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ABSTRACT
A primary focus of popular wireless link-layer protocols is
to achieve some level of reliability using ARQ or Hybrid
ARQ mechanisms. However, these and other leading link-
layer protocols largely ignore the stability aspect of wireless
communication, and rely on higher layers to provide sta-
ble traffic flow control. This design strategy has led to a
great deal of inefficiency in throughput and to other major
issues (such as the well-known TCP over-wireless perfor-
mance degradation phenomenon and the numerous studies
in attempt to fix it). In this paper, we propose a paradigm
shift where both reliability and stability are targeted using
an Automatic Code Embedding (ACE) wireless link-layer
protocol. To the best of our knowledge this is the first ef-
fort to develop a theoretical framework for analyzing and
designing a wireless link-layer protocol that targets system
stability in conjunction with reliable communication. We
present two distinct analytical frameworks to determine op-
timal code embedding rates which ensure system reliability
and stability for wide range of traffic demand. An impor-
tant conclusion of our analysis is that various traffic demand
can be met using a packet-by-packet code embedding rate
constraint that is independent of traffic type. We demon-
strate experimentally that ACE provides both rapid and re-
liable point-to-point wireless data transmission for realtime
and non-realtime traffic over real channel traces collected on
802.11b WLAN. We also have conducted extensive TCP sim-
ulations in conjunction with ACE; and we demonstrate the
high level of efficiency and stability that can be achieved for
TCP over ACE, while not making any changes to TCP. Fur-
ther, the implementation of ACE for real-time video com-
munication shows performance gains of 5-10dB over IEEE
ARQ schemes. More importantly, ACE is layer oblivious
and requires no changes to higher or lower PHY layers.
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1. INTRODUCTION
Reliable communication over wireless channels is very chal-

lenging since wireless links are error-prone and susceptible
to noise imposed by fading, interference and mobility. Ad-
ditionally, wireless networks need to accommodate diverse
traffic types with various requirements for rate, reliability
and delay. The wide variety in traffic rate requirements leads
to a large variance in the traffic volume injected into the
network which often leads to throughput instability. This
is exacerbated due to errors introduced in the wireless net-
work. Leading link-layer protocols focus primarily on reli-
ability and ignore the stability aspect of wireless commu-
nication; relying on (or arguably shifting the problem to)
higher layers to provide stable flow control for both real-
time and non-realtime traffic. It is our belief that one of
the important goals for any link layer protocol is to provide
system stability by ensuring that higher layers are neither
starved for information packets, nor is there a glut of pack-
ets leading to buffer overflows. More specifically, the current
link-layer paradigms aim at providing reliability in hop-to-
hop communication without regard to traffic demand. One
outcome of failures at the link-layer, resulting from errors
in the wireless network, is that the network layer assumes
there are broken links in the current packet route. This
leads to nonessential determination of new packet routes by
the routing agent [4]. Similarly, wireless errors are inter-
preted as congestion by the transport-layer resulting in an
unnecessary drop in transmission rate [5, 7].

Current IEEE802.11 ARQ protocol [1], which focuses only
on reliability, attempt to recover from losses using retrans-
missions. Corrupted packets are discarded without regard
to the number and location of the errors. This methodol-
ogy is designed to ensure “reliability in the long run”, i.e.
the packet would eventually be recovered. However this ap-
proach suffers from degradation of throughput rate and over-
all system instability. This is easy to see, since even a single



bit error in consecutive packets leads to packet drops and
therefore discarding of a large number of correct data bits.
As a result, the network utilization deteriorates steadily and
rapidly with increasing channel Bit Error Rate (BER). In
an alternative approach, Hybrid ARQ (HARQ) protocols
are proposed, which make use of incremental channel codes
to achieve reliable transmission over wireless channels us-
ing fewer packet transmissions [8, 10]. However, both the
ARQ and HARQ based approaches follow the conventional
paradigm and do not address throughput stability issues
raised by varying traffic demand and intensity. This design
strategy has led to a great deal of inefficiency in throughput
and to other major technical issues and challenges at higher
layers. A well-known example is the TCP over-wireless per-
formance degradation phenomenon, which led to major re-
search efforts and numerous studies [7] in attempt to miti-
gate the shortcoming of the lower layers.

In this paper, we propose a paradigm shift where both re-
liability and stability are ensured using an Automatic Code
Embedding (ACE) wireless link-layer protocol. The pro-
posed wireless ACE link-layer (a) employs a theoretically-
sound framework and a corresponding strategy for embed-
ding channel codes, using robust and well-defined code rates,
in each packet; and (b) selects the code rates in an optimal
and constrained manner to ensure reliability, stability, and
maximum throughput. We believe that this work is the first
to present a theoretical framework for analyzing and design-
ing a wireless link-layer protocol that targets system stabil-
ity in conjunction with reliable communication. We begin by
outlining a novel joint analytic framework to predict system
behavior under ACE. Specifically, we first obtain an upper
bound on operational code embedding rate that ensures reli-
ability. Next, we develop a queuing model that captures sys-
tem behavior under stability condition. In particular, we de-
scribe the link-layer failures as an on-off source model using
a two-state Continuous Time Markov chain (CTMC) model.
We deploy fluid approximations to analytically characterize
the buffer growth. By utilizing these models, we find a lower
bound on operational code embedding rate which guarantees
stable operation while utilizing the channel bandwidth effec-
tively. An important conclusion of the above analysis is that
various traffic demands (in terms of reliability and stability
requirements) can be met using a packet-by-packet code em-
bedding rate constraint that is independent of traffic type.
This leads to simplistic, traffic-independent and elegant de-
sign rules for the ACE protocol, while providing reliability
and stability in an optimal and joint manner.

The ACE protocol is a point-to-point wireless communi-
cation protocol where the receiver stores corrupted packets
in its buffer for further recovery. The channel conditions
are estimated using simple feedback mechanism. ACE uti-
lizes receiver BER estimate and buffer flags encapsulated in
the ACK message to determine the composition of the next
packet to be transmitted by the sender. We demonstrate
experimentally that ACE provides both rapid and reliable
wireless data transmission under varying channel conditions.
Our contributions can be summarized as follows:

• We present two distinct analytical frameworks to de-
termine optimal code embedding rates which ensure
system reliability and stability. We further show that
these conditions are met using a packet-by-packet code
embedding rate that is independent of traffic type.

• We propose the ACE protocol for point-to-point link-
layer wireless communication which is layer oblivious
and provides reliability and stability in an optimal and
joint manner.

We evaluate our proposed link-layer protocol under vary-
ing channel conditions over real channel traces collected on
802.11b WLAN. We implemented ACE using OMNET++
network simulator [26], and an Adaptive Low parity Den-
sity Code (A-LDPC) [25]. Empirical results show that for
realtime traffic, ACE significantly outperforms IEEE802.11
ARQ over the channels with an average BER more than
0.009. It guarantees 100% stability for wide range of traf-
fic rates, while the stability under IEEE802.11 ARQ is only
20%. Meanwhile, for non-realtime traffic, 10% to 30% through-
put gains are observed. We also demonstrate that the tra-
ditional TCP congestion control algorithm (Jacobson algo-
rithm) gains significant throughput of 10% to 50% under
ACE over lossy wireless environment. Finally, we design
and implement ACE for real-time video communication us-
ing H.264 standard video codec [27]. An overall PSNR gain
of 5-10dB over IEEE802.11 ARQ scheme was observed.

The remainder of the paper is organized as follows: In
Sections 2 and 3, we address prior studies and preliminaries.
The optimal code embedding rate under reliability and sta-
bility conditions for ACE protocol is derived in Section 4.
Section 5 describes the ACE protocol. In Section 6, we eval-
uate the performance of ACE over real channel traces col-
lected on 802.11b WLANs. Section 7 concludes the paper.

2. RELATED WORK
Popular link-layer protocols address reliability using dif-

ferent error control schemes. These schemes are classified as
follows:

1. ARQ-based Schemes. The current IEEE 802.11
protocol is designed to be as reliable as possible [1];
it incorporates frame check sequence (FCS) to detect
errors and automatic repeat request (ARQ) to retrans-
mit corrupted packets. For channels with more se-
vere error conditions, the IEEE standard ARQ scheme
causes multiple retransmissions which in turn leads
to the transmission of a large number of redundant
(correct) data. To enhance the IEEE standard ARQ
performance, packet combining techniques have been
developed where they exploit the multiple transmis-
sions typical of ARQ schemes [9]. The basic idea is
to store previous transmissions of the corrupted copies
of a packet and attempt error recovery. Techniques
developed in this context are xor combining [16] and
majority combining schemes [17]. The analysis in [9,
11, 12] shows these techniques are IEEE MAC com-
patible, however the improvement of the throughput
is not remarkable.

2. HARQ-based Schemes Prior work in information
theory has discussed the concept of hybrid ARQ which
employs various codes including Reed Solomon and
LDPC for error correction [14, 15]. In the simplest
version of HARQ, type-I HARQ [22], the sender en-
codes the packet payload with an error-correction code
prior to the transmission. Accordingly, the receiver re-
quests for a retransmission when the decoding of the
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Figure 1: Markovian Channel.

received packet fails. In type-II hybrid ARQ (HARQ-
II)[23], each packet payload is encoded to a codeword
and is punctured before transmission. Upon decod-
ing failure, the receiver buffers the packet and sends a
negative acknowledgment (NACK). In response to the
NACK, the sender sends additional redundancy sym-
bols which the receiver recombines with the associated
packet in the buffer and reattempts to decode the com-
bined packet. The HARQ-II is similar to the ACE pro-
tocol since both schemes achieve recovery through the
transmission of additional redundancy. However un-
like ACE, the HARQ-II is not adaptive with respect
to channel condition and does not address throughput
stability issues raised by varying traffic demand.

3. Cross-Layer Approach. In recent years, many pa-
pers in multimedia applications have proposed cross-
layer mechanisms to overcome performance limitations
imposed by conventional protocols. For instance UDP
Lite [18], tried to improve the bandwidth utilization
by making adjustments to the protocol stack at the
transport and the link layers which relies on the error-
resilient nature of multimedia content. The analysis
of the hybrid Erasure-Error protocols (HEEPs) in [19]
shows that cross-layer protocols in general provide ca-
pacity improvement in many realistic scenarios and can
significantly improve the overall performance as mea-
sured by video quality. However, a significant draw-
back of the cross-layer protocols is that their imple-
mentations require major modifications in transport
and application layers.

In this paper, we propose a novel error control scheme for
wireless link-layer that unlike the related studies targets sys-
tem stability in conjunction with reliable communication.

3. PRELIMINARIES
In this section, we capture an error process of a wireless

channel and determine the likelihood of successful transmis-
sion by introducing channel and distortion models. These
models provide essential tools in finding an optimal code
embedding rate constraint for ACE protocol. In this pa-
per, the terms “message”, “packet” and “codeword” are used
interchangeably.

3.1 Channel Model
A channel model describes the process under which errors

are introduced in a transmitted packet over a wireless link.
Packets are transmitted during discrete time slots τi, i =
1, 2, · · · , +∞, which we refer to as transmission intervals.

During the ith transmission interval, a message is transmit-
ted over a Binary Symmetric Channel (BSC) with cross-over
BER εi. To derive a channel model for all transmission in-
tervals, we assume that each εi of a particular τi is valued
from a finite set FN with length N : εi ∈ FN , |FN | = N .
As a result, we can consider the channel model as a combi-
nation of N various BSCs with unique BERs (i.e., εl 6= εj

for l 6= j l, j = 1, 2, · · · , N). In every τi, the channel is in
one of the N possible states (S1, · · · , SN ) where each state
corresponds to a particular BSC. Based on these settings,
we can model a wireless channel as a discrete Markov chain
with N states where each state is a representation of a BSC
with a particular BER. Fig 1 shows a Markovian channel
model. We assume a homogenous and stationary Markov
chain with transitional probability matrix P and the limit-
ing probabilities π = (π1, · · · , πN ). The Markovian chan-
nel model can be trained on real channel traces by using
the statistics of previous transmission intervals. This cap-
tures the effects of multipath fading and interference on the
channel BER in every transmission interval using a single
aggregated model [24].

The capacity of a BSC channel with cross-over probability
εi is 1 − H(εi) [2]. Using the steady state probabilities πi

the average channel capacity in any interval is determined
as follows:

C =

N∑
i=1

πi(1−H(εi)). (1)

The channel capacity gives an upper bound on the aver-
age (reliable) information transmission rate for the wireless
channel under consideration.

3.2 Distortion Model
The distortion model measures the distortion level of a

received packet and computes the likelihood of successful
recovery of the packet under embedded channel coding. To
develop this model, we let Ci(ki, xi) represent the transmit-
ted codeword in τi where ki is the number of data symbols
which are encoded with xi parity symbols. Letting the wire-
less channel be in state Si, each symbol in Ci is distorted
independently from the other symbols with probability of εi.
Thus, the distortion of each symbol has a Bernoulli distri-
bution with parameter εi. As a result, the error introduced
in Ci with the length of |Ci| = ki + xi, can be represented
by the random variable Ei which has a binomial distribu-
tion a can be written as Ei ≈ Bi(|Ci|, εi). In practice, |Ci|
is a relatively large number, and εi is very small. So, we
can approximate Ei with a Poisson distribution with rate
λEi = |Ci|εi.

The receiver attempts to retrieve ki data symbols by uti-
lizing xi parity symbols embedded in Ci. Depending on the
decoding algorithm, the receiver can correct certain level of
error proportional to the number of parity symbols embed-
ded in the message. Specifically, for xi parity symbols, the
receiver is capable of correcting up to α × xi errors out of
|Ci| symbols in the message. Here α measures the expected
error-correcting capability of a particular decoder. For ex-
ample, the error-correcting capability of Reed-Solomon codes
is half as many as redundant symbols (i.e., α = 0.5) [3].

The distortion level Ei is random and unknown to the
receiver and therefore the notion of partial recovery is unre-
alistic in error correction. Meaning, the receiver can either
correct all errors in Ci declare successful decoding or just as-
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Figure 2: The density of error after decoding is trun-
cated on αxi.

sumes that no recovery is achieved. So the level of distortion
in Ci after decoding, denoted by Ui, is

Ui = g(Ei, xi) =

{
0 Ei ≤ αxi

Ei otherwise
(2)

Equation (2) shows that the distribution of Ui is equiva-
lent to the distribution of Ei truncated on αxi (see Fig. 2).
Therefore, Ui has the probability density function

fUi(u) =

{
FEi(αxi) u = 0
fEi(u) u > αxi

(3)

where FEi(u) is a cumulative density function of Ei. Cor-
respondingly, the probability of successful decoding of ni is
equivalent to the probability that Ui = 0. That is,

P (Ui = 0) = FEi(αxi) =

bαxic∑

d=0

e−λei
λd

Ei

(d)!
. (4)

This density determines the likelihood of successfully error
recovery using α-error correcting codes. In the following
section, we use this likelihood to determine an optimal code
embedding rate necessary for reliable and stable operations
in wireless communication.

4. ACE CODE EMBEDDING RATE
This section describes two distinct analytical frameworks

that determine the upper and lower bounds on operational
code embedding rates under Automatic Code Embedding
(ACE) wireless link-layer protocol. The first analytic frame-
work determines the upper bound on operational code rate
that ensures reliability. The second framework develops a
queuing model that captures stable system behavior and
identifies the lower bound on operational code rate under
stability condition. The operational code embedding rate
measures the fraction of data symbols that are embedded in
a particular codeword. For instance a codeword Ci(ki, xi) is

generated based on the code rate Ri = ki
ki+xi

.

4.1 Code Rate: Reliability
One of the main objectives in wireless communication is

reliable data transmission. We define reliability as follows:

Definition 1. System is reliable when information is trans-
mitted with no or diminishing error over a wireless channel.

Higher 
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Wireless Channel is in state Si

( , )i i iC k x

codeword
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1

c
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Figure 3: System model for stability analysis in
wireless Communication.

Recall that during τi the channel is in state Si and every
transmitted symbol is altered by the error probability εi.
The sender uses the channel ki + xi times to transmit a
codeword Ci(ki, xi) encoded with parity symbols xi. The
amount of error introduced in the received codeword (on
average) is (ki + xi)εi. According to the distortion model
developed in Section 3.2, a decoder can correct up to αxi

errors in the codeword. Thus, to successfully deliver ki data
symbols over a wireless channel, the following inequality has
to be satisfied:

(ki + xi)εi ≤ αxi. εi ∈ FN

In addition, if a channel permits the transmission of ni sym-
bols in τi, then the length of a codeword should not exceed
ni. Based on these requirements, we have the following op-
timization problem:

max ki subject to:

kiεi + xi(εi − α) ≤ 0 and ki + xi ≤ ni.
(5)

This leads us to find an upper bound on the operational
code embedding rate that ensures reliability which is given
by the following Lemma:

Lemma 1. The operational code embedding rate that en-
sures reliability in wireless transmission over a channel in
state Si is bounded above by

Ri ≤ 1− εi

α
. εi ¿ α

where α is error-correcting capability of a decoder.

Proof. See appendix.

4.2 Code Rate: Stability
Most Internet applications are subjected to various re-

quirements for reliability and delay. For example, the qual-
ity degradation is significant in audio/video conferencing if
data packets are not delivered in a timely fashion. The wide
variety in traffic rate requirements leads to a large variance
in the traffic-volume injected into the network. This often
leads to throughput instability. We define stability as fol-
lows:

Definition 2. System is stable when higher layers are
neither starved for information packets nor is there a glut of
packets leading to buffer overflow.

Figure 3 shows a queueing model for the system. The
consumption rate c of the buffer represents the rate at which
higher layers remove data symbols from the buffer. One of
the important stability requirement is that the buffer has
to be non-empty to avoid execution stalls. This property is
satisfied when data arrival rate is high enough to satisfy the
data consumption rate. Execution stalls refer to a condition



where higher layers cannot continue execution because there
is no data symbol available in the buffer, leading to system
instability.

The fluctuations of the buffer growth can be captured by
computing limiting distributions of the buffer length using
a general model of fluid entering and leaving a single buffer.
The input and output rates of the buffer depend on the
external environment: let Z(t) be the state of the external
environment and B(t) be the amount of fluid in the buffer
at time t. In our framework, Z(t) indicates the decoding
outcome in the link-layer (later, we model Z(t) as a two-
state CTMC) and B(t) is the number of data symbols in
the buffer at time t. The dynamics of the buffer length is
captured by a fluid process B = {B(t), t ≥ 0} (driven by
Z = {Z(t), t ≥ 0} process) given by:

dB(t)

dt
= η(Z(t)) (6)

where η(Z(t)) is called the drift function which measures
the difference between entry rate and exit rate at state Z(t).
To ensure that B process does not become negative, we let
η(Z(t)) = max(η(Z(t)), 0) when B(t) = 0.

To calculate the limiting distributions of B(t) with re-
spect to Z(t), we let {Z(t), t ≥ 0} be an irreducible CTMC
on state space S = {1, 2, · · · , M} with generator matrix
Q = [qij ]. Correspondingly, (B, Z) = {(B(t), Z(t)), t ≥ 0}
is a bivariate markov process with the limiting distribution
defined as:

F (b, j) = lim
t→+∞

P (B(t) ≤ b, Z(t) ≤ j). 1 ≤ j ≤ M (7)

By defining:

F (b) = [F (b, 1), F (b, 2), · · · , F (b, M)]

D = diag[η(1), η(2), · · · , η(M)].

where D is the drift matrix, Mitra in [21] shows that F (b)
satisfies the differential equation of a form

dF (b)

dx
D = F (b)Q. (8)

By solving the differential equation in (8), we can obtain the
limiting distributions in equation (7).

The limiting distribution determines the likelihood of buffer
length variations in every state of Z(t). In our framework,
we deploy these distributions to determine the lower bound
on operational code embedding rate which ensures stability
regardless of the state of Z(t).

From the higher-layer viewpoint, Z(t) the decoding pro-
cess in the link-layer, can be expressed as an on-off fluid
source model. Such a source stays on for an exp(ω) and
stays off for an exp(β) amount of time. It generates fluid at
rate ki when it is on and does not produce any fluid when
it is off. Accordingly, a successful decoding at the link-layer
indicates that the source in on. Using the distortion model,
with the channel in state Si, the amount of time that the
source is on is determined as

ωi = Pr(Successful Decoding in τi) = FEi(αxi). (9)

Correspondingly, the amount of time that the source is off
is βi = 1− ωi.

Using the on-off source model, the environment process
Z = {Z(t), t ≥ 0} in equation (6) is modeled as a two-
state CTMC on state space S = {1 =on,2 =off} with the
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Figure 4: Operational code embedding rate domain
with respect to reliability and stability.

following generator matrix

Q =

( −ωi ωi

βi −βi

)
.

Recall that when the source in on, ki data symbols enters
the buffer while data symbols are removed from the buffer
at the constant rate c regardless of the state of the source.
Therefore, the drift matrix is given by

D =

(
ki − c 0

0 −c

)

Using the matrices Q and D, we can solve the differential
equation in (8). The final solution is given by

F (b, 1) = βi(1− eλb) (10)

F (b, 2) = ωi − βi(ki − c)

c
eλb, (11)

where λ = βi
c
− ωi

ki−c
.

Based on the above derivations, kiωi represent the ex-
pected number of data symbols injected into the buffer when
the channel is in state Si. Since the buffer has finite capacity,
the following condition has to be satisfied to prevent buffer
overflow

kiωi ≤ c. (12)

Using this model, we determine the lower bound on op-
erational code embedding rate under ACE that satisfies the
stability condition. This is given by the following Lemma:

Lemma 2. The operational code embedding rate that en-
sures stability in wireless transmission over a channel in
state Si has a lower bound

Ri ≥ 1− εi

α
. εi ¿ α

Proof. See appendix.

Lemma 2 suggests that for the channel in state Si, sta-
bility condition is guaranteed for a variety of traffic de-
mands using operational code embedding rate of at least
Ri = 1− εi

α
. Meanwhile, Lemma 1 suggests that this rate is

the upper bound of operational code rate which achieves re-
liability. As illustrated in Fig. 4, the domain of operational



code rate is partitioned into two subdomains which inter-
sect at Ri = 1− εi

α
. Further, this domain is bounded by the

channel coding theorem [2] which requires the operational
code embedding rate to operate below channel capacity of
equation (1) (Ri < C). An important conclusion of this
analysis is that an optimal solution for code embedding rate
that ensures reliability and stability conditions is a unique
solution:

R∗i = 1− εi

α
. εi ¿ α (13)

This conclusion leads to simplistic, traffic independent and
elegant design rules for the ACE protocol, while providing
reliability and stability in an optimal and joint manner.

5. AUTOMATIC CODE EMBEDDING
In this section, we present the architecture design and im-

plementation of ACE which uses the optimal code embed-
ding rate deduced in the previous section for redundancy
allocation and deploys channel side information to assess an
accurate estimate of the channel condition in every transmis-
sion. To that end, we first describe a point-to-point com-
munication model under which ACE is operating. Next, we
present detailed functionality of ACE, specifically channel
state estimation and redundancy allocation.

5.1 ACE Communication Model
In this section, we describe ACE operational communica-

tion model. Here a transmission interval τi is expressed as
the duration in which a transmitter sends the ith message
(packet) Mi and receives its corresponding acknowledgment
ACKi. A transmitter sends a new message after the recep-
tion of an acknowledgment.

5.1.1 Sender Side
During τi, a sender transmits a message which is rep-

resented by the tuple Mi = (Ci(ki, xi),yi) where ki rep-
resents the number of data symbols which are not being
retransmitted. In each τi, a transmitter encodes ki with
parity symbols xi creating a codeword Ci(ki, xi). We re-
fer to these parity symbols as type-I parity. The receiver
utilizes xi to decode Ci. Upon successful decoding, Ci is
extracted and ki data symbols are passed up to the higher
layer. The error correction fails when the decoding oper-
ation fails as indicated in FCS. In that case, the receiver
stores Ci in its buffer and issues a request for more par-
ity symbols. The transmitter also sends additional (type-II)
parity symbols denoted by yi. The receiver utilizes yi sym-
bols to recover old corrupted codewords accumulated in its
buffer (e.g., Cj , j = 1, · · · , i− 1).

5.1.2 Receiver Side
We assume that the receiver has a finite buffer which can

accommodate up to m corrupted messages waiting for re-
covery. If a newly corrupted packet finds all rooms in the
buffer occupied, it does not enter the buffer and is dropped.
The status of the receiver is reported to the transmitter via
certain flags in an acknowledgment message which are called
buffer flags. Specifically, m flags are encapsulated in every
acknowledgement. Let Fi[k], k = 1, · · · , m represent buffer
flags in ACKi. Each buffer flag is associated with a par-
ticular room in the buffer and represents the status of that
room. That is, if the kth room is occupied then Fi[k] = 1
(as illustrated in Fig. 5). In addition, the receiver estimate
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Figure 5: An example of ACE operational communi-
cation model consists of four transmission interval.

of channel condition δ̂i in τi is also encapsulated in acknowl-
edgment message. Later, we describe channel estimation
process by the receiver.

An example of ACE operational communication model
is illustrated in Fig. 5. A short communication consisting
of four transmission intervals and buffer capacity of two at
the receiver is shown. During the first transmission interval
τ1, a message M1 = (C1(k1, x1),y1) is sent. There are no
type-II parity symbols in M1, because there is no prior cor-
rupted message in the receiver buffer, so y1 = 0. A receiver
that fails to decode C1, stores C1 in its buffer and sends
an acknowledgment ACK1 = (1, 0, δ̂1). In τ2, the trans-
mitter sends M2 = (C2(k2, x2),y2 = {y1

2}). The receiver
uses x2 to decode C2 and employs type-II parity symbols
y1
2 (yj

i denote additional parity for Cj , j < i transmitted
in τi) in addition to x1 to decode C1. The receiver ac-

knowledges ACK2 = (1, 1, δ̂2), indicating decoding failure
of C2 and C1(k1, x1 + y1

2). As a result, in τ3, the sender
sends M3 = (C3(k3, x3),y3 = {y1

3 , y2
3}). In τ3, the receiver

successfully decodes C3 using x3 and C1(k1, x1 + y1
2 + y1

3).
Because decoding of C1 was successful, the receiver sets
the buffer flag of the first room to zero (i.e., F3[1] = 0)
but at the same time since the receiver is waiting for type-
II parity symbols to perform decoding on C2, the buffer
flag for the second room is set to one (i.e., F3[2] = 1); so

ACK3 = (0, 1, δ̂3). Accordingly, in τ4, the sender trans-
mits M4 = (C4(k4, x4),y4 = {y2

4}). The receiver decodes
C4 using x4 and C2 = (k2, x2 + y2

3 + y2
4) successfully; so

ACK4 = (0, 0, δ̂4).

5.2 ACE Protocol
ACE utilizes the receiver channel estimate and buffer flags

to assess the status of the channel condition and the receiver
buffer. Depending on this assessment, ACE determines the
composition of the next message to be transmitted by the
sender.

5.2.1 Channel State Estimation
Recall that the Markovian channel model implies that in



every transmission interval the channel is in a particular
state represented by a BSC with a unique BER. The ob-
jective is to train the Markovian channel model to achieve
an accurate estimations of BER values for each state of the
model. The training process is in an online fashion in the
sense that ACE adjusts its parameters as more and more
packets arrived during a session.

There are many ways to predict channel BER. One ex-
ample is to use readily available information in the received
packet. ACE uses Signal to Silence ratio (SSR) as side in-
formation in every transmission interval. Specifically, upon
a reception of a packet in transmission interval τi, the re-
ceiver obtains the SSR and estimated BER values of packet
preamble. We let ssri and D̂i = g(ssri) represent the SSR
value of packet Mi and its corresponding estimated BER
respectively. A receiver creates a one-to-one mapping be-
tween each SSR value and each state of a Markov chain [i.e.,
(ssr1 ≡ S1), · · · , (ssrN ≡ SN )]. It also keeps record of the
observed BER values associated with each SSR, denoted by
(∆i, i = 1, · · · , N). Notice that the number of states of the
channel model is dictated by the total number of unique
SSR values observed by the receiver. The receiver training
process is as follow:

1. Obtain ssri and D̂i of the received packet in τi.

2. Find a state where Si ≡ ssri.

3. Add D̂i to the list of observed BER values associated
with (ssri ≡ Si): ∆i = {∆i, D̂i}.

4. Adjust the BER estimation associated with state Si

by taking the average value of the updated ∆i

δ̂i =

∑|∆i|
k=1 D̂k ∈ ∆i

|∆i|
In every transmission interval, the receiver adjusts the pa-

rameters of the channel model and sends its estimate of the
current channel condition in an acknowledgment message.

5.2.2 Redundancy Allocation
In τi, ACE uses channel estimate of the previous trans-

mission interval δ̂i−1 along with buffer flags in ACKi−1 to
allocate data and parity symbols for Mi. Specifically, ACE
uses δ̂i−1 as its estimate of the channel BER in current trans-
mission interval τi; so ε̂i = δ̂i−1.

According to the communication model each buffer flag
in the acknowledgment message (Fi−1[j] j = 1, · · · , m) in-
dicates the status of a particular room in the receiver. ACE
first allocates the amount of type-II parity symbols (yi) nec-
essary to transmit based on the buffer flags. If Fi−1[j] = 0,
no parity symbol is necessary. However, Fi−1[j] = 1 indi-
cates that room j contains a particular codeword Ck trans-
mitted in some τk, k < i which requires additional redun-
dancy symbols for recovery. According to optimal code
embedding rate obtained in Section 4, Ck with length nk

requires a at most T k
i = nk ε̂i

α
parity symbols for error re-

covery. However, for Ck, xk +
∑i−1

l=k+1 yk
l parity symbols

are already transmitted in the previous transmission inter-
vals τk, · · · , τi−1. Thus, type-II parity symbols necessary to
transmit in τi for Ck is yk

i = T k
i − xk +

∑i−1
l=k+1 yk

l .
ACE protocol requires that each message must have a

fixed length n. After allocating type-II parity symbols for
corrupted codewords, ACE has ni = n−∑

k yk
i symbols to
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Figure 6: Trace collection setup.

2Mbps 5.5Mbps 11Mbps

500kbps 0.008 0.007 0.0094
750kbps 0.0001 0.0102 0.0090
900kbps 0.005 0.006 0.0186
1024kbps 0.0100 0.0038 0.0231

Table 1: The average BER for different channel
traces.

transmit a new codeword Ci(ki, xi). The amount of parity

symbols necessary for encoding Ci is xi = ni ε̂i
α

, and therefore
the amount of new data in Ci is ki = ni − xi.

The transmitter constructs a message Mi according to the
message distribution specified by ACE. This distribution is
adaptively computed in every transmission interval based
on the channel and the receiver buffer conditions while it
guarantees to satisfy the stability and reliability conditions.
Therefore, the overall performance increases when the ACE
protocol is utilized. In the next section, we conduct exten-
sive performance evaluations of ACE through simulations
under varying operating requirements.

6. PERFORMANCE EVALUATION
In this section, we present extensive performance evalua-

tion of the ACE protocol using real channel traces collected
on an 802.11b WLAN. First, we describe the trace collection
methodology. Second, we compare the performance ACE
protocol as opposed to the conventional IEEE802.11 ARQ
protocol on realtime and non-realtime traffic. Third, we an-
alyze the impact of deploying ACE in the link-layer on the
traditional TCP throughput. Finally, we illustrate the qual-
ity of real-time video communication in terms of PSNR gain
under ACE and IEEE802.11 ARQ.

6.1 Channel Trace Collection
In our analysis, we use channel traces that are collected

over the wireless setting depicted in Fig. 6. It can be de-
scribed as follows: five wireless receivers were used to simul-
taneously collect error traces on an 802.11b WLAN. These
receivers are placed in different locations in a room. The
access point (AP) is located across the hallway from the
room. A wired sender is used to send multicast packets
with a predetermined payload on the WLAN; multicasting
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(a) BER: 0.001
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(b) BER: 0.005

0 200 400 600 800 1000 1200 1400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
x
p
ec

te
d

S
ta

b
il
it
y

Consumption Rate (Kbps)

 

 

IEEE802.11 ARQ ACE

(c) BER: 0.007
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(d) BER: 0.009
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(e) BER: 0.018
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(f) BER: 0.020

Figure 7: Expected stability of realtime traffic with respect to variation of consumption rate over different
channel traces. The vertical line in each figure represents the sender transmission rate.

disabled MAC layer retransmissions. Each trace comprised
of one million packets with a payload of 1,000 bytes each.
At the physical layer, the auto rate selection feature of the
AP was disabled and for each experiment the AP was forced
to transmit at a fixed data rate. Each trace collection exper-
iment was repeated for different physical layer (PHY) data
rates (i.e., 2Mbps, 5.5 Mbps and 11Mbps). For a specific
PHY data rate, we have collected traces using four transmis-
sion rates: 500kbps, 750kbps, 900kbps and 1024kbps respec-
tively. We collected 41 traces over different receivers. How-
ever for brevity, Table 1 shows the channel average BERs
associated to 12 of these traces.

We used Prism 2.5 Chipset WiFi adapter which allows
us to modify the receiver’s MAC layer device to pass cor-
rupted packets to higher layers. To capture packets at high
transmission rates, packet dissectors were implemented in-
side the device drivers. These packet dissectors ensured that
only packets pertinent to our wireless experiment are pro-
cessed, while all other packets are dropped. In addition to a
packet header and payload information, for each packet two
additional parameters (1) Signal strength (S), (2) Silence
Value (N) were logged at the receivers. These parameters
are used to calculate the SSR value (i.e., SSR = S − N)
observed with each packet. The SSR value is used by the
receiver for channel BER estimation.

6.2 Realtime Traffic
An important aspect of realtime traffic delivery is to pre-

vent instability (by delivering information in timely fashion)
while ensuring the required reliability. To determine the
impact of deploying ACE protocol on stability for realtime

traffic, we introduce the following parameters:

• Consumption rate: This parameter determines mini-
mum number of data symbols required per second to
ensure stability for realtime traffic. This rate is deter-
mined by the delay constraint imposed on the realtime
traffic. During a particular session, the rate of correct
information delivery must satisfy the consumption rate
to guarantee stability.

• Expected stability: This parameter measures the time
period during a particular session that the traffic deliv-
ery is stable (see definition of stability in section 4.2).

For lower consumption rate, it is more likely that the traf-
fic will be delivered to the upper layers on time and there-
fore avoid instability. However, as the consumption rate in-
creases the likelihood that the upper-layers do not receive
the packets in a timely fashion increases. Ultimately, if
the consumption rate exceeds the sender transmission rate,
then the traffic never reaches the destination on time and
therefore the system becomes constantly unstable. The ex-
pected stability declines significantly as the consumption rate
reaches the sender transmission rate.

To measure impact of the ACE protocol on expected sta-
bility, we use network simulator OMNET++ [26] to incor-
porate the ACE protocol in the current IEEE802.11 MAC
layer. Specifically, we utilize the INET Framework package
and modified the link layer (Ieee802.11Nic module) to add
the ACE protocol. We also incorporated A-LDPC [25] into
the software for embedded coding operations. The simula-
tion setup is as follow: we let a sender transmits a codeword.
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Figure 8: The average goodput of ACE and IEEE802.11 ARQ over various channel conditions. Note that
channel capacity in each figure represents the maximum amount of achievable goodput without errors.

We use our channel traces to distort the transmitted code-
word by flipping distorted bits. The receiver uses A-LDPC
to decode the received word and checks whether the decoded
word is a valid codeword. Upon decoding failure, a receiver
stores the received word in its buffer and requests for addi-
tional redundancy. We use the LDPC source code provided
in [25] for our experiment. Note that we use a soft deci-
sion decoding using an iterative belief propagation method
which requires a knowledge of channel BER. So, ACE uses
its estimate for channel BER for every transmission interval
described in Section 5.2.1 to decode each packet. For this
experiment, the maximum iteration is 100; the variable side
has degree three and the check side degree is approximately
regular. Upon successful decoding of a packet, the header
of the packet is extracted and the payload is sent to the
upper-layers. To simulate the delivery of realtime traffic,
the consumption rate is set at a range of 100 to 1300Kbps.
Fig. 7 illustrates the variation of expected stability over var-
ious channel traces. We observe that the IEEE802.11 ARQ
performs slightly better that ACE over channels with low
BERs (less than 0.002). This result is expected since for
channels with low BER the likelihood of corruption is very
low and a simplistic ARQ mechanism is sufficient for er-
ror recovery. Over channels with BER in a range of 0.002 to
0.007, both protocols produce similar performances, however
ACE outperforms IEEE802.11 ARQ for higher consumption
rates. When the channel BER exceeds 0.007, the ACE per-
formance is significantly better than IEEE802.11 ARQ per-
formance. For instance, ACE guarantees 100% expected
stability for consumption rates up to 800Kbps over channel
with BER 0.009 while the traffic delivery is 80% unstable
under IEEE802.11 ARQ at this rate. Further, over noisy
channels with BER more than 0.18, we observe a drastic
drop in expected stability under IEEE802.11 ARQ as the
consumption rate exceeds 300Kbps meanwhile ACE main-
tains stability for source rates as high as 700Kbps. In this
figure, the vertical line represent the sender transmission
rate. We observe that expected stability drops to zero (con-
stant instability) when the consumption rate exceeds the
sender transmission rate.

6.3 Non-Realtime Traffic
The main objective in non-realtime traffic delivery is to

maximize the bandwidth utilization of the wireless medium
“per channel use” while providing essential reliability. We
compare the performances of ACE and IEEE802.11 ARQ
under different channel conditions. The performance is in
terms of average goodput which measures the average num-
ber of new data symbols that are delivered correctly to the
destination per channel use. So, average goodput closer to
one is an indication that the protocol utilizes the channel
more efficiently.

Fig 8 illustrates the average goodput achieved by ACE
and IEEE802.11ARQ over variety of channel conditions. In
Fig. 8(a) we observe that IEEE802.11 ARQ and ACE per-
formances are almost identical when the BER is small (i.e.,
below 0.005). As the BER increases the decline in aver-
age goodput becomes more rapid for IEEE802.11 ARQ than
ACE. For example, over traces with BER ranging from 0.015
to 0.02, IEEE802.11 ARQ performance is around 50% while
ACE hovers around the 70% mark. We also observe that
average goodput under IEEE802.11 ARQ declines dramati-
cally as channel Packet Error Rate (PER) increases as seen
in Fig. 8(b). Overall, this result shows 10% to 30% improve-
ment in average goodput under ACE for non-realtime traffic
communication. Also, it is observed than ACE in general
operates closer to channel capacity than IEEE802.11 ARQ.

6.4 Throughput analysis of TCP
The Jacobson’s adaptive window flow control algorithm

is common for most TCP variations [6]: let W (tk) be TCP
sender congestion window width at time instant tk and Wth(tk)
be a slow-start threshold. TCP sender operates at slow start
phase if W (tk) < Wth(tk). In this phase, each ACK causes
W (tk) to be incremented by one. When W (tk) exceeds slow-
start threshold, the TCP sender enters congestion avoidance
phase where each ACK increments W (tk) by 1/W (tk). TCP
sender exits the congestion avoidance when the timeout oc-
curs. In this case, the congestion window is set to one and
Wth(t+k ) is set to dW (tk)/2e.

This simple algorithm is well established for congestion
control in wired network. However, due to lossy environ-
ment of wireless links, TCP congestion control suffers from
performance degradation since packet losses in wireless links
are interpreted as congestion by the TCP agent. Because
leading link-layer protocols focus primarily on reliability and
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(a) BER: 0.002
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(b) BER: 0.005
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(c) BER: 0.009
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(d) BER: 0.011
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(e) BER: 0.018
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(f) BER: 0.025

Figure 9: TCP throughput variations over different channel traces having IEEE802.11 ARQ and ACE in the
link-layer. The horizontal line in each figure represents the transmission rate of the corresponding channel
trace.

ignore the stability aspect of wireless communication, nu-
merous studies have led to vast variety of TCP congestion
control algorithms [7] in attempt to fix TCP over-wireless
performance degradation phenomenon. We argue that since
ACE is designed to guarantee stability as well as reliabil-
ity at the link-layer, the traditional TCP congestion control
algorithm should perform relatively well over wireless link
despite the lossy environment.

Using INET Framework TCP model in OMNET++, we
analyzed the TCP throughput variations over different chan-
nel traces when ACE and IEEE802.11 ARQ are deployed in
the link-layer. We consider a heterogeneous network model
consisting of wired and wireless sections depicted in Fig. 10.
A TCP sender located within a wired section of the net-
work is connected to a TCP receiver placed in a wireless
section. An access point (AP) connected to the wired sec-
tion, receives transmitted packets and sends them over a
contention-free wireless channel. The wired network com-
prises multiple links connected through different routers. A
particular packet traversing the wired section is stored in the
router bottleneck buffer as well as AP buffer before it enters
the wireless section. In our network model, a packet loss
occurs under the following scenarios: (1) Congestion-based
loss: A transmitted packet is dropped at the wired section
due to buffer overflow of the bottleneck router. (2) AP-
based loss: A transmitted packet which successfully crossed
the wired section never enters the wireless channel and is
rather dropped at AP. This kind of loss is due to the insta-

`

TCP Sender

Wired Network

Router

Access Point

TCP Receiver

Wireless Channel

Figure 10: Heterogenous network model.

bility of the link-layer which causes AP buffer overflow. (3)
distortion-based loss: A broadcasted packet over the wireless
channel gets corrupted due to wireless noise. This packet is
not retrieved due to link-layer unreliability and is reported
as lost to TCP agent.

Fig. 9 illustrates TCP throughput under different wire-
less channel conditions. We observe that over channels with
low BER where the probability of packet loss is low, TCP
achieves similar performance under ACE and IEEE802.11
ARQ. Under these channels, mostly Congestion-based losses
are observed in the wired section. Meanwhile, significant
throughput difference is easily identifiable as the channel
BER increases. For instance, TCP gains throughput of
10% to 50% (e.g., ACE achieves 500-800Kpbs throughput
while IEEE802.11 ARQ in under 200Kbps) over channels
with BER more 0.009 under ACE. This significant difference
stems from the fact that ACE targets stability and reliabil-
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(b) BER: 0.009
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(c) BER: 0.020

Figure 11: Average Y − PSNR with respect to variation of video rate over different channel traces. The
vertical line in each figure represents the transmission rate of corresponding channel trace.

ity of wireless communication. This lead to fewer AP-based
and distortion-based losses in wireless section under ACE in
comparison with IEEE802.11 ARQ.

6.5 Real-Time Video Simulation
To further analyze the impact of the ACE protocol and

compare it with the conventional IEEE802.11 ARQ proto-
col over the performance of particular application, we sim-
ulate real-time video communication. The simulation setup
is as follows: a particular video stream is encoded using
the H.264/JVT standard software [27]. The encoded video
streams (slices) are buffered at the sender to be transmit-
ted over the wireless channel. The ACE protocol is simu-
lated with the network simulator OMNET++ software [26].
ACE encodes each video slice using A-LDPC codes [25] and
transmits the encoded packet over a wireless channel. Each
transmitted packet is distorted based on the channel traces.
Specifically, an XOR operation is performed between the
trace packet and ACE packet. The corrupted packet is de-
coded using A-LDPC. The A-LDPC uses BER estimate de-
termined by a channel model which was trained with previ-
ous received packets. If the packet is not decoded success-
fully, it is stored in receiver’s buffer and additional redun-
dancy is requested according to ACE.

To prevent frame-freezing or synchronization mismatches
during real-time video communication (for e.g., video confer-
encing), the video packets need to arrive in a timely fashion.
Those packets which miss their deadlines are unusable by the
decoder, leading to degradation in video quality. To ensure
smooth video playback, we require packets arrive at or above
particular rate which is specified by the video bitrate. The
simulation is terminated when all the video slices are trans-
mitted by the sender. We measure the decoded video qual-
ity (average PSNR) for different video bitrates. We repeat
the simulation to compute the performance of IEEE802.11
ARQ. We use IEEE802.11 [1] ARQ implemented in OM-
NET++ INET Framework. In these simulations, the maxi-
mum retransmission limit is set to four. To achieve a fair
comparison, ACE receiver’s buffer size is also set to four.
For all simulations, the packet size is 1000 bytes and each
video slice is of length 125 bytes.

Figure 11 illustrates the decode video quality of Stefan-
CIF (30fps) sequence in terms of average PSNR over differ-
ent channel traces. Notice that when video encoder/decoder

uses low video bitrate the video quality decays. Therefore, in
these plots, we observe a low PSNR value for both protocols
for video rates below 100 Kbps. As the video rate increase,
each video frame is encoded using more data samples. We
observe that for good channel conditions (BER less than
0.002), IEEE802.11 performs slightly better than ACE. The
reason is that the level of noise over these channels is very
low and since IEEE802.11 transfers video data only, more
data is available for the video decoder resulting in slightly
better video quality than that of under ACE. However, as
the BER increases, PSNR values under IEEE802.11 ARQ
tend to decline rapidly. Specifically, we observe ACE proto-
col ensures the video quality of 30dB for video rate 800Kbps
over channel with BER 0.02 while IEEE802.11 ARQ is less
than 20dB. Overall, we observe that utilizing ACE protocol
over channels with BER more than 0.009 produce 5-10dB
performance gain in video quality over wide range of video
rates.

7. CONCLUSION
In this paper, we studied the problem of reliable and sta-

ble operations at the wireless link-layer. In particular, an
Automatic Code Embedding (ACE) wireless link-layer pro-
tocol has been proposed that (a) employs a theoretically-
sound framework and a corresponding strategy for embed-
ding channel codes, using robust and well-defined code rates,
in each packet; and (b) selects the code rates in an optimal
and constrained manner to ensure reliability, stability, and
maximum throughput. Through distinct analytical frame-
work, we demonstrated that there is a unique solution for
the code embedding rate at which stability and reliability
at the link-layer is achievable. Our extensive analysis of
ACE protocol over real channel traces collected on 802.11b
WLANs for realtime and non-realtime traffic, TCP through-
put and realtime video communication scenarios show that
ACE significantly outperforms the conventional IEEE802.11
ARQ over varying wireless channels conditions.
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9. APPENDIX
Proof (Proof of Lemma 1). The optimization problem in (5)

is a convex problem with the Lagrangian in a from of

Li(ki, λ1, λ2) = ki + λ1 (kiεi + xi(εi − α))

+ λ2 (ki + xi − ni) . λ1, λ2 > 0
(14)

Since the primal problem is convex, the Karush-Kuhn-
Tucker (KKT) conditions are sufficient for the points to be
primal and dual optimal (zero duality gap). KKT conditions
suggest that based on complimentary slackness property for
strong duality, we have

λ1 (k∗i εi + x∗i (εi − α)) = 0, (15)

λ2 (ni − k∗i + x∗i ) = 0, (16)

where k∗i and x∗i are the optimal transmitted amount of data
and parity symbols. On the other hand, with the channel is
in state Si, and maximum network utilization of ni symbols,
the amount of transmitted data symbols is bounded above
by ki = |Ci|Ri ≤ k∗i , where Ri is a channel coding rate. So,
by substituting k∗i = niR

∗
i , x∗i = ni(1 − R∗i ) and solve the

above equations for R∗i , we have Ri ≤ R∗i = 1− εi
α

.

Proof (Proof of Lemma 2). To guarantee the stability
condition, the buffer has to be always non-empty and at
the same time does not overflow. To ensure that the buffer
is always non-empty, the buffer length limiting distributions
should not carry any density at the value zero (i.e,F (0, j) =
0, j = 1, 2). By substituting b = 0 in equations (10)(11) we

have F (0, 1) = 0 F (0, 2) = ωi − βi(ki−c)
c

. The steady state
probability of the buffer at length zero is always zero when
the decoding is successful at the link layer (e.g., Z(t) = 1).
To ensure that the buffer is non-empty when the link layer
fails to decode new data (Z(t) = 2), the following equality
has to be satisfied

ωi =
ki − c

ki
. (17)

To ensure that the buffer does not overflow, the stability con-
dition in equation (12) should hold. By using equations (9)
and (12), we obtain FEi(αxi) = 1 − c

ki
≤ 1

2
. Therefore,

xi ≤
F−1

Ei
(0.5)

α
=

λEi
α

= |Ci|εi
α

. Correspondingly, by substi-
tuting xi = |Ci|(1−Ri), the lower bound of code embedding
rate is Ri ≥ 1− εi

α
.


