special case of the Gamma distribution that we use to represent

integer-type memory footprints. Given the lack of actual

information on service entries’ memory footprints, we arbitrarily

employ values of 64 and 128 KB. Also, the probability of each

service entry being queried is uniformly distributed.

FDs and learning agents coexist as symbiotic pairs in the

service providers. This allows reward values to be individually

attributed to each of the agent’s actions. A small value of 0.1 is

initially set for both α and β in equation (4) at each of the FDs’

respective learning systems, which in turn perform their work in a

non-cooperative fashion (individually from other learning agents).

Therefore, the obtained polices are not shared with one another. In

addition, each MD computes the number of service queries that it

is able to successfully process. If an MD observes more packets

relayed onto the backbone network than those that are locally

processed (resulting in a negative balance), then the MD

surrenders its role. In this case, all directory-related information is

flushed, and the host assumes a regular status.

We tested SDPA with a slightly modified version of SLPv2 so

that, upon receiving a SRV_RPLY packet, a regular host

broadcasts a DA_ADVERT to its 1-hop neighbours to inform

them of the DA’s location just discovered. Although, this task is

originally performed by the DAs, in SDPP neither FDs nor MDs

issue any DA_ADVERT signal. Other than that, service/attribute

requests/replies are routinely processed according to the

corresponding IETF specification. In addition, our simulation

implements a nearly-generic loop-free routing scheme wherein

paths are discovered on-demand. This allows us to isolate the

effect that any particular routing algorithm might have on our

system, and therefore measure the effectiveness of our approach in

a reasonably unbiased fashion.

6. SIMULATION RESULTS AND

DISCUSSIONS
We evaluated the packet overhead incurred by SDPP, as well

as the directory location/discovery success rate. Evidently, the

fewer packets attributed to service discovery queries while

maintaining a high success rate for directory localization, the

better. We gauge these performance metrics against a baseline

broadcast flooding (where no MDs are employed). We also

evaluate SDPP against existing multi-directory approaches.

However, accurate comparisons are not straightforward given the

variety in methodologies, evaluation platforms, simulation

parameters and performance metrics employed. As a result, the

existing literature on SDPs for MANETs also reports comparisons

against a default broadcast-flooding approach [4]-[7].

Service discovery packets are counted in a moving-window

fashion by sampling their number every 10 simulated hours, at

which point the count is reset to 0. Figs. 3 and 4 illustrate the

typical behaviour of a sample set of measured data in our system

once SDPP is put into action in a 100-host MANET under the

specified simulation parameters. Our first observation is that the

learning system is only incapable of finding an efficient copy

decision policy that yields better system performance when the

average memory available for use by an MD is relatively small. In

this case, the constant swapping in and out of the low-SER entries

at the directories causes oscillation in the learning system when

only 128KB of RAM are available for MD use at the hosts.

Figure 4. Compound System behaviour with parameters

100H, 64 KB, 10 P, 1 m/s

Figure 3. Compound System behaviour with parameters

100H, 64 KB, 10 P, 1 m/s

0.4

1.0

1.6

2.3

2.9

3.5

10 510 1010 1510 2010 2510

P
a
c
k
e
ts

 (
x
1
0

6
/1

0
-h

o
u

r)

Simulated hours

128K 512K

256K 1M

2M

0.4

1.0

1.6

2.3

2.9

3.5

10 510 1010 1510 2010 2510

P
a
c
k
e
ts

 (
x
1
0

6
/1

0
-h

o
u

r)

Simulated hours

256KB 128KB

512KB 1MB

2MB

407

However, for the remaining of test cases, the plots show a gradual

packet overhead reduction attributed to the learning system, which

takes place approximately one-third into the simulation period.

Figs. 5-8 summarize the performance of SDPP against the

broadcast approach by comparing the average number of packets

observed in 10-hour periods during the last third of their

corresponding simulations (which in the broadcast case remains

constant). For instance, the average number of packets observed in

the last third of each curve shown in Fig. 3 yields one dot in the

plot for SDPP that is shown in Fig. 5(a). These curves depict how

the packet overhead behaves as the DA memory window is

gradually increased. We can observe a dramatic decrease in packet

overhead when the maximum allotted memory space is increased

from 128KB to 256 KB (from one simulation outcome to the

next), service entries’ memory footprint average 64 KB, hosts

move at 1 m/s, and there are 10 service providers in the network.

For 100-host MANETs, SDPP’s performance shows packet

reductions between 18% and 75% over the broadcast flooding

scheme as shown in Figs. 5 and 6. Overall, SDPP outperformed

the baseline approach roughly 75% of the time for this simulation

set. Nonetheless, our best results were obtained in the 200-host

simulations, with 90% of the results favouring SDPP’s use over

the baseline approach. As in the 100-host case, performance

improvements are highly variable too. Improvements range from

being fairly conservative to others spanning nearly a whole order

of magnitude, as depicted in the 512 KB case of Fig. 7(a).

We ascribe these variations in performance to two main

factors. The first one deals with the distinct parameters that we

employed in our simulations. Whereas some of these parameters

were arbitrarily chosen (due to the lack of realistic information in

the literature), others attempt to mimic the possible conditions

observed in a real MANET setting. In particular, the RAM

memory window allocated for MD use at the hosts played an

important role in the simulations’ results, which yielded the best

results after being increased in the 200-host cases. The reason for

this is that a larger number of MANET hosts translates into

service entries being queried more often at the FDs, thus causing

more frequent swapping of service entries and increased

bandwidth consumption. This results in the individual learning

systems abstaining from delegating MD duties to regular hosts. In

the extreme case, no MDs are employed, and the pure-FD

approach is favoured. Nonetheless, by increasing the DAs’

memory window, we allow for more entries that can be kept for

longer periods of time, thus reducing traffic. In fact, it can be seen

that there are instances in which the system seems to reach a

stabilization point when the upper-limit of the memory window

allocated to the DA reaches 1 MB. In general, MANETs in our

experiments see improved performance as mobile hosts allocate

memory on the higher end of the memory window, which can be

confirmed in Figs. 5(d), 6(c) and 7(a), wherein the limited number

of service entries can be effectively handled by a surplus of

simulated RAM at the hosts. We observe that, in certain cases,

hosts have enough memory to store all of the available services’

information in the MANET. This leads to the unrestricted

replication of the directories to all mobile hosts until they all

become MDs, and SRV_RQST queries are no longer issued.

Therefore, each mobile host has a local directory copy that it can

reference to enquire about any of the available MANET services.

This suggests that performance variations are not necessarily

attributable to SDPP, but to the operating parameters of the

MANETs hosts. Hence, SDPP system learns to work in a best-

effort fashion, instantiating as many MDs with larger directory

memory allocations as there are available improve performance.

In addition to the above, our results suggest that performance

variations between the 100- and 200-host MANETs arise as a

result of the actual physical distribution of FDs in the MANET.

Given that FDs are randomly distributed, a portion of them may

sometimes suffice to cover the MANET deployment area,

rendering the use of MDs as unnecessary. Conversely, FDs in a

different simulation might end up more or less clustered within a

particular deployment area. In such cases, the MANET benefits

from the use of MDs servicing the voids left by the irregular

(random) distribution of FDs in the deployment area. At present,

the learning system is unable to deal with this issue because the

(c) 64 KB, 20 P

0

0.5

1

1.5

2

2.5

3

3.5

4

128 256 512 1024 2048

1
0

6
 P

a
c

k
e

ts
 /

 1
0

-h
o

u
rs

Broadcast

SDPP

(b) 128 KB, 10 P

0

0.5

1

1.5

2

2.5

3

3.5

128 256 512 1024 2048

1
0

6
 P

a
c

k
e

ts
 /

 1
0

-h
o

u
rs

Broadcast

SDPP

(a) 64 KB, 10P

0

0.5

1

1.5

2

2.5

3

3.5

4

128 256 512 1024 2048

1
0

6
 P

a
c

k
e

ts
 /

 1
0

-h
o

u
rs

Broadcast

SDPP

Figure 5. Summarized system behaviour for 100 hosts moving at 1 m/s.

(d) 128 KB, 20 P

0

0.5

1

1.5

2

2.5

3

3.5

128 256 512 1024 2048

1
0

6
 P

a
c

k
e

ts
 /

 1
0

-h
o

u
rs

Broadcast

SDPP

(c) 64 KB, 20 P

0

0.5

1

1.5

2

2.5

3

3.5

4

128 256 512 1024 2048

1
0

6
 P

a
c

k
e

ts
 /

 1
0

-h
o

u
rs

Broadcast

SDPP

(b) 128 KB, 10 P

0

0.5

1

1.5

2

2.5

3

3.5

4

128 256 512 1024 2048

1
0

6
 P

a
c

k
e

ts
 /

 1
0

-h
o

u
rs

Broadcast

SDPP

(a) 64 KB, 10P

0

0.5

1

1.5

2

2.5

3

3.5

128 256 512 1024 2048

1
0

6
 P

a
c

k
e

ts
 /

 1
0

-h
o

u
rs

Broadcast

SDPP

Figure 6. Summarized system behaviour for 100 hosts moving at 2 m/s.

(d) 128 KB, 20 P

0

0.5

1

1.5

2

2.5

3

3.5

128 256 512 1024 2048

1
0

6
 P

a
c

k
e

ts
 /

 1
0

-h
o

u
rs

Broadcast

SDPP

408

current system state representation conveys no information about

the FDs’ actual position that can employ in making MD-cloning

decisions. Although this issue is straightforward to solve in a

simulation setting, it is not the case in a in a real MANET setting.

Therefore, we decided to simulate the real MANET setting to

examine the behaviour of SDPP in such circumstances.

Our results also reveal that SDPP is more scalable than its

SDPA predecessor. SDPP also compares well with existing

approaches under somewhat similar simulation parameters. For

instance, Fig. 13(c)/(d) of the GSD approach yields a network load

that amounts to roughly 100,000 messages in a 100-host MANET

after 75 simulated minutes [4]. SDPP’s performance parallels this

result for the same simulated time when the hosts allocate 512KB

on average for directory copies. However, GSD’s messages are

not network layer packets, but application layer messages. It is

unclear from the available information how many TCP packets

their messages would yield. Similarly, SDPP produces half as

many packets than those reported in [6], even when the number of

MANET hosts considered in our SDPP evaluation is twice as

large. Table 2 shows the directory localization success rates often

approaching the 100% efficiency mark in a 200-host MANET,

meeting or exceeding the results in Table 1, and those reported in

the referenced approaches. For instance, a success rate of 96% is

attained when hosts that move at 1 m/s allocate an average of 128

KB of directory memory space, there are 10 services are available

in the MANET, and the average memory footprint of a service

description plus its attributes averages 64 KB. Results for the 100-

host MANET experiments (not shown) are similar.

7. PRACTICAL CONSIDERATIONS
As mentioned in Section 1, it is evident that the learning

system cannot be implemented “as-is” in real MANETs, given the

long time it would take for the Q-function to approach optimality.

Therefore, we propose a simple two-step process for the

implementation of SDPP in a real MANET scenario. In the first

step, the system is put to learn “off-line” (i.e., as a simulation) in

order to populate the Q-function with the values that yield average

maximized performance for a predefined host mobility model as

deemed suitable. In this regard, the host mobility model should be

carefully designed in order to reflect the expected conditions as

realistically as possible. In the second step, the Q-function

obtained from these simulations can be loaded into real service

providers for use by SDPP. In this case, not all of the state-action

pairs need to be stored. Instead, this reference table would be

comprised only by the subset of states with the smallest

cardinality (e.g., either the relocate, or do not relocate subset). We

believe this to be a practicable approach, since our Q-function

tables yield less than 20,000 states, which would require only a

few tens of kilobytes of ROM space. On the other hand, DA

information can be stored in RAM space as available in the

mobile devices’ corresponding hardware. The information needed

to assemble the system’s state abstraction can be readily obtained

through cross-layer communications with the Medium Access

Control (MAC) layer, and with the routing layer.

We also observe that a number of service discovery schemes

based on the so called web-services framework have been recently

proposed. Network services are accordingly described and

categorized in a highly-structured and information-rich fashion in

an attempt to facilitate service matching. However, this leads to

increased memory footprints for service descriptions, becoming a

problem in MANETs comprised by thin devices with memory

limitations. This is a consideration of particular importance for

media-rich service information that may include audio, images or

even video. In this regard, the contribution introduced by SDPP

becomes apparent.

8. SUMMARY AND CONCLUSIONS
We have shown the effectiveness and limitations of

employing both fixed and mobile directories for service discovery

in mobile computing environments. The formulation of SDPP’s as

an SMDP and its solution through the Q-learning technique

proved helpful in defining a directory-copy policy that can save

bandwidth. We also showed that allowing directories to become

mobile leverages the performance of the service discovery system,

(d) 128 KB, 20 P

0

5

10

15

20

512 1024 2048 4096 8192

1
0

6
 P

a
c

k
e

ts
 /

 1
0

-h
o

u
rs

Broadcast

SDPP

(c) 64 KB, 20 P

0

5

10

15

20

512 1024 2048 4096 8192

1
0

6
 P

a
c

k
e

ts
 /

 1
0

-h
o

u
rs

Broadcast

SDPP

(b) 128 KB, 10 P

0

5

10

15

20

512 1024 2048 4096 8192

1
0

6
 P

a
c

k
e

ts
 /

 1
0

-h
o

u
rs

Broadcast

SDPP

(a) 64 KB, 10P

0

5

10

15

20

512 1024 2048 4096 8192

1
0

6
 P

a
c

k
e

ts
 /

 1
0

-h
o

u
rs

Broadcast

SDPP

Figure 7. Summarized system behaviour for 200 hosts moving at 1 m/s.

(d) 128 KB, 20 P

0

5

10

15

20

512 1024 2048 4096 8192

1
0

6
 P

a
c

k
e

ts
 /

 1
0

-h
o

u
rs Broadcast

SDPP

(c) 64 KB, 20 P

0

5

10

15

20

512 1024 2048 4096 8192

1
0

6
 P

a
c

k
e

ts
 /

 1
0

-h
o

u
rs Broadcast

SDPP

(b) 128 KB, 10 P

0

5

10

15

20

512 1024 2048 4096 8192

1
0

6
 P

a
c

k
e

ts
 /

 1
0

-h
o

u
rs Broadcast

SDPP

(a) 64 KB, 10P

0

5

10

15

20

512 1024 2048 4096 8192

1
0

6
 P

a
c

k
e

ts
 /

 1
0

-h
o

u
rs Broadcast

SDPP

Figure 8. Summarized system behaviour for 200 hosts moving at 2 m/s.

409

which depends on the hosts’ speed and the memory size of the

service directory. Still, SDPP effectively minimizes performance

degradation in a best-effort manner by enabling the service

discovery system to dynamically adjust to the current MANET’s

circumstances. We also note that the effectiveness of the Q-

learning approach depends on whether the Markovian property of

the underlying environment holds. Therefore, SDPP’s degree of

efficiency depends in part on the accuracy with which the host

mobility model describes the movements of real people. However,

we note that mobility models that do not adhere to the Markovian

property may still yield sub-optimal results when solving the

SMDP [13]. We believe that our proposed approach provides the

necessary elements that motivate further explorations into the

applicability of machine learning for service discovery in

MANETs. SDPP also proved to be much more scalable than its

predecessor, SDPA. We outlined the groundwork for SDPP to be

employed in MANETs of slow-changing topology. However,

SDPP can be foreseeable employed in any MANET in which the

topology change rate is low enough to allow the learning system

to respond accordingly before going into oscillation. Ultimately,

the applicability of SDPP depends on the relative mobility

between hosts in any MANET, provided that the hosts’ speeds and

transmission ranges are proportionately increased.

9. REFERENCES

[1] F. Zhu, M. W. Mutka, L. M. Ni, "Service Discovery in

Pervasive Computing Environments," IEEE Pervasive

Computing, Vol. 04, No. 4, pp. 81-90, Oct-Dec, 2005.

[2] The UPnP Forum. http://www.upnp.org

[3] Jini Network Technology. http://sun.com/jini

[4] D. Chakraborty, A. Joshi, Y. Yesha, T. Finin, "Toward

Distributed Service Discovery in Pervasive Computing

Environments," IEEE Transactions on Mobile Computing,

Vol. 5, No. 2, pp. 97-112, February 2006.

[5] Lenders, V., May, M. and Plattner, B. “Service Discovery in

Mobile Ad Hoc Networks: A Field Theoretic Approach,” in

Journal on Pervasive and Mobile Computing, Vol. 1, Issue 3,

p. 343-370, Elsevier, September 2005.

[6] U. C. Kozat and L.Tassiulas, “Service Discovery in Mobile

Ad-hoc Networks: An Overall Perspective on Architectural

Choices and Network Later Support Issues,” Ad-Hoc

Networks, Elsevier, 2004.

[7] M.J. Kima, M. Kumara, B.A. Shirazib, “Service discovery

using volunteer nodes in heterogeneous pervasive computing

environments,” Pervasive and Mobile Computing, Vol. 2, pp.

313–343, Elsevier, 2006.

[8] S. Gonzalez-Valenzuela, S.T. Vuong, and V.C.M. Leung, “A

Mobile-Directory Approach to Service Discovery in Wireless

Ad-hoc Networks,” in press, IEEE Transactions on Mobile

Computing.

[9] Service Location Protocol v2, IETF RFC2608,

http://www.ietf.org/rfc/rfc2608.txt.

[10] G. Lin, G. Noubir and R. Rajaraman, “Mobility Models for

Ad hoc Network Simulation,” in Proceedings of IEEE

INFOCOM, Hong Kong, China, March 2004.

[11] C. Bettstetter, G. Resta and P. Santi, “The Node Distribution

of the Random Waypoint Mobility Model for Wireless Ad

Hoc Networks,” IEEE Transactions On Mobile Computing,

Vol. 2, No. 3, pp. 257-269, July-September 2003.

[12] F. Bai, N. Sadagopan and A. Helmy, “IMPORTANT: A

Framework to Systematically Analyze the Impact of Mobility

on Performance of RouTing protocols for Adhoc NeTworks,”

in IEEE INFOCOM, San Francisco, USA, April 2003.

[13] R. S. Sutton and A. G.Barto, “Reinforcement Learning – An

Introduction.” MIT Press, Cambridge, USA.

[14] C. J. C. H. Watkins, “Learning from Delayed Rewards,” PhD

thesis, Cambridge University, England, 1989.

[15] S. J. Bradtke and M. O. Duff, “Reinforcement Learning

Methods for Continuous-Time Markov Decision Problems,”

in Advances in Neural Information Processing Systems 7, G.

Tesauro, D. S. Touretzky and T. K. Leen, Editors, MIT Press,

Cambridge, USA 1995.

[16] The OMNeT++ Discrete Event Simulator.

http://www.omnetpp.org.

 Table 1. Broadcast directory localization rate

Success rate for 200 hosts moving @ 1 m/s

Avg. entry footprint 64 KB Avg. entry footprint 128 KB

Directory

size

Providers

(10/ 20)

Directory

size

Providers

(10/20)

512KB 0.88 / 0.95 512KB 0.92 / 0.93

1024KB 0.90 / 0.95 1024KB 0.85 / 0.95

2048KB 0.96 / 0.96 2048KB 0.92 / 0.96

4096KB 0.88 / 0.96 4096KB 0.90 / 0.95

8192KB 0.94 / 0.96 8192KB 0.84 / 0.96

Success rate for 200 hosts moving @ 2 m/s

Avg. entry footprint 64 KB Avg. entry footprint 128 KB

Directory

size

Providers

(10/ 20)

Directory

size

Providers

(10/20)

512KB 0.90 / 0.91 512KB 0.84 / 0.95

1024KB 0.92 / 0.92 1024KB 0.89 / 0.95

2048KB 0.92 / 0.94 2048KB 0.88 / 0.96

4096KB 0.94 / 0.96 4096KB 0.89 / 0.94

8192KB 0.79 / 0.93 8192KB 0.91 / 0.93

 Table 2. SDPP directory localization rate

Success rate for 200 hosts moving @ 1 m/s

Avg. entry footprint 64 KB Avg. entry footprint 128 KB

Directory

size

Providers

(10/ 20)
Directory size

Providers

(10/20)

512KB 0.96 / 0.96 512KB 0.96 / 0.95

1024KB 0.96 / 0.96 1024KB 0.95 / 0.97

2048KB 0.99 / 0.98 2048KB 0.98 / 0.99

4096KB 0.97 / 0.97 4096KB 0.96 / 0.98

8192KB 0.98 / 0.99 8192KB 0.96 / 0.96

Success rate for 200 hosts moving @ 2 m/s

Avg. entry footprint 64 KB Avg. entry footprint 128 KB

Directory

size

Providers

(10/ 20)
Directory size

Providers

(10/20)

512KB 0.95 / 0.94 512KB 0.95 / 0.97

1024KB 0.96 / 0.97 1024KB 0.96 / 0.97

2048KB 0.97 / 0.98 2048KB 0.96 / 0.98

4096KB 0.97 / 0.99 4096KB 0.96 / 0.97

8192KB 0.96 / 0.97 8192KB 0.96 / 0.98

410

