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Abstract—Sharing resources such as caches and main
memory bandwidth in multi-core systems requires a more
sophisticated scheduling scheme. PAM is a low-overhead,
user-level meta-scheduler which does not require any hard-
ware or software changes. In particular, it operates by
detecting resource congestions and providing guidelines to
the standard system scheduler by limiting the assignment
of processes to subsets of available cores. PAM contains
a cache model that it uses to predict the impact of
new schedules. PAM can be used to improve the system
along three dimensions: performance, power, and energy
consumption (and any combination of these three). On our
prototype, we show individual benchmarks can improve
by up to 33% and the overall system performance can be
improved by as much as 14%.

I. INTRODUCTION

As multi-core and multi-chip servers are becoming
widely used, it is becoming necessary to exploit archi-
tectural characteristics of these systems in order to get
the highest performance. One of the major character-
istics of such systems is sharing of resources such as
caches, buses, and memory bandwidth among cores and
chips. Increased power consumption is also becoming
a problem with ever increasing chip density and speed.
State of the art operating systems (OS) typically do not
exploit architectural characteristics of these systems (or
use very basic and limited methods such as those used by
Linux). Many OSes are neither power nor energy aware,
and they receive little or no feedback from hardware
on overall system performance. In this paper we address
the problem of performance and power aware scheduling
in multi-core systems. Our work can also be easily
extended to produce energy aware scheduling as well.

We present the design and implementation of a Perfor-
mance/power Aware Meta-scheduler called PAM. Using
PAM we are able to dynamically optimize multi-core
servers along performance and power (and energy) di-
mensions. Results for industry standard benchmarks and
server platforms presented in this paper show double
digit improvements in these dimensions.

PAM monitors performance (e.g., instructions per

cycle and cache miss ratio), power, and energy by
accessing the hardware performance counters and power
monitoring (PM) hardware. It should be noted that if PM
hardware does not exist on the platform, there are means
to accurately estimate power from hardware performance
counters. Based on this information, PAM gives direc-
tions to the OS scheduler (using existing OS interfaces)
to re-map software threads to the hardware threads in
anticipation of lower power or energy consumption or
higher performance. PAM runs in the user space. It
requires no changes to the OS kernel or the workloads.
Re-mapping software threads in PAM may take many
forms, such as separating high cache consuming soft-
ware threads from each other. In the power and energy
optimization scenarios, software threads may be sched-
uled on fewer hardware threads to reduce power/energy
consumption. These methods are orthogonal to the tra-
ditional power management techniques, such as voltage
and frequency scaling and therefore can be employed in
addition to them.

PAM meta-scheduler uses a simple two-state state
machine with a cycle time of once a second and it can
dynamically track and schedule any workload. To remap
software threads to hardware threads we take advantage
of the cpusets built in to the Linux kernel, although other
interfaces for binding processes to CPUs may be used
as well.

Main contributions of this paper are:
• We describe the design and implementation of a

practical user-space meta scheduler called PAM for
optimizing system power, performance and energy
in multi-core systems which (a) requires no changes
to the OS, (b) works on existing industry standard
platforms and uses existing hardware performance
counters, (c) works with any unmodified applica-
tion binary, and (d) does not require architecture
simulation, tracing, profiling or re-running of the
workloads.

• We describe an algebraic model of multi-core sys-
tems, modeling a hierarchy of processors, shared
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caches, and memory. The model is very simple
yet powerful for estimating a software thread’s
performance, footprint and miss rate individually
with shared caches. We describe an algorithm
based on this model for producing good performing
schedules (i.e., mapping of n software-threads to n
hardware-threads).

• We ran SPEC CPU2006 benchmarks on an IBM
HS21XM blade server (Intel Xeon E5345 processor,
2.33GHz four cores per socket, two sockets, with
four 4MB L2 caches) along with PAM giving
scheduling instructions to the Linux OS. Relative
to the base Linux scheduler, we observed execution
time reduction of as much as 33% for individual
threads and up to 14% system-wide, demonstrating
the benefits of our scheduler design and implemen-
tation.

• On our experimental system we demonstrate dy-
namic power management and power capping ca-
pability via scheduling only, namely by regulating
the number of processors as a function of power
consumption of the workloads.

The rest of the paper is organized as follows. Back-
ground is discussed in Section II. The basic ideas behind
PAM are presented in Section III. A more comprehen-
sive discussion of PAM along with new algorithms for
estimating the impact of new schedules are presented in
Section IV. Section V contains the performance evalua-
tion of PAM. Related work is discussed in Section VI.
We end the paper with conclusions and future work in
Section VII.

II. PRELIMINARIES

In this section we first discuss hardware counters and
how they can be used to monitor the state of a system.
We then discuss the Linux cpusets which we use in our
implementation.

A. Monitoring performance

Through hardware performance counters existing on
many modern processors, it is possible to monitor the
execution of unmodified executables. Periodically sam-
pled performance metrics such as the number of retired
instructions and L1 and L2 cache miss ratios reveal
important details about the applications running on a
processor. PAM uses the hardware performance counters,
first to make rational scheduling decisions, and second to
measure the effectiveness of those decisions by compar-
ing the before- and after-scheduling values of counters.
We used the Pfmon2 open source package to collect
the hardware counter information [1], [2]. Pfmon2 is
available for Linux however one can gather the values

of hardware counters on any OS with appropriate device
drivers.

For the purposes of scheduling we monitor several
events including: cycles per instruction (CPI), ratio of
L1 data cache misses to L1 data references (miss ratio
m1), ratio of L2 unified cache misses to references
(miss ratio m2), L2 prefetch counts, and floating point
instructions issued. CPI metric is a measure of the
execution efficiency of an application; lower the CPI
faster the execution. CPI is a time variant and application
dependent metric regularly sampled in our scheduling
scheme. When the processor execution stalls, for exam-
ple due to L1/L2 misses, the CPI value will increase
since it’s taking longer for the processor to execute.
The Instructions Per Cycle (IPC) metric is calculated
as 1

CPI
and is a measure the throughput of a CPU. On

a multiprocessor system, we need a metric for the sys-
tem throughput. Using the

∑
IPC or

∑
CPI metrics

with dissimilar workloads (with different inherent CPI
values) may not treat the workloads fairly and it has
other problems as explained in [3]. Time to completion
is a better way to quantify multiprocessor performance.
For our purposes here, we define the Speedup metric to
measure effectiveness of our scheduling algorithms and
actions:

Speedup =
CPIbefore

CPIafter

,

System Speedup =

[
n∏
i

Speedupi

] 1

n

(1)

where n is the number of processors. Speedup simply
indicates the amount of increase or decrease in execution
speed (Speedup = 1 means no change). We measure
the CPI values before and after a scheduling action,
and if Speedup > 1 it means that the action has been a
profitable one. For quantifying the total system speedup
on n processors we use the geometric mean of n speedup
values. When reporting benchmark results in Section V
we again used the speedup formula however this time
using benchmarks total execution time instead of CPI
values.

B. Monitoring power

Recent IBM rack mount and BladeCenter servers have
built-in power monitoring hardware (PM). PM hardware
samples the power and adds them in to the Energy
Accumulation Register (EAR) at millisecond intervals.
Power measured is for the whole server, including not
only the CPU but all the memory and circuits in the
server [4], [5]. We used the IPMI interface on the server
to bring out the EAR register for PAM meta-scheduler to
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monitor power. In the absence of built-in power monitor-
ing hardware, other approaches to power measurement
exist such as using Intelligent Power Distribution Units
or correlating hardware performance counters to power
utilization that we won’t detail here.

C. Cpusets

For binding processes to CPUs we use the notion
of a cpuset, defined as a set of CPUs that a process
may be bound to. On an N processor system there are
2N − 1 possible cpusets including the maximal set of
the N CPUs (the default cpuset). For example, on the 8
processor system shown in Fig. 1a, we may define a set
of cpusets called L2separate consisting of two cpusets
{ {0,2,4,6}, {1,3,5,7} } each of which emphasizes L2
exclusion as shown in Fig. 1b. We may also define a
set of cpusets called L2sharing consisting of { {0,1},
{2,3}, {4,5}, {6,7} } each of which emphasizes the
sharing between the CPUs. For example, if we want two
processes A and B not to share an L2 cache because
one or both may have a large L2 footprint, we then
put them on an L2separate cpuset, for example bind
processes A and B to the cpuset = {0,2,4,6}, which
guarantees that they will end up using separate L2
caches to avoid L2 contention. Likewise, if A and B
have some affinity to each other, for example by having
shared variables, we can bind them to on an L2sharing
cpuset. In another example, we can define power/energy
aware cpusets, such as { {0,1,2,3,4,5,6,7}, {0,1,2,3,4,5},
{0,1,2,3}, {0,1} } each of which will consume varying
degrees of power and energy depending on the number
of CPUs in a cpuset.

By using these cpusets with well-defined character-
istics (a) we exploit the geometry of the hardware
organization, and (b) we make only high level process-
to-cpuset mapping decisions and we let the OS scheduler
decide for the exact mapping of processes to CPUs
(within a cpuset). Note also that the cpuset mechanism
allows us to recursively define subsets of a cpuset.
The sub-cpusets allow us to do multi-level performance,
power, energy optimizations. For example, once an L2
based cpuset has been chosen for a set of processes,
we can then make L1 cache optimizing decisions such
as running those processes on the same or separate L1
caches, or making power/energy decisions within the
chosen L2 based cpuset.

For convenience of implementation, we used the
/dev/cpuset pseudo filesystem already found in the Linux
kernel [6]. However, any method equivalent to the
sched setaffinity() system call for binding a process
to a set of CPUs may be used on any operating system.

0 1 2 3 4 5 6 7

L2 L2 L2 L2

L2sharing-1 L2sharing-2

0 1 2 3 4 5 6 7

L2 L2 L2 L2

L2separate-1 L2separate-2

0 1 2 3 4 5 6 7

L2 L2 L2 L2

L2sharing-3 L2sharing-4

(a)

(b)

(c)

Fig. 1. A system with eight cores: two sockets, two chips per socket,
and two cores per chip, and several cpusets highlighted.

III. BASIC IDEA

PAM relies on detecting resource bottlenecks and/or
undesired conditions by monitoring hardware perfor-
mance counters. After detecting such a condition, PAM
guides the system scheduler to reschedule processes (or
software threads) such that contention for resources is
minimized. An important characteristic of PAM is that
it then monitors the system to decide whether the new
schedule has been beneficial or not (by using metrics
later defined in this section). If improvement is detected,
system stays with the new schedule for some amount of
time. If not, the default schedule is used. PAM performs
these operations continuously. Even though PAM can be
implemented as part of the OS kernel, it can also be
implemented as a tool without requiring any changes
in the system software or direct interaction with system
scheduler. We first explain the PAM execution model and
then present various conditions it detects.

A. PAM Execution Model

PAM uses a simple 2-state logic in making scheduling
decisions (Fig. 2). The benefit of this scheme is that (a)
it is simple to implement requiring no changes in the OS
source code (i.e. the Linux kernel scheduler) although it
does not exclude a kernel based implementation, (b) by
design it produces schedules which perform no worse
than that of the base OS scheduler by a user defined
margin.

The two states are named Default and Good. Default
is an observation state and Good is a control state in
which PAM executes its schedules. In Default, the base
OS scheduler makes unrestricted scheduling decisions:
it can assign any process (or software thread) to any
CPU. PAM does not interfere, but watches the hardware
performance counters monitoring various usage statistics
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Good State
Default State 
(standard OS  

scheduler)

If a good "process to core“ mapping has been detected go to Good State 
and stay there for at most N cycles if no degradation is detected after the 
first M cycles.

Go back to Default if no improvement is detected in M cycles or if have 
been in Good State for N cycles; Stay in Default until a potentially better 
mapping is found.

Fig. 2. PAM State Diagram.

on CPI, L1, L2 usage. If PAM predicts that better
power consumption/performance may be obtained, it will
produce a plan. A plan is basically remapping of subsets
of running processes to subsets of CPUs such that the
standard scheduler can schedule a process only on a
CPU in the associated CPU set. If a good plan is not
found, PAM continues monitoring the system in Default
state. More details on detecting resource bottlenecks and
producing schedules are provided at the end of this
section and in Section IV. We describe here only the
scheduler state machine.

If a good plan is found, we move from the De-
fault state to the Good state while remapping process
sets to CPU sets according to the plan. Remapping
is implemented by the cpuset mechanism described in
Section II-C. State transitions (indicated by arrows in
Fig. 2) occur at discrete intervals typically at one second
intervals. We chose a scheduler cycle time longer than
the base kernel scheduler cycle time, but short enough
so that we don’t miss better scheduling opportunities by
waiting too long between decisions. Very short cycles
times may interfere with the kernel scheduler activity and
may also increase cache misses by shuffling processes
too many times between the caches (here “cycle” refers
to the scheduler state transitions, not to be confused by
CPU execution cycles).

Once the scheduler is in the Good state, it starts moni-
toring the Goodness(t) metric, defined later, to determine
if the plan is succeeding. If Goodness(t) is better than
that of the last Default state (which was recorded in the
previous scheduling cycle), PAM stays in the Good state
for N cycles. If Goodness is worse than that of Default, in
M cycles PAM goes back to Default. Once the decision
is made to stay in the Good state, the Goodness of the
state is re-measured every M cycles. If Goodness drops

below that of the Default state, PAM goes back to the
Default state.

Worst case performance for the PAM meta-scheduler
can be derived based on the values of N and M . Assume
that the predictions are always wrong: Each time meta-
scheduler transitions in to the Good state it observes
less than expected goodness, and returns back to the
Default state in M cycles, and then stays in Default
for N cycles before making any new decisions. In this
worst case scenario, system will stay in Default for
(N − M)/N fraction of the time on the average. By
choosing N >> M we can guarantee that in the worst
case the system will spend most of its time in Default.
Therefore, the system goodness with PAM should be no
worse than (N − M)/(N) of that without PAM. By
choosing N >> M we can also make sure the cost of
reassigning processes to new CPUs (including the cost of
cach misses due to the reassignments) remain negligible.
Similarly, in the best case, if the predictions are always
correct, scheduler will be in Good for (N − M)/N
fraction of the time.

Goodness(t) may be defined in multiple ways depend-
ing on whether we are optimizing for power, energy or
performance. For performance, we define Goodness(t) as
the System Speedup metric defined in Eq. 1. In other
words, when System Speedup > 1 scheduler stays in
Good, otherwise it goes back to Default.

For the power objective, we defined goodness as
Goodness(t) = Power(t) such that Power(t) is less
than some power threshold. This is commonly referred
to as power capping, where the objective is to ensure
that the power consumption of the system does not
exceed a user set threshold. Power consumption may be
measured by the built-in hardware or by estimation as
described in Section II-B. Note that power and energy
are not to be confused. In data centers, power capping
may be used to enforce some physical limits, such as
a limit on the electrical feed, forcing systems to be
power capped. Energy is power integrated over time. In
our scenarios, we want to minimize the energy spent
on completing the jobs. Thus, for the energy objec-
tive we define Goodness(t) as the the energy spent
per processor instruction: (Total System Power ×
cpu cycle time)/

∑
IPC.

Note also that minimizing energy does not necessarily
mean minimizing power. In practice, running the proces-
sors as fast as possible (at high power) often completes
the jobs faster and may lead to less energy consumption.
Due to space limitations, we will present experimental
results only for performance and power but not for
energy.
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IV. ESTIMATING PERFORMANCE OF SCHEDULES

Given a set of n processes (or n groups of processes)
each running on one of the n CPUs and given the
statistics collected from hardware performance counters,
we compute a better performing process–to–CPU assign-
ment and use it the next scheduling cycle (e.g. using the
2-state machine described in Section III.)

Our main contribution here is a simple algebraic
model of a system of CPUs, caches, and memory and
predicting performance of the system for each of the
n! possible process–to–CPU assignments. Our method is
quite practical in the sense that (a) it works on existing
x86 processors and uses existing hardware performance
counters, (b) works with unmodified application binaries
and for any application, (c) does not require architecture
simulation or tracing or profiling or re-running appli-
cations. It should be noted that in practice due to the
symmetry of real systems the number of assignments to
consider is much less than n!.

In our experimental system each CPU had a dedicated
L1, therefore the scheduling decisions did not involve L1
caches. Therefore, in the following when we refer to a
cache, it means an L2 cache unless noted otherwise. In
SMT systems with multiple hardware threads sharing an
L1 cache, the method described here is still valid and
may be used for both L1 and L2 caches without losing
generality.

We first describe a sketch of the method before going
in to details. We introduce a metric named “cache
occupancy ratio (O)” which is a predictor of the cache
footprint size of process. Hardware performance coun-
ters are used to determine the O of each process. For
example, when SPEC2006 CPU benchmarks Bzip2 and
Libquantum are run in parallel while sharing the same
L2, we observed that on the average OBzip2 = 0.15
and OLibquantum = 0.85, suggesting that Libquantum
is occupying most of the cache. We compute the change
in O if a process shares an L2 with processes other than
the current ones, and predict performance of the process
as a function of O. We solve this problem for all possible
process to CPU assignments (n! assignments in the worst
case but much less in most cases) in every scheduling
cycle in order to find the highest performing schedule.

We also introduce equations estimating the cache miss
ratio m2 as a function of O, and CPI as a function of
m1, m2, and O as a function CPI , m1, m2 and current
cache statistics. We solve these interdependent equations
iteratively to determine the System Speed of of each
process-CPU assignment.

Notation used in the following sections is described
first. We use a matrix notation when solving n set of

equations for an n CPU system. Quantities are repre-
sented by n × 1 vectors with a right arrow on top; for
example �M2 represents the L2 miss ratios of n CPUs.
Bold face capital letters are reserved for n × n square
matrices, for example P. We also defined matrix/vector
operators .∗ and ./ and .∧ to respectively denote
the element-wise multiplication, division and raised to
the power of alpha operations, borrowing from the
MATLAB notation. For n × m matrices, �A = �B .∗ �C
is defined as aij = bij × cij and �A = �B .∧α is defined
as aij = bα

ij where i = 0 . . . n − 1, j = 0 . . .m − 1.
Finally, the superscript h is affixed to quantities derived
from hardware performance counters.

A. Number of Scheduling Choices

There are n! ways to pair n processes (or n groups of
processes) with n CPUs. We describe each pairing by an
n×n permutation matrix P derived from interchanging
rows of the identity matrix I. Moving row i of I to
row j implies moving quantities (such as the miss ratio)
associated with a process running on CPU i to CPU
j, when calculating the estimated performance of CPU
i → j process re-assignment. For example, P shown
below swaps the second and last elements of a process
ID vector �id.

�id
′

= P× �id

=

⎡
⎢⎢⎢⎣

1 0 0 · · · 0
0 0 0 · · · 1
...

...
...

...
0 1 0 · · · 0

⎤
⎥⎥⎥⎦ ×

⎡
⎢⎢⎢⎣

id0

id1

...
idn−1

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

id0

idn−1

...
id1

⎤
⎥⎥⎥⎦ (2)

On a system with n CPUs, m caches and n/m = k
CPUs per cache, many of the n! process assignments
are performance-wise redundant due to symmetry of the
hardware; for example CPUs connected to the same L2
should each yield same performance. Likewise, there
should be no performance difference in running a given
set of k processes on any one of the m caches (except for
NUMA machines since caches are not equidistant from
the distributed memory.) Therefore, the total number of
process to CPU assignments to consider are

Ψ =

(
n
k

)
×

(
n − k

k

)
· · · ×

(
k
k

)
m!

(3)

For the 8 CPU, 4 cache Intel system shown in Fig. 1a,
the total number of permutations to consider is only
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105 (8! = 40320). For larger n values, Eq. 3 is still
a large number. In that case to reduce computation time
permutations may be considered in groups of 8 CPUs at
the expense of some permutations not evaluated.

We also define the n × n “cache connection matrix”
C to describe which CPUs share which caches. C is
a block diagonal matrix where for any two CPUs i, j
sharing a cache, the elements cij = cji = cii = cjj = 1
and all other elements are 0. For example,

C =

⎡
⎢⎢⎢⎢⎢⎣

1 1 · · · 0 0
1 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 1
0 0 · · · 1 1

⎤
⎥⎥⎥⎥⎥⎦ (4)

B. Measuring Occupancy Ratio, Miss Ratio, and CPI

Before making the next scheduling decision we mea-
sure various cache statistics using hardware performance
counters. These statistics serve as initial conditions to the
calculations used for predicting performance.

We defined a metric named cache occupancy ratio
(Oi) as a predictor of the cache footprint size of a process
i:

Lh = L2 LINES IN SELF +

L2 LINES IN PREFETCH (5)

Oi =
Li∑

∀ process j ∈ cache Lj

(6)

where L2 LINES IN SELF and
L2 LINES IN PREFETCH are the Intel
hardware performance counters counting lines fetched
from memory in to L2 [2]. The SELF keyword refers
to the per core counts for the L2 cache shared by
multiple cores. Eq. 6 states that the process i fraction,
Oi of the total number of lines read in to the L2 cache
must be proportional to the cache footprint fraction of
process i; in other words, if other processes (j) bring
fewer lines in to the cache, then process i’s fraction of
the cache will be larger. Using matrix notation for n
CPUs, Eq. 6 becomes

�Oh = �Lh ./ (C�Lh) (7)

where C is the cache connectivity matrix defined in
Eq. 4. L1, L2 miss ratios, and CPI are calculated from
Intel x86 architecture hardware performance counters
[2] as

mh
1 =

L1D CACHE LD MESI

L2 LINES IN SELF
,

mh
2 =

L2 LINES IN SELF

LAST LEV EL CACHE REFS
(8)

CPIh =
UNHALTED CORE CY CLES

INSTRUCTIONS RETIRED
(9)

C. Estimating Performance of Scheduling Choices

In this section we develop the equations and algo-
rithms for estimating performance of different process–
to–CPU assignments. We derived a relationship between
the miss ratio m2 and the occupancy ratio O. It has
been noted that a cache’s miss ratio may be modeled as
a function of its size S by the polynomial, the power-law
curve

βS−α (10)

where β, α are workload dependent constants (α >
0) [7], [8]. The equation suggests that larger the cache
size smaller the miss ratio. When α = 0.5, it’s commonly
referred to as “the cache rule of thumb” which states that
every doubling of the cache size reduces misses by 30%.

We hypothesized that for shared caches, miss ratio
of a process as a function of its occupancy ratio O,
can also be modeled by a power-law curve of the same
form in Eq. 10 such that m = βO−α. Using two sets
of this equation with different variables, we derived the
relationship

m2 = mh
2

(
Oh

O

)α

(11)

where mh
2 and Oh are known quantities derived from

hardware performance counters monitored in the current
scheduling cycle (Eq. 6, 8), and m2, O, α are yet to
be determined unknowns of the next scheduling cycle.
Eq. 11 suggests that higher occupancy ratio results in a
lower miss ratio. The constant α is a workload dependent
constant indicating the sensitivity of the workload to its
cache footprint size. Smaller α means that the workload’s
miss ratio is relatively insensitive to it’s occupancy ratio.
We followed the cache rule of thumb approach for non-
shared caches [7], [8] and used α = 0.5 throughout our
experiments with good results as described in Section V.
Although, α may be computed on-line and for each
process individually by recording past values of m2 and
O; for example recording two sets of m2 and O values in
two previous scheduling cycles and substituting them in
Eq. 11 would yield an α value, which then may be used
in estimating the miss ratio of a process, as a function of
O, in the next scheduling cycle. Using matrix notation
for n CPUs, Eq. 11 becomes

�M2 = (P �Mh
2 ) .∗ ((P �Oh) ./ �O) .∧α (12)

To estimate performance of a process, we used an
approximation of CPI as a function of m1 and m2 in
Eq. 13. The equation has the same form as the average

6



memory access time (AMAT) measure used in cache
studies.

CPI = t1 + t2m1 + t3m1m2 (13)

In our case, t1 represents not the L1 access time but
the average CPI of a process for assuming an infinite
L1 size and m1 = 0. t2 is proportional the average L2
access time and t3 is proportional to the average memory
access time. The constants t1, t2, t3 may be determined
either on–line or off-line on any hardware platform using
statistical methods such as linear regression correlating
t unknowns to the CPIh, mh

1 , and mh
2 values obtained

from hardware performance counters. For example, by
recording at least three sets of CPIh, mh

1 , mh
2 values

in previous scheduling cycles and solving for t1, t2, t3
as unknowns would yield Eq. 13 that can be later
used as a CPI estimator as a function of m1, m2. On
our experimental platform (Intel Xeon E5345 2.33GHz
Quad-Core system (with eight cores), an IBM HS21xm
blade) we monitored the CPI , m1, m2 metrics of two
SPEC2006 CPU benchmarks Bzip2 and Libquantum and
we solved the constants off-line once as

CPI = 0.733 + 3.43m1 + 110m1m2 (14)

We hard-coded this equation in to our scheduler and
used throughout for all the benchmarks used in our
experiments. An on-line solution of the t constants would
be more usable than Eq. 14 in general as it will work for
any hardware. Using matrix notation for n CPUs, Eq. 13
becomes

�CPI = �T1 + (�T2 .∗ �M1) + (�T3 .∗ �M1 .∗ �M2) (15)

We now derive the final equation estimating O as a func-
tion of CPI, m1 and m2. Let’s assume that a process
will be moved from its current CPU to another CPU and
therefore it will be sharing an L2 cache with a different
set of processes than the ones in the current CPU location
(according to some permutation P as in Eq. 3). Let’s also
assume that the subject process will have a bigger cache
footprint in the new setting; Therefore, its new O will
be greater than its current Oh. Subsequently m2 of the
process should be smaller than its current miss ratio mh

2 ,
as Eq. 11 predicts. Thus, the rate of lines fetched in to
the L2 cache should reduce by a factor of m2/mh

2 due to
reduced misses. Likewise, since the new m2 is smaller,
the new CPI of the process should be smaller than the
current CPIh, as Eq. 13 predicts. Since a smaller CPI
implies a faster process, it should make more memory
references by a factor of CPIh/CPI per unit time.
Overall, number of lines fetched in to the cache per unit

time becomes

L = Lh ×
m2

mh
2

×
CPIh

CPI
(16)

where Lh, mh
2 , and CPIh are measured values from

hardware performance counters (Eq. 5,8,9) and L, m2,
and CPI are yet to be determined unknowns. Using
matrix notation for n CPUs, Eq. 16 becomes

�L = �Lh .∗ ( �M2 ./ (P �Mh
2 )) .∗ ((P �CPI

h
) ./ �CPI) (17)

Now, we have a complete set of equations Eqs. 7, 12, 15,
and 17 for determining all the unknowns �L, �O, �M2, and

�CPI , iteratively:
Algorithm1:
Inputs: (1) A permutation matrix P specifying a what-
if scenario of shuffling n processes among n CPUs, (2)
Hardware performance counter measurements collected

from n CPUs, �Lh, �Mh
1 , �Mh

2 , �CPI
h

(Eqs. 5, 8, 9),
Output: Total system speedup as defined by Eq. 1 and
�L, �O, �M2, and �CPI .

1) Initialize the n elements of �O to any initial con-
stant, for example Oi = 1/n, (i = 0 . . . n − 1)

2) Compute the miss ratios �M2 using Eq. 12
3) Compute the CPU rates �CPI using Eq. 15 and

�M2 computed in the previous step
4) Compute the rate of lines fetched �L in to the

caches using Eq. 17, and �M2 and �CPI computed
in the previous two steps

5) Compute the new occupancy ratio as �Onew =
�L ./C�L (similar to Eq. 7 ) using �L computed
in the previous step

6) Check if iterations converged: if ‖ �Onew − �O‖ >
0.001, then �O ← �Onew and go to step 2 and repeat
using the new �O values else �O ← �Onew and go to
next step endif

7) Compute the total system speedup using �CPI
computed in step 3 and using the speedup defi-
nition of Eq. 1 and return

We observed that the algorithm terminates typically
in 5–6 iterations in practice. Algorithm1 estimates the
performance for a single permutation. Recall from Eq. 3
that there are many process–to–CPU assignments to
evaluate the performance of, which is performed by the
following:
Algorithm2:
Inputs: Hardware performance counter measurements

collected from n CPUs, �Lh, �Mh
1 , �Mh

2 , �CPI
h

Output: The permutation matrix P specifying the best
performing process–to–CPU assignment which will be
used for the next scheduling cycle

7



1) Initialize: min moves ← ∞, max perf ← 1,
PP ← I (identity matrix)

2) Generate all non-redundant permutations Φ =
{P1 . . .Pκ} (see Section IV-A )

3) forall P ∈ Φ do
a) Compute performance of P as perf ←

Algorithm1(P, �Lh, �Mh
1 , �Mh

2 , �CPI
h
)

b) Compute number of process movements
nmoves due to P

c) if perf > max perf + δ or (perf >
max perf−δ and nmoves < min moves)
then

PP ← P

min moves ← nmoves
max perf ← perf

endif
endfor

4) Return PP

The logic behind Steps 3.b and 3.c is to make sure that
a permutation P with insignificant performance gain is
not selected as determined by the constant δ. Likewise a
lower performing permutation than the previously chosen
one is accepted if the permutation has fewer processes
moving between the CPUs (e.g. identity matrix has 0
moves). In our experiments we used δ = 0.1%.

V. PERFORMANCE EVALUATION

In order to evaluate our meta-scheduler, we have built
a prototype. This prototype works with Linux systems
and Intel processors. In addition to hardware counters,
power counters available on IBM blades were used
for measuring power consumption. In order to evaluate
the impact of PAM we used synthetic programs and
benchmarks such as SPEC CPU 2006. In this section,
we first present our test-bed and then present the results.

A. Testbed

We used an 8-core IBM blade server with Intel Xeon
E5345 processors. In this system there are four chips (in
two packages). In each chip, there are two cores which
share an L2 cache. The cache organization of this system
is the same as the one shown in is shown in Figure 1.a.
The CPU and L2 speed is 2.33 GHz and each pair of
cores share a 4 MB L2 cache. The server is used with 16
GB of memory with fully-buffered DIMMs. This server
runs Intel Speedstep, in DYNAMIC mode with CPUs
idling at 2.0 GHz.

B. Base Results

We used the SPEC CPU 2006 benchmark suite and
synthetic programs to study the impact of PAM. Ob-
viously, when there is only one program running on

the system, there is not much one can do with respect
to tuning the performance. On the other hand, when
multiple applications are running on a system, chances
are that these applications have different characteristics
and behaviors and therefore tuning the system using
PAM can have a significant impact.

In particular, we used SPEC CINT2006 benchmarks
to study a wide range of environment with respect to
number of software threads and number of benchmarks
running at the same time. We first validated Equation 11.
We measured the occupancy and miss ratio of each
benchmark in CINT2006 while running with all the
benchmarks in this suite one at a time. Then, in order
to get an idea about the interaction of benchmarks in
this suite, we performed a test when the performance
of a given benchmarks was measured in the presence of
a disturber benchmark on the same CPU package (i.e.,
with shared cache). The results are shown in Figure 3.
It can be seen that benchmarks list on the right side of
the x axis have a bigger impact on other benchmarks.

We ran several tests with various combinations of
benchmarks and number of software threads (processes).
Figure 4 shows the results from a set of tests in which
four Libq threads were run with four threads of every
other benchmark in the CINT2006 suite. Results are
normalized with respect to the execution time in the
standard system without PAM. For each set of bars,
Libq and the other benchmark were ran together at least
3 times. In all cases the numbers reported reflect the
execution time of benchmarks when 8 processes (4 Libq
processes and 4 processes from another benchmark) were
running. It should be noted that in all experiments the
execution time was recorded as reported by the SPEC
benchmark and reduction (or increase) in execution times
is calculated based on these execution times.

Impact of Two Benchmarks sharing One L2 on Executon Time
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Fig. 3. Interaction between SPEC CINT2006 benchmarks.

It can be seen in Figure 4 that when Libq and Mcf
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Fig. 4. Libq and other CINT2006 benchmarks. In each group of
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to other benchmarks. The overall improvement is shown by the right
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benchmarks are run together even though the overall
performance is improved, the performance of Libq itself
degrades significantly. As mentioned in Section IV, the
maximum degradation of individual benchmarks can be
specified in PAM. Figure 5 shows the impact of changing
the maximum degradation allowed (in percentage) for
Libq-Mcf run. By default, this is set to 10% meaning the
performance of each individual benchmark can degrade
to as little as 10% of its original performance. This
is essentially set to such a low value to remove any
practical limit on individual benchmark performances.
It can be observed that when this limit is set to 95%,
Libq degradation is reduced substantially and overall
performance improvement decreases.

1.196

1.034

0.70

0.920.91

0.98

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

10% 95%

Maximum Degradation Allowed

E
xe

c.
 T

im
e 

w
it

h
 P

A
M

 / 
E

xe
c.

 T
im

e 
W

it
h

o
u

t 
P

A
M

Libq Mcf Overall

Fig. 5. Limiting degradation of individual programs.

C. CPU Occupation

In order to illustrate how different processes get sched-
uled with and without PAM, we periodically recorded

the CPU id of processes being run. How Libq and
Xalancbmk processes are scheduled in two runs without
and with PAM is illustrated in Figure 6. It can be seen
that without PAM, once Libq and Xalancbmk are sched-
uled and assigned to a CPU, they are rarely reassigned to
a different CPU. It can be seen in the left-side graph of
Figure 6 that when PAM is not used, on each chip there
is one Libq and one Xalancbmk processes. This means
that in all chips Libq and Xalancbmk processes share
the L2 cache. On the other hand, with PAM (right-side
graph of Figure 6) there are more changes in process-
CPU assignments. More importantly, PAM makes sure
Xalancbmk processes are scheduled on the same chips
and Libq processes are scheduled on other chips. From
Figure 4, it can be observed that Libq suffers a bit while
the performance of Xalancbmk improves significantly
resulting an overall improvement.

D. Miss Ratio

To get a better understanding of the impact of PAM,
we also recorded L1/L2 miss rates among other hardware
data. Figure 7 shows the L2 miss ratio of the CPU under
three different conditions. Please note the logarithmic
scale. When PAM is used, two Xalancbmk processes
run on a chip. The L2 miss ratio of one such CPU is
shown. Furthermore, the L2 miss ratio of Xalancbmk
when two such processes are on one chip is shown as
well. Furthermore, the L2 miss ratio of a CPU running
Xalancbmk when the other CPU on the same chip is
running Libq is shown. It can be seen that after the initial
stage of the run which causes significant miss rates, the
miss rate when Xalancbmk and Libq share an L2 remains
significantly higher. This condition which occurs often
with standard scheduling leads to a bad performance. On
the other hand when Xalancbmk processes are sharing
L2, the miss ratio is much less. The initial high miss ratio
is also shorter in such a condition. When PAM is used,
processes are scheduled such that for the most part we
will be having this later condition and therefore a better
performance.

E. Multiple Benchmarks

We have also run various other combination of bench-
marks and number of software threads in our experi-
ments. The results of experiments with running 3 bench-
marks are shown here. In Figures 8 and 9 we show
the result of some representative sets of experiments. In
Figure 8, first and third benchmarks have three software
threads while the second benchmark runs with two
threads. In Figure 9, all benchmarks run with three
threads each. In all experiments the reported results are
obtained while all three benchmarks were running. It
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can be observed that in most cases using PAM leads to
a better performance. It is to be noted that even when the
number of software threads are higher than that of CPUs
(or hardware threads) using PAM is beneficial. In these
cases, when multiple processes run on a single core, they
are treated as one group and are moved together.

F. Floating Point

In addition to integer benchmarks, we have performed
several tests with floating point benchmarks (i.e., SPEC
CFP2006). A subset of these results are shown in Fig-
ure 10.

G. Power

In order to evaluate the effectiveness of PAM with
respect to capping the power, we set the power cap to
different values and observed how PAM reduces and/or
increases the number of CPUs being used. For a certain
power cap, the performance can be optimized by PAM
by using the same algorithms described earlier only on a
limited number of CPUs. Figure 11 shows the number of
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Fig. 9. Multi-benchmark experiments with 3 benchmarks running
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CPU used and the amount power used by the server as
recorded in hardware power counters. For this particular
experiment we ran the whole SPEC CINT2006 and set
the power cap to 260 watts. It can be seen that in
most cases four or five CPUs are used to make sure no
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more power is used. It can be observed that between
benchmark runs when no benchmark is running, the
number of used CPUs increase to eight momentarily
and as the next benchmark starts running the number
of CPUs are decreased.
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Figure 12 shows the same result for a smaller time
period. Data shown in this figure is for the Perlbench
benchmark. It can be seen that with four or five CPUs the
power is capped at around 260 watts. It should be noted
that the Intel processors used in this server are of the
energy saving type and the range of frequency/voltage
change is very narrow (2.0 GHz to 2.3 GHz). On the
other hand on our servers with AMD processors there
is a wider range of valid frequency/voltage that one
can use to reduce the power consumption. PAM is also
capable of applying its scheduling technique to improve
the performance as much as possible while the power
consumption is capped.

VI. RELATED WORK

A memory-aware scheduling scheme is presented
in [9]. In this work, it is proposed to use a new set of
hardware counters such that the miss ratio of a given
process with a certain cache size can be predicted.
This information is then used to provide for using a
better schedule to minimize the overall miss rate in the
system. Unlike this work, PAM does not require any
new hardware counters and rely on the counters already
available on modern CPUs.

A dynamic cache partitioning method for minimizing
the overall miss rate and improving IPC is presented
in [10]. This method which aims to replace the LRU
replacement policy currently used in systems with a
new replacement policy. A group of cache policies for
chip multiprocessors are discussed in [11]. A hardware
cache quota system that can be used by OS to use
different policies for different applications in order to
improve the overall performance in chip multiprocessors
is proposed in [12]. The approach taken in our work does
not require any changes in replacement policies or any
other components of the system.

Mechanisms for improving the performance by using
better scheduling in simultaneous multithreading ma-
chines are discussed in [13]. These methods are executed
in two phases: first a sample phase which collects
information about various possible schedules, and second
a symbiosis phase in which the information collected in
phase one is used to predict which schedule will provide
the best performance.

Improvement in the schedulers for multithreaded chip
multiprocessors by balancing the use of shared L2 caches
is discussed in [14]. The proposed scheme relies on
balance-set scheduling where groups of processes whose
combined working set fits in the cache. In order to
model the cache behavior accurately, a cache model for
multithreaded applications is developed which requires
the memory reuse pattern for accurately estimating the
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cache miss rate. As mentioned in this paper, using
such an approach in a real system is expensive and
impractical.

A new operating system scheduling algorithm which
provide performance isolation on chip multiprocessors
are discussed in [15]. In this algorithm, if a thread is
affected by other threads in a negative way, the operating
systems increases that thread’s CPU time slice such
that its overall performance does not suffer. Operating
system scheduling for heterogeneous multi-core systems
are discussed in [16], [17]

Issues involving an accurate metric for measuring the
performance on multiprocessors have been discussed
in [3], [18]. It can be easily observed that in multi-
processors use of a metric such as IPC can be misleading
when various architectural changes of the system is being
investigated. This issue becomes even more complicated
as multiple multi-thread processes with different charac-
teristics run on such systems. We mentioned earlier that
in such cases, a simple average may not be accurate and
weighted average, or geometric means of improvement
rates can be used.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we showed how information obtained
from hardware performance counters and power counters
can be used to monitor the state of the system. we further
showed how new scheduling plans can be used to im-
prove the system. we developed a model for estimating
the impact of new schedules and showed they can be of
significant value for a large set of benchmarks.

We are extending our work along several directions.
we are evaluating and comparing several other perfor-
mance metrics. We are extending our test-bed to include
non-Intel processors and servers with different number
of cores. We are also considering the impact of memory
affinity on the performance.
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