
Simulating BitTorrent

Karel De Vogeleer
Blekinge Institute of

Technology
kdv@bth.se

David Erman
Blekinge Institute of

Technology
david.erman@bth.se

Adrian Popescu
Blekinge Institute of

Technology
adrian.popescu@bth.se

ABSTRACT
IP Television (IPTV) and other media distribution applica-
tions are expected to be one of the next Internet killer appli-
cations. One indication of this is the corporate backing that
the IP Multimedia Subsystem (IMS) is getting. However, the
bandwidth utilization of these applications is still an issue,
as the volume of multimedia grows due to larger image res-
olution and higher bitrate audio. One way of managing this
increase in bandwidth requirements is to use existing end-
host bandwidth to decrease the load on the content server
in a Peer-to-Peer (P2P) fashion. One of the most successful
P2P applications is BitTorrent (BT), a swarming file transfer
system. This paper presents an implementation of a BT sim-
ulator intended for future use in investigating modifications
to the BT system to provide streaming media capabilities.
The simulator is validated against real-world measurements
and a brief performance analysis is provided.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols—Applications; C.2.4 [Computer-Communication
Networks]: Distributed Systems—Distributed Applications

Keywords
P2P, simulation, BitTorrent, streaming, multimedia, video-
on-demand

1. INTRODUCTION
The advent of P2P applications has instigated a signifi-

cant amount of research into many aspects of these appli-
cations. A large number of measurement, analytical and
simulation studies have been performed on a wide variety of
P2P applications and protocols. P2P applications appear in
a multitude of forms, but the most common is some form
of file sharing or resource location application. These appli-
cations have shown to be very efficient in both decreasing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
QoSim 2008, March 3, 2008, Marseille, France.
Copyright 2008 ACM ISBN 978-963-9799-20-2 ...$5.00.

server load as well as providing a simple way of locating in-
formation. P2P applications impose their own routing and
forwarding on top of the Internet infrastructure, in effect
forming overlay networks.

While P2P applications are the de-facto most prominent
contributors to Internet traffic today, there is another group
of applications expected to challenge this situation. This
group consists of IPTV, Voice over IP (VoIP), Video-on-
Demand (VoD) and other multimedia distribution applica-
tions. By the amount of attention placed upon it, large-
scale multimedia streaming is expected to be the next killer
application. Indications of this are the corporate backing
that, e. g. , the IMS has achieved as well as the amount of
research put into mechanisms for compression, coding, dis-
tribution and related domains. Previous attempts to provide
streaming services using IP Multicast (IPMC) have to a large
extent been unsuccessful. This is due to a number of rea-
sons: IPMC lacks buffering capabilities, a lack of applications
using IPMC, poor deployment of IPMC and reluctance of In-
ternet Service Providers (ISPs) to allow IPMC forwarding
across their networks. Overlay Multicast (OLMC) has been
investigated as a possible solution to these issues. Systems
such as End-System Multicast (ESM) [19], PeerCast [16],
dPAM [18], oStream [7] and others have been proposed to
address the issues with IPMC in the context of media stream-
ing.

One of the most popular P2P applications is BT [6], a
swarming file distribution system. BT has shown to be very
efficient in distributing large files without increasing the load
on the original server of the files being distributed. While
originally a file distribution system, research has been done
on adapting the core BT algorithms to facilitate VoD. So-
lutions such as BASS [8] and BiToS [21] have been proposed
that modify the original BT algorithms to be able to handle
streaming scenarios. Streaming media places significantly
different demands on both the network and the distribution
mechanism from those of non-streaming file transfers. The
most obvious difference are the temporal demands, i. e. , de-
lay sensitivity and the associated timeliness of data packet
arrival. In addition to packet timeliness, the ordering of
the packets is important. The data of a video object is
played back in a linear fashion, but in BT, data segments are
downloaded in a random fashion. As for the delay demands
of VoD, it is very difficult to provide any true Quality of
Service (QoS) for these demands, and the BT protocol does
not provide any means for this. The work we present in this
paper is part of the Routing in Overlay Networks (ROVER)
project at Blekinge Institute of Technology (BTH) to rectify



these issues with BT, so as to make it a viable and cost-
effective solution for VoD. While testing on real and active
BT networks would be beneficial, the risk of adversely affect-
ing the network during development of our modifications is
too high. Thus, we have designed a simulator in which the
core BT algorithms can easily be exchanged for alternative
algorithms. Which is used for investigating modifications to
the BT system to provide streaming media capabilities [10].

The rest of this paper is organised as follows. In section
2, we briefly describe the BT system. This is followed by
a survey of related work on P2P simulators and simulation
frameworks in section 3. In section 4, we describe our BT

simulator, and present some results regarding the validation
of the simulator against real-world traces of BT traffic. The
paper is concluded with a discussion of future work in section
5.

2. BITTORRENT
BT is a swarming distribution system originally developed

to distribute large files. The system comprises two network
entity types: peers and trackers. A peer is an end host
participating in the distribution of a specific set of data,
and we denote a local peer a client. Peers can be either
seeds or leechers. A seed is a peer that possesses all the
pieces of the data, while a leecher is a downloading peer. A
tracker is a peer arbitrator that keeps track of what peers
are currently participating in a swarm. The trackers and set
of peers participating in distribution are collectively known
as a swarm.

BT employs a fairness system designed to provide incen-
tives for peers to reciprocate up- and downloads between
each other. Data is referenced in fixed-size byte ranges,
called pieces. Requests for data among peers are made in
parts of a piece, known as blocks. A piece is thus made up
of several blocks. Once a client has downloaded all blocks
of a piece correctly, all peers currently connected to are no-
tified of this. This informs the peers that the piece is now
available at the client.

The characteristics of BT are primarily governed by two
main algorithms: the piece selection algorithm and the peer
selection (or choking) algorithm. A peer may run any ver-
sion of the algorithm, as the protocol does not dictate any
semantics regarding these.

The piece selection algorithm in the reference BT client
employs four distinct policies when deciding what block to
request next. When at least one block of any given piece is
downloaded, the remaining blocks from this piece are prior-
itized.1 This policy is known as the strict priority policy.
When fewer then four pieces have been downloaded, and
there are no active pieces, a random piece is selected for
download. This policy is known as the random-first policy.
When at least four pieces are downloaded, the least repli-
cated piece in the swarm, i. e. , the piece that is available
at the fewest peers is selected for download. This policy
is known as the rarest-first policy. When every piece has
been requested or downloaded, i. e. , when the only active
policy is the strict priority policy, the remaining blocks are
requested from all connected peers and are downloaded from
the first responding peer. This policy is known as the end-
game mode.

1A piece with at least one block downloaded is known as an
active piece.

In order to have a fair level of upload and download re-
ciprocation, the choking algorithm was introduced in BT.
Two states are assigned to each peer: choked by a peer and
interested in a peer. When a peer is choked it will not be
allowed to download from the peer it is choked by. A peer
is interested in another peer when the latter peer has pieces
that the former doesn’t have. The choking algorithm differs
in leecher and seeder state. However, in both cases there can
only be 4 peers unchoked by a peer and interested in that
specific peer at the same time. Every peer starts as choked
by a peer. The policy to get unchoked by a leecher is as
follows. Every 10 seconds, the peers that are interested in
the leecher are ordered according to their download rate to
the leecher. The 3 fastest peers are unchoked by the leecher.
The remaining peers that are unchoked are choked. Addi-
tionally, every 30 seconds another random interested peer
gets unchoked. The latter gives new peers, that don’t have
any pieces yet, the possibility to start their first download.
The choking policy in seeder state is as follows. Every 10
seconds, the unchoked peers are ordered according to the
time they were last unchoked. The first two consecutive pe-
riods of 10 seconds the fourth most recent unchoked peer
is choked and an additional random choked and interested
peer is unchoked. The third period of 10 seconds the 4 most
recent unchoked peers are kept unchoked. This way each
leecher in the swarm gets the opportunity to download from
a seeder.

More detailed descriptions of the BT system are available
in [5, 6, 9].

3. RELATED WORK
The popularity of P2P applications has resulted in a large

amount of research activities in terms of developed simu-
lators. These simulators range from general frameworks to
application specific. A brief overview of P2P simulators is
presented below. For a more complete review, the work
in [15] is more comprehensive.

An ambitious general framework is OverSim [1], which ex-
tends the OMNeT++ [20] simulation framework. OverSim
provides a modular system for implementing both struc-
tured and unstructured P2P protocols as well as various
types of underlays, i. e. , transport protocols such as TCP

or UDP. Depending on the selected underlay, simulations
can be made on realistic scenarios when needed, but be
run without considering, e. g. , link delay or transport proto-
col details, when simulation speed is more important. The
OverSim framework also supports connecting real-world ap-
plications to the simulation engine. Several overlay proto-
cols such as Chord, Pastry and GIA are provided with the
OverSim distribution, and several more are planned for im-
plementation.

PeerSim [12] is a Java P2P simulator comprising two dis-
tinct simulation engines. One is an efficient cycle-based en-
gine, which does not take into account many parameters in
the protocol stack. The other is a more accurate event-based
engine, and thus significantly slower but allows for more re-
alistic simulations.

As PeerSim, GPS [22] is another Java simulator. Also,
as OMNeT++, it is an event-driven, message-oriented sim-
ulator. GPS incorporates a GUI and logging features, in
addition to the core simulation components. The simulator
has been used to model the BT protocols, primarily the peer
protocol, also known as the peer wire protocol. The authors



also report on running the reference client in a small-scale
LAN topology and compare measurements from this scenario
with an identical simulation scenario. The results indicate
some similarities between the measurement and simulation,
but nothing conclusive. Additionally, the authors present
a scalability analysis of the simulator, which indicates that
the wall-clock simulation time increases exponentially with
the number of simulated nodes.

One of the earliest attempts to simulate BT-like scenarios
is the swarming simulator described in [13]. The simulator
does not implement the full BT protocol, and development
seems to have stopped. Additionally, the simulator abstracts
the BT network entities in a rather unorthodox way, making
extending the simulator more complex and difficult.

Another BT-specific simulator is the one used for the work
presented in [2] and [3]. It is written in the C# language
and implements the majority of the BT mechanisms. Being
implemented in the C# language and making use of the
Microsoft .NET runtime makes platform independence an
issue, and, as with [13], development of the simulator seems
to largely have stopped.

4. A BITTORRENT SIMULATOR
In this section, we describe the BT simulator developed as

part of the ROVER project at BTH. We discuss the motiva-
tion for writing another simulator as well as provide a short
description of the simulator itself.

4.1 OMNeT++
Our BitTorrent simulator makes use of the OMNeT++

framework [20]. OMNeT++ is a public-source, component-
based, modular, open-architecture discrete event simulation
environment. Simple modules are written in C++ and de-
fined in the NED-language. NED is a simple language devel-
oped to easily insert modules into the simulator. Modules
interact with each other by means of messages sent through
gates and over channels. Figure 1 shows a visualisation of
a simulation run. The OMNeT++ GUI makes it intuitive
to debug and validate simulation scenarios. The simulation
executable can also be compiled as a command-line vari-
ant to get higher simulation speeds. Statistics are conve-
niently managed through specific classes provided by the
OMNeT++ framework designed to collect simulation data.

The modular architecture and structure of the OMNeT++
framework makes it quick and easy to extend the core BT al-
gorithms. Furthermore, the fact that OMNeT++ is written
in C++ has the added advantage of platform independence,
and allows us to run simulations on a wide variety of operat-
ing systems and architectures. Additionally, OMNeT++ is
free for academic and non-profit use and has proven useful
success in other projects, e. g. , OverSim [1].

Figure 1: The BitTorrent simulator showing a sim-
ulation with 6 peers.

4.2 Design
The BT simulator is comprised of four distinct modules.

The TorrentFile module loads data from a real .torrent-file
and makes it available for the other modules. This data is
primarily the file size and piece length. The ClientAssigner
module creates the necessary amount of BT clients at the
start-up of the simulation by dynamic module creation. It
assigns the seeder/leecher states, session arrival and seeding
time to each BT client. The two remaining modules are the
BTClient and BTTracker modules, representing the corre-
sponding BT entities.

A large number of parameters are accessible through an
external initialisation file, loaded during the simulation start-
up. These parameters are:

• amount of clients that join the swarm during the sim-
ulation run.

• amount of seeders initially present in the swarm; these
stay present during the whole simulation.

• session interarrival time, the time between arrivals of
successive BT clients.

• seeding time of the clients when they turn into seeds.
This implies that a client only leaves the swarm after
it is turned into a seeder.

• delay and bandwidth of the links between nodes in the
swarm.

• an indicator whether links between nodes in the swarm
are asymmetrical or not.

• desired piece selection algorithm that the BT clients
execute.

• number of peers a client wants to receive when ex-
changing information with the tracker.



• maximum number of active connections between nodes
in the swarm at any time. This represents the maxi-
mum amount of TCP connections at each client.

• amount of pieces a client has when it joins the swarm.

• time between the arrival of a piece request and the
actual transmission of that piece.

• block length.

Any of these parameters can be drawn from an arbitrary
distribution available through the OMNeT++ framework.

The simulation ends when every scheduled BT Client has
turned into a seeder. This is only possible if there is always
at least one seeder present in the swarm. This is also a
verification of whether the simulator works properly. If the
simulation does not end automatically, it means that certain
leechers could not download all the pieces of the content.

4.3 Implementation
The implementation of the BT protocol is based upon the

mainline client [4], version 4.0.2 released in May 2005. The
mainline client is considered the reference implementation of
the BT protocol. As there exist many different implementa-
tions and extensions of BT, we have restricted our implemen-
tation to this client. The choking- and rarest first algorithm
are implemented as they were presented in [14], which are
the algorithms used in the mainline client v4.0.2. The BT

protocol itself is rather simple, but the associated algorithms
can be implemented in many different ways. Therefore, some
implementation patterns must be highlighted.

All messages are responded immediately. This implies
that the processing time for a message is zero (in simula-
tion time), except for piece requests, which have a response
delay. This delay is settable in the initialisation file. Con-
sequently, a leecher starts downloading from another peer
at the moment it is unchoked by that specific peer. A new
block is requested immediately after a block has arrived from
a peer, provided that the client is not choked in the mean
time by that peer. Handshakes and bitfields are also ex-
changed without processing delay. As piece requests are the
most occurring messages needing a response, it is a fair ap-
proximation to only use response delay when handling piece
requests. This response delay is also necessary to implement
the end-game mode.

As the simulator was written to be easily extendable for
piece selection algorithms, it is highly desirable to insert an
easy to use mechanism to select a piece selection algorithm.
This is realised by means of a parameter setting accessible
in the initialisation file. A new algorithm must be added to
the source code and the internal simulator code then selects
the proper algorithm.

The built-in topology generator makes it easy to simulate
different swarm sizes by changing only one parameter in the
initialisation file. The BT clients are then created dynami-
cally upon start-up of the simulation. The maximum swarm
size of a simulation is not explicitly defined. However, the
swarm size can be altered by two parameters: the amount of
clients connecting during the simulation run and the session
interarrival time.

4.4 Simulation Results
In this section, we discuss some preliminary simulation

results achieved with the simulator.

4.4.1 Parameters
As most of the parameters for the simulation have not

been measured before, we make assumptions regarding the
distributions. For instance, the exponential seeding time
and symmetric link assumptions are also used in [17]. The
parameters for the simulations presented in this section were
set as follows:

• The swarm interarrival time distribution is an expo-
nential distribution with a mean of 180 s.

• The seeding time distribution is also an exponential
distribution with mean 180 s.

• Each peer requests 10 peers from the tracker.

• The piece response time distribution is an exponential
distribution with mean 100ms.

• The initial piece distribution per peer is a uniform dis-
tribution, with values between 0% and 50%.

• Links between peers are assumed to be symmetric,
and the link delay distribution is a uniform distribu-
tion, with values between 50ms and 400ms. The link
bandwidth distribution is also the uniform distribu-
tion, with values between 2Mbps and 10Mbps.

• We ran 8 sets of experiments, with one initial seed
and 5, 10, 50, 100, 500, 1000, 2000 and 3000 peers,
respectively. Each simulation was run once.

The simulator is able to handle large swarm sizes. The
major boundary when computing these is the physical mem-
ory of the device used for simulation. A BT client in the
simulator occupies around ≈ 2,5 kB of memory space. This
number depends on the simulation settings, mainly the max-
imum amount of connections. Thus, a network size of 5000
nodes minimally needs a memory space larger than 12,5MB
plus additional memory space to store swarm information
at each peer and the OMNeT++ simulation core. Conse-
quently, it is possible to run large simulations on a device
with an average amount of resources. Studies have shown
that a real-world swarm usually doesn’t exceed a swarm size
of 3-500 nodes except during flash crowds [11]. During flash
crowds, peer numbers are one order of magnitude larger.
However, the swarm size parameter in our simulator doesn’t
refer to the actual instantaneous swarm size but rather the
total number of peers connecting during the entire life time
of the swarm.

Figure 2 shows the simulation time as a function of the
number of clients connecting to the swarm. The course of
the curve tend to be linear, which means that the additional
computational overhead of adding a new peer during run-
time is low for the specific torrent file and parameter set.

4.5 Simulator Validation
To validate the simulator’s behaviour we compare simula-

tion data with real-world measurements.

4.5.1 Piece selection
Ideally, the rarest-first piece selection algorithm should

tend toward a uniform piece distribution of pieces. That is,
each piece should be replicated about the same number of
times in the swarm. This means that each piece will also be
requested about the same number of times.



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  500  1000  1500  2000  2500  3000

S
im

ul
at

io
n 

T
im

e 
(n

or
m

al
is

ed
)

Number of connecting clients

Simulation time

Figure 2: Evolution of the simulation time as a func-
tion of the amount of connecting nodes during a sim-
ulation run.

In Figure 3, we show the Empirical Probability Density
Function (EPDF) for the piece distribution for a simulation
scenario with 1000 peers. The grey line is the theoretical
density for a uniform distribution with minimum value 0
and maximum value 1204, while the black line represents
the proportion of requests of the associated piece.

Piece distribution.

Piece number

D
en

si
ty

0 200 400 600 800 1000 1200

0e
+

00
2e

−
04

4e
−

04
6e

−
04

8e
−

04
1e

−
03

Figure 3: Piece distribution for 1000 peer scenario.

As Figure 3 shows, the simulated piece selection algorithm
quite clearly tends toward a uniform selection of pieces.

4.5.2 Choking algorithm
The proper working of the choking algorithm was checked

by tracing what decisions each peer made while running the
choking algorithm. No irregularities were observed during
our simulation test-runs.

4.5.3 Number of peers in swarm
Figure 4 shows the amount of seeders and leechers in the

swarm, taken from a simulation run. There are no noticeable
errors observed in this plot, and the results shows similarities
with the corresponding results in [11].
4.5.4 Session duration

Realistic session arrivals and session duration time are
fundamental for a realistic simulation. The session arrival

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2000  3000  4000  5000  6000  7000

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

P
ro

po
rt

io
n 

of
 le

ec
he

rs

P
ro

po
rt

io
n 

of
 s

ee
de

rs

Time (s)

Proportion of peers in swarm

Figure 4: Simulation data representing the propor-
tion of seeders and leechers in the swarm during a
simulation run.

rate is set in the initialisation file. The session duration time,
however, is partially dependant on the amount of peers in
the swarm and the initial amount of pieces of the peers as
well as the piece response delay and available bandwidth. In
order to be able to compare similar data of simulation re-
sults and real-world measurements we achieved a simulated
swarm size similar to the one observed in the real-world
measurements [9].

Figure 5(a) shows a graph of the session duration Com-
plementary Cumulative Distribution Function (CCDF) of all
peers for simulation run 8, i. e. , with 3000 peers in total.
Figure 5(b) shows the session duration for one of the mea-
surements reported in [9]. When fitting a log-normal distri-
bution to the simulated results, the Anderson-Darling (AD)
statistic for the fitted parameters of the data is 0.89, indi-
cating a very good measure of fit. This is an interesting
result, as in [9], results indicated that session durations are
log-normally distributed. This validates the functionality of
our simulator with regards to session duration.

5. FUTURE WORK
While our simulator is capable of handling a wide range

of scenarios, there is still some functionality missing. For
instance, modular peer selection is not implemented, nor
is peer snubbing, i. e. , dropping peers that do not respond
quickly enough. Also, as the BT protocol allows for exten-
sions, several clients have used this capability to add new
features to the protocol, e. g. , a trackerless Distributed Hash
Table (DHT) protocol, encryption, super seeding. Addition-
ally, some clients have extended the torrent file format to
contain more information, such as current download status,
connected peers and QoS information. None of these non-
standard extensions have been implemented in our simula-
tor. In the near future, we plan to add both snubbing and
modular peer selection capabilities to our simulator, as well
as extend the protocol with QoS-related messaging.

Furthermore, points of improvement can be carried out to
improve the performance of the BT simulator. The current
version of the simulator loads all the BT clients that will
connect during the simulation at the simulation start-up.
We will change this to loading each client when the session
arrives in simulation time. This way we will be able to simu-
late larger and longer simulations. Further, an overloadable
piece selection algorithm would be preferred instead of a sim-



log x

lo
g 

P
[X

≥
x]

−
3

−
2

−
1

0

3

50.0%
80.0%
90.0%
95.0%
99.0%

(a) Simulated results.

log x

lo
g 

P
[X

≥
x]

−
3

−
2

−
1

0

1 2 3 4 5

50.0%
80.0%
90.0%
95.0%
99.0%

(b) Measured result.

Figure 5: BT session duration.

ple hard-coded switch. Also, the TorrentFile module needs
improvement so it can load more .torrent-files.

Additionally, we will run more and longer simulation runs,
as well as repeat runs with varying initial random number
seeds to achieve confidence intervals for the simulation re-
sults.

6. ACKNOWLEDGMENTS
We would like to thank the Swedish Internet Infrastruc-

ture Foundation (IIS) and Euro-NGI for granting and sup-
porting the ROVER project during 2006 and 2007.

7. REFERENCES
[1] I. Baumgart, B. Heep, and S. Krause. OverSim: A

Flexible Overlay Network Simulation Framework. In
Proceedings of 10th IEEE Global Internet Symposium,
pages 79–84, May 2007.

[2] A. R. Bharambe, C. Herley, and V. N. Padmanabhan.
Some observations on bittorrent performance. In
SIGMETRICS ’05: Proceedings of the 2005 ACM
SIGMETRICS international conference on
Measurement and modeling of computer systems, pages
398–399, New York, NY, USA, 2005. ACM Press.

[3] A. R. Bharambe, C. Herley, and V. N. Padmanabhan.
Analyzing and improving a bittorrent network’s
performance mechanisms. In INFOCOM 2006.
Proceedings of the 25th IEEE International Conference
on Computer Communications., pages 1–12, 2006.

[4] BitTorrent, Inc. Bittorrent. http:www.bittorrent.com.
URL verified on April 10, 2007.

[5] B. Cohen. BitTorrent protocol specification.
http://www.bitconjurer.org/BitTorrent/protocol.html,
February 2005.

[6] B. Cohen. BitTorrent. http://www.bittorrent.com/,
March 2006.

[7] Y. Cui, B. Li, and K. Nahrstedt. oStream:
Asynchronous streaming multicast in application-layer
overlay networks, 2003.

[8] C. Dana, D. Li, D. Harrison, and C.-N. Chuah. BASS:
Bittorrent assisted streaming system for
video-on-demand. In Proceedings of IEEE 7th
Workshop on Multimedia Signal Processing, pages 1–4,
October 2005.

[9] D. Erman. Bittorrent traffic measurements and
models, October 2005. Licentiate thesis, Blekinge
Institute of Technology.

[10] D. Erman. Extending bittorrent for streaming
applications. In Proceedings of the 4th Euro-FGI
workshop on ”New Trends in Modelling, Quantitative
Methods and Measurements”, May/June 2007.

[11] M. Izal, G. Urvoy-Keller, E. Biersack, P. Felber, A. A.
Hamra, and L. Garcés-Erice. Dissecting BitTorrent:
Five months in a torrent’s lifetime. In Passive and
Active Measurements (PAM2004), 2004.

[12] M. Jelasity, A. Montresor, G. P. Jesi, and S. Voulgaris.
Peersim. http://peersim.sourceforge.net, October
2007.

[13] P. Korathota. Investigation of swarming content
delivery systems. Master’s thesis, Sydney University of
Technology, http://me55enger.net/swarm/thesis.pdf,
November 2003.



[14] A. Legout, G. Urvoy-Keller, and P. Michiardi. Rarest
first and choke algorithms are enough. In ACM
SIGCOMM/USENIX ICM’2006, October 2006.

[15] S. Naicken, B. Livingston, A. Basu, S. Rodhetbhai,
I. Wakeman, and D. Chalmers. The state of
peer-to-peer simulators and simulations. SIGCOMM
Comput. Commun. Rev., 37(2):95–98, 2007.

[16] PeerCast.org. Peercast – p2p casting for everyone.
Online at http://peercast.org. URL verified on March
27, 2007.

[17] D. Qiu and R. Srikant. Modeling and performance
analysis of bittorrent-like peer-to-peer networks.
Technical report, University of Illinois at
Urbana-Champaign, USA, 2004.

[18] A. Sharma, A. Bestavros, and I. Matta. dPAM: A
Distributed Prefetching Protocol for Scalable
Asynchronous Multicast in P2P Systems. In
Proceedings of Infocom’05: The IEEE International
Conference on Computer Communication, Miami,
Florida, March 2005.

[19] The ESM Project. ESM – end system multicast.
Online at http://esm.cs.cmu.edu/. URL verified on
March 26, 2007.

[20] A. Vargas. OMNeT++ discrete event simulation
system. http://www.omnetpp.org.

[21] A. Vlavianos, M. Iliofotou, and M. Faloutsos. BiToS:
Enhancing BitTorrent for supporting streaming
applications. In 9th IEEE Global Internet Symposium
(GI2006), Barcelona, Spain, April 2006.

[22] W. Yang and N. Abu-Ghazaleh. Gps: A general
peer-to-peer simulator and its use for modeling
bittorrent. mascots, 00:425–434, 2005.


