
Comparative Study of Wireless Network Simulators

Johannes Lessmann, Peter Janacik, Lazar Lachev, Dalimir Orfanus
University of Paderborn

Faculty of Computer Science and Mathematics
Fuerstenallee 11, 33102 Paderborn, Germany
{lessmann, pjanacik, lachev, orfanus}@upb.de

Abstract

In order to evaluate the behavior and performance of
protocols for wireless networks, simulations are a good
compromise between cost and complexity, on the one hand,
and accuracy of the results, on the other hand. Since there
are many simulators for wireless networks, it is often dif-
ficult to decide which simulator to choose. To help shed
light on this issue, we present a case study in which four
popular wireless network simulators were used to evalu-
ate a well-known topology control protocol (SPAN). Within
the case study, we describe outstanding and desirable but
missing features of the simulators, outlining their strengths
and weaknesses. Further, we compare the amount of ef-
fort needed for installation, familiarization, implementation
(needed lines of code and lines for configuration) and visu-
alization. As opposed to other simulator comparisons, we
do not focus on the correlation of the individual simula-
tion results, but try to compare the simulators from feature
and usability point of view. This paper can help other re-
searchers to quickly identify which simulator is most suit-
able for their needs.

1. Introduction

Wireless networks are composed of nodes which com-
municate using wireless links. Typically, they work on
achieving a common goal like environmental monitoring,
communication, and so on. It is in the nature of such net-
works that communication between the nodes is unstable,
since the quality of the wireless links is fluctuating heav-
ily. Further, as wireless nodes are often small and thus very
resource-constrained, it is also generally not feasible to im-
plement algorithms with a large processing power or mem-
ory footprint. All this makes designing protocols for wire-
less networks a challenging task. Therefore, it is inevitable
to thoroughly test protocols to be able to assess their perfor-
mance in the anticipated application scenario.

In order to do so, there are two possible options. First,
the developed concepts can be implemented and deployed
on actual hardware. This is called testbed implementation.
While testbeds might yield the most accurate results, there
are several drawbacks, such as: the need to obtain hardware
and the severely limited monitoring and debugging possibil-
ities, as well as, high effort needed to create an artificial en-
vironment resembling the real application scenario. Hence,
testbed implementations will generally be an option only
for smaller numbers of nodes and during the later stages of
the implementation phase.

A second option to test network protocols is simulation.
Here, the physical world is modeled in a wireless network
simulation software. This avoids the issues with testbed im-
plementations outlined above. On the other hand, models
can capture reality only to a limited extent, which implies
that simulation results will generally not be as accurate as
real implementations.

For network protocol designers, it is often difficult to de-
cide which simulator to choose for a particular task. There-
fore, we conducted a case study in which four network sim-
ulators (J-Sim, OMNeT++, ns-2, and ShoX) were selected
and then used to implement a well-known topology control
algorithm called SPAN [3]. Our focus in this case study
was not to compare the correlation of the individual simu-
lation results, as done in other comparison studies [15, 2],
but rather to evaluate the candidates regarding their feature
set and usability. We describe outstanding and desirable but
missing features of the simulators, outlining their strengths
and weaknesses. Further, we compare the amount of effort
needed for installation, familiarization, implementation, de-
bugging and visualization. The findings in our study will al-
low a quick yet deep enough understanding which can help
other researchers to identify the wireless network simulator
that is most suitable for their needs.

The remainder of this paper is organized as follows. In
Section 2, we introduce previous work related to our study
(i.e. other simulator comparisons). In Section 3, we briefly
review SPAN in order to be later able to refer to certain as-

Seventh International Conference on Networking

978-0-7695-3106-9/08 $25.00 © 2008 IEEE
DOI 10.1109/ICN.2008.97

517

Seventh International Conference on Networking

978-0-7695-3106-9/08 $25.00 © 2008 IEEE
DOI 10.1109/ICN.2008.97

517

Authorized licensed use limited to: National Chiao Tung University. Downloaded on October 30, 2008 at 23:22 from IEEE Xplore. Restrictions apply.

pects of SPAN in the case study. Section 4 is the main sec-
tion of this paper where the four simulators and our findings
are discussed in detail. The paper closes with a summary in
Section 5.

2 Related Work

There are several surveys, comparisons, and also some
case studies about wireless network simulators. They all
differ with respect to the selection of evaluated simulators,
the intention of the work (description or comparison), the
focus of the potential comparison (credibility of results, fea-
tures, performance, etc.) and the level of detail. Table 1
provides a short overview.

Table 1. Overview of some previous network
simulator comparisons

Paper Type Simulators Focus

[20] comparison Opnet,ns-2 setup,result accuracy

[19] case study ns-2, Opnet, GloMoSim architecture, results

[17] comparison ns-2, cnet, JNS, Opnet, AdventNet,
NCTUns

features (limited)

[16] case study J-Sim, ns-2, SSFNet scalability, speed, memory require-
ments

[8] comparison Opnet, ns-2, QualNet, OMNeT++, J-
Sim, SSFNet

suitability for critical infrastructures

[14] comparison ns-2, Avrora, Opnet, GloMoSim architecture, functionality, extensibil-
ity, resource requirements

[12] comparison ns-2, TOSSIM architecture, components, models, vi-
sualization

[11] description GloMoSim, ns-2, DIANEmu, GT-
NetS, J-Sim, Jane, NAB, PDNS, OM-
NeT++, Opnet, QualNet, SWANS

overview

[10] comparison SSF, SWANS, J-Sim, NCTUns, ns-2,
OMNeT++, Ptolemy, ATEMU, Em-
Star, SNAP, TOSSIM

models, type of visualization

[9] description OMNeT++, REAL, ns-2, C++Sim,
cnet, SSFNet, CLASS, SMURPH

overview

[4] description ns-2, GloMoSim, Opnet, SensorSim,
J-Sim, Sense, OMNeT++, Sidh, Sens,
TOSSIM, ATEMU, Avrora, EmStar

overview

[1] comparison Opnet, ns-2, OMNeT++, SSFNet,
QualNet, J-Sim, Totem

availability/credibility of models, us-
ability

[15] case study Opnet, ns-2, testbed accuracy of results

[2] case study Opnet, ns-2, GloMoSim accuracy of results

Actually, all of the works listed in Table 1 consider dif-
ferent simulators or differ in their scope from this paper.
The ones that are closest to our work are [8, 11, 10, 4, 1]
as they include at least the three simulators J-Sim, OM-
NeT++ and ns-2, which we also consider. However, [8]
examines their suitability for simulating the failure of criti-
cal infrastructures like electricity or telecommunication net-
works. This is very unrelated to what we present here.
[11] and [4], although their list of simulators is huge, do
not give a comparative study. Rather, they provide more
or less unstructured descriptions of each of the simulators
independently. In this paper, we aim at comparing simula-
tors according to certain metrics. In [10], the authors give
an overview about different issues in wireless sensor net-
works on a general basis. Only at the end of their work they

present a table comparing the considered simulators accord-
ing to their language, the available modules, and whether
they have GUI support or not. Aside from the table, no
detailed comparisons between the individual simulators are
given.

The most detailed comparison is presented in [1]. The
authors describe a variety of simulators including J-Sim,
OMNeT++ and ns-2 according to the criteria listed in Fig-
ure 3. However, there are a number of important differ-
ences: (1) They consider all simulators from an industrial
research point of view, hence, they focus on issues such
as support for certain models (which are required for their
project in mind), quality of human support, etc., which are
rather less relevant for academic researchers. (2) They do
not consider certain aspects which are important here, like
installation issues, and discuss visualization and statistics
only very briefly. (3) Their case study misses practical sim-
ulations and experiences: there are no practical experiences
regarding installation, familiarization or implementation is-
sues. This, however, is the focus of our case study.

3 SPAN

SPAN [3] is a topology control algorithm aiming at sav-
ing power without reducing the network capacity or loosing
connectivity. It does so by electing and constantly adjust-
ing a set of active nodes called coordinators. The coordina-
tors form a forwarding backbone of the underlying network
while the non-coordinator nodes can switch their radios to
sleep mode. From time to time the non-coordinator nodes
check if they should become coordinators. Similarly, the
coordinator nodes regularly check whether there are enough
other coordinators in their neighborhood in which case they
can go to sleep mode.

In [3], SPAN is implemented on top of the 802.11 MAC
layer’s power-saving mode. For the routing layer, the au-
thors of SPAN chose a simple greedy geographic forward-
ing approach, similar to GPSR [13], but without perime-
ter routing around voids. Principally, each routing protocol
would do as well. As SPAN has to interact with both routing
and MAC layer, in [3] it is implemented in the logical link
control layer of the ISO OSI stack. For our implementations
in the case study, we will follow their example.

4 Case Study

For our case study, we selected four different network
simulators to implement the wireless topology control pro-
tocol SPAN, described in the previous section. We chose
to select three well-established simulators: J-Sim [6], OM-
NeT++ [21] and ns-2 [5]. Further we took a look at a rela-
tively new project, called ShoX [7]. The main reason why

518518

Authorized licensed use limited to: National Chiao Tung University. Downloaded on October 30, 2008 at 23:22 from IEEE Xplore. Restrictions apply.

we chose the former three simulators is because of their
popularity in the research community. While other simu-
lators like Opnet [18] are also popular, for our case study
we only considered simulators which are freely available.

Opposed to J-Sim, OMNeT++ and ns-2, ShoX is compa-
rably new. However, it is one of the few simulators which
offer a comprehensive graphical user interface for configu-
ration, visualization and statistics. Additionally, it was de-
veloped from the beginning targeted toward wireless net-
works, whereas most other popular simulators (including
J-Sim, OMNeT++, ns-2 and Opnet) initially concentrated
on wired networks and were later extended to support the
wireless domain. Hence, for ShoX, there is no special wire-
less package as with the others, all functionality pertaining
to wireless is an integral part of the software. We were es-
pecially interested to see in how far the focus on wireless
instead of on wired networks has an impact on usability and
the learning curve.

The case study was performed by four people (the au-
thors). To ensure fairness, only one of them did the actual
installation and implementation task for all four simulators.
This was to rule out any influences caused by potentially
different programming proficiency or knowledge of com-
puter network protocols. For all simulators, the implemen-
tation of SPAN was conducted under Linux (Fedora 7) us-
ing the open-source platform Eclipse 3.3. The responsible
student was not familiar with either of the four simulators
before the case study. He had sufficient knowledge of pop-
ular programming languages like Java and C++. Before the
start of the case study, he familiarized himself with SPAN,
so that understanding problems with SPAN itself were not
an issue during the implementation phase. During the case
study, he carefully recorded each necessary step, questions
that arose, efforts it took to find answers to them, features
of the simulator that were helpful or confusing, and the time
he needed for the individual parts. His progress and experi-
ences were discussed weekly among the authors.

4.1 J-Sim

J-Sim (formerly JavaSim) is a network simulator writ-
ten in Java. It is built according to the component-based
software paradigm. In J-Sim terminology, this is called au-
tonomous component architecture (ACA). Everything in J-
Sim is a component: a node, a link, a protocol. Each compo-
nent can be atomic or composed of other components. Con-
nection between components is done through ports. Actu-
ally, there are three possible ways to connect ports: one-to-
one, one-to-many, and many-to-many. On a more abstract
level, J-Sim distinguishes two layers. The lower layer Core
Service Layer (CSL) comprises every OSI layer from net-
work to physical, the higher layer comprises the remaining
OSI layers.

For wireless network simulations, J-Sim offers the Wire-
less Extension. Here, several components and their relation-
ships are defined and extend the general CSL. Figure 1 gives
an overview of the most important components. The only
available MAC layer component in the Wireless Extension
is 802.11 MAC.

Figure 1. Overview of components in J-Sim’s
wireless extension (source [6]).

When a node wants to send a message, it goes through
802.11 MAC which decides when the packet is sent to the
WirelessPhy. The latter determines the nodes current po-
sition from the MobilityModel and adds that position, the
current transmission power and the antenna gain to the
MAC frame. The receiving node’s WirelessPhy consults
the RadioPropagationModel to decide if the packet should
be passed to the MAC. The EnergyModel is a collection of
five energy consumption values (radio states send, receive,
idle and off). When the energy is depleted, no packets can
be sent and received anymore.

4.1.1 Installation

Once J-Sim is downloaded, it can be easily imported into
Eclipse using Eclipse’s ”Java Project from Existing Ant
Buildfile”. However, some additional java archives for
XML handling (jaxp, xalan and crimson) must be installed
before J-Sim can be executed. The whole installation and
configuration process took approximately 1,5 days, mainly
because of the JVM problems.

4.1.2 Implementation and Documentation

J-Sim offers good introductory material with overviews and
examples for small scenarios. However, it lacks a compre-
hensive manual. Several more specific questions remain un-
documented, for example how to send broadcast. Also, we
did not find any hint as to how a new packet is to be defined.

519519

Authorized licensed use limited to: National Chiao Tung University. Downloaded on October 30, 2008 at 23:22 from IEEE Xplore. Restrictions apply.

The problem was that the MAC layer, which had to commu-
nicate with SPAN (see Section 3), assumed out SpanPacket
to have certain fields and parameters which were nowhere
clearly expressed, but led to erroneous behavior nonethe-
less.

J-Sim uses Tcl for configuration of simulation scenarios.
This requires a certain learning overhead. The binding be-
tween Java and Tcl (to be able to access Java objects and
methods from Tcl) is pretty intuitive. There is also a graph-
ical editor for the Tcl configuration files called gEditor.

The familiarization with the configuration part took us
around two days. Another three days were spent to solve
the problems mentioned above. The implementation itself,
simulator-specific problems aside, took ten days. J-Sim of-
fers both AODV and GPSR, therefore testing of SPAN was
quite simple.

4.1.3 Visualization and Statistics

J-Sim has no tool for network visualization itself. However,
it allows generating trace files which conform to ns-2’s nam
(network animator) format. To plot simulation statistics, a
special plot component is provided.

4.2 OMNeT++

OMNeT++ is a simulation platform written in C++. Like
J-Sim, it has a component-based, modular and extensible ar-
chitecture. Thus, its structure shares many properties with
J-Sim’s. The basic entity in OMNeT++ is a module. Mod-
ules can be composed of submodules or they can be atomic.
Only atomic modules capture the actual behavior. Modules
communicate with each other via messages through gates.
Gates are linked to each other using connections. A connec-
tion can be associated with a propagation delay, error rate
and data rate. Unlike J-Sim’s ports, gates in OMNeT++
support only one-to-one communication.

Regarding simulation of wireless ad hoc networks, OM-
NeT++ relies on external extensions. The two most promi-
nent ones are the INET Framework (IF) and the Mobility
Framework (MF). While the latter is an extension explicitly
designed for mobile ad hoc networks we chose it for our
case study.

Figure 2 depicts the structure of OMNeT++/IF. Aside
from the most important OSI layers, OMNeT++/IF provides
two modules called blackboard and mobility. A blackboard
is used to share cross-layer data. The mobility part is re-
sponsible for providing and updating a node’s current posi-
tion and establishing communication channels. MAC and
PHY layers are composed into a single NIC (network inter-
face card) module. The physical layer is split into a module
which determines SNR characteristics and another one re-
sponsible for deciding whether a packet can be passed up-
wards.

Application
BasicApplLayer

Network
BasicLayer

Blackboard
Blackboard

Mobility

ChannelControl

BasicMobility

NIC

MAC

Host

SNR Evaluator

Decider

Figure 2. Overview of the basic modules in
OMNeT++/(INET Framework).

4.2.1 Installation

OMNeT++ (3.3) is installed using configure and make
scripts. Before installing OMNeT++, the two additional
packages Tcl/Tk and BLT (set of new commands and wid-
gets) must be installed. Even though BLT was already in-
stalled on our system, it was somehow not found by the
installation script. Wireless extensions are installed using
command line make commands.

The time it took for installing OMNeT++ and import-
ing to Eclipse was approximately three days. Some of the
delay was caused by a “problem” with BLT. Another issue
was to figure out how to integrate the IF with OMNeT++
(it slightly changes the build process but that is not docu-
mented well).

4.2.2 Implementation and Documentation

OMNeT++ has a well-written fairly large user manual while
IF has only an API documentation. OMNeT++ is very com-
plex, thus careful consultation of the available documents is
needed. To understand and run small examples took us ap-
proximately three days. Scenario configuration is done in
so-called network description files.

One major drawback of OMNeT++ is that it does not
have an energy model. Thus, while OMNeT++ certainly is
a feature-rich and powerful simulation platform, it was not
possible to implement and test SPAN completely. Another
issue was finding a suitable routing protocol for testing.
While there is an AODV implementation listed on the web-
site, the referenced page refused to load. Whereas the MF

520520

Authorized licensed use limited to: National Chiao Tung University. Downloaded on October 30, 2008 at 23:22 from IEEE Xplore. Restrictions apply.

includes AODV, the IF does not and GPSR is not available
with OMNeT++. Hence, we decided to use DYMO which
integrates well with IF. These issues, especially the search
for a suitable MAC and AODV implementation added an-
other two days to our simulator-specific overhead time. Im-
plementation itself (to the extent possible) lasted nine days.

4.2.3 Visualization and Statistics

OMNeT++ is the only simulator with online visualization.
Hence, users can pause the simulation and inspect or even
directly change values in the models. It is also possible to
change a node’s appearance (color, size, shape, etc.) to re-
flect an inner state which the user wants to visualize. Statis-
tics can be written to a trace file and displayed with external
but commonly available tools like prove.

4.3 ns-2

The network simulator ns-2 is based on two languages:
an object-oriented simulator, written in C++, and an OTcl
(an object-oriented extension of Tcl) interpreter to execute
user’s command scripts. There are two class hierarchies:
a compiled C++ one (which captures the protocol behavior)
and an interpreted OTcl one for binding to the OTcl scenario
configuration script.

Ns-2 offers a reduced OSI layer model in which the pre-
sentation and session layers are left out. For wireless net-
work simulations, ns-2 offers a variety of features. It has
an energy model, and both, traffic and movement patterns,
can be easily generated. However, as opposed to the other
three candidates, traffic and mobility are typically produced
before the actual simulation start and are not so much an
integral part of ns-2’s architecture.

4.3.1 Installation

There are basically two ways to obtain ns-2: by download-
ing the all-in-one package or only selected components and
libraries. Unfortunately, each time the user code is mod-
ified, ns-2 itself will be recompiled. Our solution to this
problem was to compile our code into a separate shared li-
brary and link that to the ns-2 kernel.

4.3.2 Implementation and Documentation

From all the four simulators we tested, ns-2 clearly has the
steepest learning curve, even though its documentation is
comprehensive. For ns-2, there is a manual which is reg-
ularly updated. Further, there is an API for the C++ and
OTcl classes (although the latter are not explained very thor-
oughly). Still, working with ns-2 requires learning many
concepts. This starts with the object-oriented version of Tcl
called OTcl which is used for scenario configuration. It also

includes the structure of the configuration environment it-
self. This is unfortunately not as intuitive as with other sim-
ulators. We needed approximately eight days to become
familiar enough with the complete environment.

In ns-2, the not very easy-to-use OTcl handles the task of
describing the simulation scenario. To construct a binding
between OTcl and the actual C++ classes, each C++ class
must be accompanied by a corresponding OTcl class, caus-
ing a considerable overhead. For the implementation itself,
we needed about 3.5 days. The short length of this times-
pan is due to the fact that we simply had to adapt our C++
classes from the ones we already wrote for OMNeT++. One
of the major advantages of ns-2 is the huge pool of avail-
able features, offering a large number of external protocols
already implemented.

4.3.3 Visualization and Statistics

In order to visualize network behavior in ns-2, one must
first of all call two scripts: one to generate a traffic trace
file and another one to create a movement trace file. These
two trace files can then be referenced as an input in the Tcl
configuration for the actual simulation process (i.e. the net-
work is simulated with the specified traffic and movement
patterns). The simulation in turn generates a log file which
can then be visualized using ns-2’s network animator (nam).
nam is similar to OMNeT++ in the way that it can visual-
ize not only nodes, links, movements, packets, etc. but also
changing node states by adapting the graphical appearance
of the node. However, the possibilities in nam regarding a
dynamic change of appearance are rather limited.

For plotting statistics, a function in the OTcl configura-
tion file is used, which is called initially at simulation start
time (or any other time), and which periodically calls itself.
In each execution of this function, some statistical values
may be written to a file. After the simulation end, an appro-
priate external tool (we used xgraph) is used for plotting the
data.

4.4 ShoX

ShoX is an object-oriented network simulator written in
Java, which was targeted at wireless networks from the be-
ginning. By default, its architecture follows the OSI seven-
layer model, although only five of them are present by de-
fault. However, all layers are derived from an abstract
super-class and are defined by LayerType objects. Hence,
it is straightforward to include additional layers at any po-
sition in the stack for special purpose simulations. ShoX
does not use components as e.g. J-Sim or OMNeT++.
Rather, protocols, energy management, propagation or mo-
bility models, etc. are all derived from abstract super-classes
which define the minimum interface and functionality. The

521521

Authorized licensed use limited to: National Chiao Tung University. Downloaded on October 30, 2008 at 23:22 from IEEE Xplore. Restrictions apply.

different entities in ShoX communicate through events. De-
vices are special kinds of components of a node like the
network interface card, the power manager, the CPU or at-
tached sensors.

In addition to the abstract OSI layer classes, there is a
special “layer” called AirModule. Here, all channel related
issues are handled (e.g. signal interference). PhysicalModel
and InterferenceHandler of ShoX resemble the SNR Evalu-
ator and Decider in OMNeT++. As Opposed to OMNeT++,
forward error correction is handled by the actual layer im-
plementations, which appears to more resemble reality.

Like J-Sim and ns-2, ShoX has an energy manager com-
ponent. However, in ShoX, the energy manager is far more
advanced making use of the concept of a device: differ-
ent devices can be registered as power suppliers (e.g. solar
panel) or power consumers (e.g. CPU, sensors).

4.4.1 Installation

ShoX can be downloaded as a source package. However,
we followed the recommendation on the website to instead
directly use the more recent CVS version, since the release
version (0.2) is rather outdated. Using Eclipse’s “Projects
from CVS”, it is principally straightforward to import the
CVS code into the tool. Unfortunately, no documentation is
provided on the website on how to configure CVS, hence,
the corresponding Sourceforge documentation must be con-
sulted. After the setup in Eclipse, ShoX is started through
Eclipse’s run dialog. Despite the fact that a sufficiently
detailed documentation is missing, trying to figure out the
right configuration took us approximately half a day.

4.4.2 Implementation and Documentation

Although missing a user manual, ShoX provides an API
documentation which contains explanations for most of the
classes and their members. Getting familiar with ShoX took
us about two days.

Scenario generation in ShoX is done through its GUI.
Unlike in gEditor or gNED, there are no modules and links
to be drawn. The configuration UI in ShoX is a wizard lead-
ing through the necessary steps for all needed elements. It
appears that ShoX focuses on ease of use, which in some
cases (e.g. configuration) reduces the amount of available
possibilities. However, for our chosen protocol, SPAN, the
approach is completely sufficient. We needed three days to
implement SPAN. Again, we could adopt a lot of code from
our J-Sim classes. Unfortunately, while the energy man-
agement of ShoX is the most advanced among all four sim-
ulators, its 802.11 MAC does not support the power-save
mode.

Aspect J-Sim OMNeT++ ns-2 ShoX
energy model ✔ ─ ✔ ✔
802.11 power-save ✔ ─ ✔ ─
SPAN completed ✔ ─ ✔ ─
AODV ✔ ✔ ✔ ✔
DSR ─ ─ ✔ ─
GPSR ✔ ─ ✔ ✔

visualization

statistics

strengths

weaknesses

nam trace file,
no own tool

online with model
inspection, to go
back, simulation
must be repeated

trace file, can
be viewed
with nam

trace file, internal
viewer

online plot,
exporting to file
must be done
by user

trace file, can be
displayed with
plove

log file, can
be displayed
with xgraph

statistics file,
internal viewer
or export to
gnuplot

+ flexibility
+ Java based

+ maturity
+ model inspection
+ GUI support

+ model base
+ user base

+ GUI support
+ visualization
+ architecture

- GUI support
- visualization
 capabilities

- energy model
- MAC competitors

- OTcl
- architecture

- documentation
- lack of models

Figure 3. Simulator feature matrix

Installation Learning
Overhead

Imple-
mentation

Installation
+ Overhead

0

1

2

3

4

5

6

7

8

9

10

11

Time Consumption

J-Sim

OMNeT++

ns-2

ShoX

Figure 4. Comparison of consumed time

4.4.3 Visualization and Statistics

Regarding visualization and statistics, ShoX is the most
powerful and integrated simulation platform among the four
candidates. It includes both, a network and a statistics visu-
alizer, in the same GUI (from which also the configuration
is done and the simulation started). Like OMNeT++ and
nam, ShoX can visualize node movements, links and pack-
ets. Regarding node state representation, the mapping be-
tween the node state (which is logged in the simulation log
file) and the desired graphical representation of that state in
terms of node color, size, shape, labels, border color and
border width can be changed retroactively and even while
the visualization is running. In addition to the node state vi-
sualization, ShoX supports visualizing link states by chang-
ing the link appearance in the same fashion. ShoX also of-
fers a statistics chart generation with three different chart
types.

522522

Authorized licensed use limited to: National Chiao Tung University. Downloaded on October 30, 2008 at 23:22 from IEEE Xplore. Restrictions apply.

Figure 5. Comparison of lines of code needed

5 Conclusion

In this paper, we have presented the results of a case
study in which we compared the wireless network simu-
lators J-Sim, OMNeT++, ns-2 and ShoX by implementing
a simple topology control algorithm called SPAN. We eval-
uated strengths and weaknesses of each simulator with re-
spect to installation, implementation issues and visualiza-
tion capabilities. The results of our studies are summarized
in Figures 3, 4 and 5. We have seen that none of the four
simulators is a clear winner in all areas. Each of them also
showed areas of relative weakness compared to the other
candidates. OMNeT++ and ns-2 are the most mature ones.
While OMNeT++ shined at GUI support, ns-2 profits from
the large number of available models. Obviously, both sup-
port productivity. On the other hand, J-Sim attracts because
of its flexible component-based architecture and ShoX is
outstanding when it comes to visualization. Concerning the
amount of effort it takes to become familiar with a simula-
tor, we observed a clear order from ns-2, over OMNeT++ to
J-Sim and ShoX. While we think this is on the one hand due
to architectural decisions, part of it stems from the feature
richness of ns-2 and OMNeT++, especially regarding their
scenario configuration capabilities.

References

[1] L. Begg, W. Liu, K. Pawlikowski, S. Perera, and H. Sirisena.
Survey of simulators of next generation networks for study-
ing service availability and resilience. Technical Report TR-
COSC 05/06, Department of Computer Science & Software
Engineering, University of Canterbury, Christchurch, New
Zealand, February 2006.

[2] D. Cavin, Y. Sasson, and A. Schiper. On the accuracy of
manet simulators. In Proceedings of Principles of Mobile
Computing (POMC) 2002, Toulouse, France, October 2002.

[3] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris.
Span: An energy-efficient coordination algorithm for topol-
ogy maintenance in ad hoc wireless networks. Wireless Net-
works, 8(5):481–494, September 2002.

[4] D. Curren. A survey of simulation in sensor networks.
Student project, www.cs.binghamton.edu/˜kang/
teaching/cs580s/david.pdf, 2007.

[5] DARPA/NSF. The network simulator - ns-2. http://
www.isi.edu/nsnam/ns/.

[6] T. J.-S. developers. J-sim. http://www.j-sim.org.
[7] T. S. developers. Shox - a scalable ad hoc network simulator.

http://shox.sourceforge.net.
[8] S. Duflos, G. L. Grand, A. A. Diallo, C. Chaudet, A. Hecker,

C. Balducelli, F. Flentge, C. Schwaegerl, and O. Seifert. De-
liverable d 1.3.2: List of available and suitable simulation
components. Technical report, Ecole Nationale Supieure des
Tommunications (ENST), September 2006.

[9] V. Efthimia. Free tools for network simulation. Master’s
thesis, University of Macedonia, Thessaloniki, 2006.

[10] E. Egea-Lopez, J. Vales-Alonso, A. Martinez-Sala,
P. Pavon-Mari, and J. Garcia-Haro. Simulation scalability
issues in wireless sensor networks. IEEE Communications
Magazine, 44(7):64–73, July 2006.

[11] L. Hogie, P. Bouvry, and F. Guinand. An overview of
manets simulation. In Electronic Notes in Theoretical Com-
puter Science, Proc. of 1st International Workshop on Meth-
ods and Tools for Coordinating Concurrent, Distributed and
Mobile Systems (MTCoord 2005), LNCS, pages 81–101,
Namur, Belgium, April 2005. Elsevier.

[12] M. Karl. A comparison of the architecture of network simu-
lators ns-2 and tossim. In Proceedings of Performance Sim-
ulation of Algorithms and Protocols Seminar. Institut fr Par-
allele und Verteilte Systeme, Abteilung Verteilte Systeme,
Universit Stuttgart, 2005.

[13] B. Karp and H. Kung. Gpsr: Greedy perimeter stateless rout-
ing for wireless networks. In Proceedings of the Sixth An-
nual ACM/IEEE International Conference on Mobile Com-
puting and Networking. 2000.

[14] A. Lemke and A. Sarkohi. Werkzeuge zur netzwerksimu-
lation. In G. Wittenburg, editor, Proceedings of Seminar
Technische Informatik. Freie Universit Berlin, June 2006.

[15] G. F. Lucio, M. Paredes-Farrera, E. Jammeh, M. Fleury, and
M. J. Reed. Opnet modeler and ns-2 - comparing the ac-
curacy of network simulators for packet-level analysis us-
ing a network testbed. WSEAS Transactions on Computers,
2(3):700–707, July 2003.

[16] D. Nicol. Comparison of network simu-
lators revisited. http://www.ssfnet.
org/Exchange/gallery/dumbbell/
dumbbell-performance-May02.pdf, May 2002.

[17] P. Nov. Simulation of network structures. Master’s thesis,
Department of Software Engineering, Charles University in
Prague, August 2006.

[18] I. Opnet Technologies. Opnet. http://www.opnet.
com.

[19] R. Repp. Vergleich der verfahren simulation und emulation
fr die evaluation von protokollen. Master’s thesis, Institut fr
Parallele und Verteilte Systeme (IPVS), Universit Stuttgart,
December 2003.

[20] B. Schilling. Qualitative comparison of network simulation
tools. Technical report, Institute of Parallel and Distributed
Systems (IPVS), University of Stuttgart, January 2005.

[21] A. Vargas. Omnet++ - discrete event simulation system.
http://www.omnetpp.org.

523523

Authorized licensed use limited to: National Chiao Tung University. Downloaded on October 30, 2008 at 23:22 from IEEE Xplore. Restrictions apply.

