
Performance Prediction of Component- and Pattern-based
Middleware for Distributed Systems

[Extended Abstract]

Shruti Gorappa
Department of Electrical Engineering and Computer Science

University of California, Irvine
Irvine, CA

sgorappa@uci.edu

ABSTRACT
Design patterns, components, and frameworks have been
successfully used to build various distributed real-time, and
embedded (DRE) systems such as high-performance servers,
telecommunication systems, and control systems. An ap-
plication developer may choose from several approaches to
implement a distributed application and the choice of de-
sign patterns and their configuration can impact the overall
performance of the system. Unlike components, design pat-
terns are often descriptions of a programming approach and
need to be reified for each application. However, some core
pattern implementations can often be reused across applica-
tions, if they can be correctly configured to meet application
requirements. Currently, there is no general way to quantify
the performance of components and design pattern imple-
mentations across various dimensions such as throughput,
response time, and scalability. The overall performance of
applications that are composed from pre-coded components
and patterns can be inferred using analytical techniques by
modeling the behavior of the individual components. In par-
ticular, while we know from experience that patterns exhibit
various tradeoffs in terms of performance and complexity; we
would like to explore these tradeoffs in a formal way. To-
ward this goal, we make the following contributions in this
thesis: 1) we develop analytical models for various design
patterns using queuing models, 2) we present a technique to
analyze the performance of combinations of design patterns
as observed in real-world applications, and 3) we validate
the models using empirical measurements.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Modeling techniques

General Terms
Distributed systems, Performance

“Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. MDS’07, November 26-November 30, 2007, New-
port Beach, CA, USA Copyright 2007 ACM 978-1-59593-933-3/07/11...
$5.00"

Keywords
Queuing models, design patterns, component middleware

1. INTRODUCTION
Component-based development is fast becoming the pre-
ferred approach to assembling systems rather than hand-
coding them because of the savings in cost and time in both
the enterprise [18] and DRE [28, 6] domains. While compo-
nents are pre-coded software modules that provide a specific
function, design patterns [2, 26] are abstract representations
for software are often need to be reified with each appli-
cation. The real-time Java CORBA middleware, ZEN [3],
Compadres [9], and the ACE-based web server, JAWS [10,
25], are examples of frameworks that are built using middle-
ware design patterns. From our experience building DRE
middleware, we have found that component- and pattern-
based middleware improves the quality and maintainability
of software and reduces application development time.

DRE middleware has stringent performance requirements:
web servers need to meet requirements such as utilization,
throughput and response times, and control systems for in-
dustrial machinery need to meet requirements for predictabil-
ity and latency. Core middleware patterns and components1

greatly contribute towards the scalability and performance
of distributed applications. Frequently, performance tests
for these metrics are only performed after the application has
been built, when it may be expensive and time-consuming to
change bad design decisions. As component and framework-
based software development becomes more popular, so does
the need for a-priori or design-time performance modeling
of software.

Performance modeling of computer systems software has
been examined for many years now. In general, there are two
main approaches to gauging the performance of software–
simulation and analysis. Both approaches involve develop-
ing models of the software. However, simulation-based ap-
proaches can be expensive in terms of time and resources.
On the other hand, analytical approaches have been shown
to produce results close to the simulation results [11] and do
not consume as much time and resources as the simulations.

1In our paper, “components” refer to pre-coded software
modules that may be assembled and reused in general, and
not to specific component frameworks.

In this thesis, we present an analytical model for the design-
time performance prediction of custom middleware com-
posed using patterns and components. This model will allow
developers to predict and visualize the performance of their
code at design-time, thus allowing them to eliminate soft-
ware bottlenecks. Design-time performance prediction can
allow developers to model the performance of their software
for different usage loads, therefore allowing them to provi-
sion the framework for the scale of the application. In this
work, we use UML diagrams, source code, and sequence di-
agrams to develop the queuing network models (QNMs) for
server-side design patterns and components (modules). We
introduce the concept of a performance profile for compo-
nents, which is a visual representation of the performance
metrics of the component and will allow users to choose the
appropriate component for their application from a set.

2. RELATED WORK
Analytical methods for performance prediction of software
systems has been an active area of research but we only
summarize a few approaches related to distributed systems.
Ramani et. al. [20] present the use of Stochastic Reward
Nets (SRNs) to study and configure the CORBA Event Ser-
vice. The Layered Queuing Network model [12] has been de-
veloped to analyze the scalability of distributed systems. A
layered queuing model with CPU sharing is presented in [21]
and is used to analyze multi-level client/server systems for
synchronous and asynchronous messages. A performance
analysis of the Reactor pattern using an SRN model is pre-
sented in [13]. One problem with this approach is dealing
with the increase in the number of variations of the model
with the increase in options such as threads and queue size.
In later work, a model-driven tool has been proposed to
overcome this limitation [14]. Analytical approaches have
been used to predict the performance of JMS [17] and J2EE
applications [16]. A queuing network model for ASP.NET
is presented in [1]. A model to analyze the performance of
a web service under varying client workloads and protocol
and server configurations is presented in [27]. An analy-
sis of e-commerce services by mapping a consumer behavior
model graph to a discrete time markov model is presented
in [7]. While these works focus on modeling the performance
of web servers in general, our research focuses on modeling
the performance of core communication framework patterns
and components.

3. RESEARCH GOALS
The goal of this research is to model the performance of in-
dividual QNMs so that they may be used to predict the per-
formance of composite distributed system software in terms
of throughput, latency, and processor utilization. Through-
put allows the users to predict the scalability in terms of
number of users and rate of requests that the software can
safely handle. Latency is of interest in soft real-time ap-
plications where response time needs to be within a certain
value. Utilization is of interest when the designer needs to
identify the bottlenecks in the system. Performance predic-
tion of component- and pattern-based middleware provides
the following advantages:

• The analytical performance prediction approach will
help us predict the performance of software that is

composed from individual components and patterns.
DRE systems are increasingly built using component
frameworks; a tool that models the performance and
scalability of these systems can prove to be extremely
useful.

• Multiple implementations of a functional component
may be available for use in a particular situation. Com-
paring the performance of different pattern implemen-
tations and components will allow developers to choose
the right components for the application.

• The design-time performance evaluation will help pre-
vent costly mistakes by identifying performance issues
at the early stage of design rather than during testing.

• Analyzing the utilization at various modules will help
identify software bottlenecks and sources of delay so
that they may be provisioned with the appropriate
computing power and threading models.

The following research challenges are addressed in order to
achieve the goals:

• Identifying the queuing model of the individ-
ual components: By modeling patterns and com-
ponents using queuing models, we can allow users to
generate performance profile of component implemen-
tations at design time to visually compare the perfor-
mance of two or more implementations.

• Defining a mechanism for modeling the perfor-
mance of a system composed from components:
Composed systems often contain multiple components
and will need to be modeled as a network of queues.
We use a layered queuing network approach to model
and solve the distributed system.

• Providing design-time user information: It will
be valuable to present insights obtained from the com-
positional analysis to the user so that they may use
this information to optimize their systems.

4. ANALYTICAL MODELING APPROACH
This component and pattern (henceforth module) profiling
methodology is illustrated in Fig. 1 and the steps are de-
scribed in this section. The process involves two stages:
1) Identifying individual modules that affect the performance
of middleware and developing their performance models, and
2) Analyzing how these modules combine architecturally and
modeling the performance of the resulting software. This
section explains the steps involved in the analytical model-
ing approach.

1. Developing Queuing Network Models: As one
of the goals of this research is to enable the perfor-
mance comparison of pre-coded components and pat-
terns, we first identify, model, and validate the individ-
ual pattern implementations. On examining the code
and sequence diagrams of some building block com-
ponents and pattern implementations, we have found
that they can be modeled analytically. Analytical mod-
eling allows us to predict the performance metrics such

Figure 1: The Performance Profiling Methodology

as throughput. latency, and processor utilization an-
alytically. We make the following assumptions in our
models: 2

• The execution rate for tasks is assumed to have a
Poisson distribution with a mean of µ.

• The arrival rates for tasks is assumed to be Pois-
son with a mean of λ.

The tasks in the systems can be events or method calls
and are modeled as jobs and are executed in server
modules, which may be single or multi threaded.

As an example to illustrate our process, we choose the
Reactor pattern, which is used to decouple event I/O
from event handling. Events arrive at the server node,
and the server objects provide handlers that may be
invoked in order to process the incoming events. These
event handlers are registered with the Reactor. When
an event arrives, the Reactor thread reads and demulti-
plexes the event to the appropriate event handler. This
may be implemented by using the select() method in
C++, or the Selector class in Java. The interaction
diagram of the Reactor pattern is illustrated in Fig-
ure 2 (from [22]). The Reactor thread can only pro-
cess one event at a time. In large applications, how-
ever, multiple Reactors may be implemented to han-
dle events from different sockets, so that these events
may be processed in parallel [19]. In order to model
the Reactor pattern, we make the following assump-
tions: the packet arrivals are markovian with mean λ;
the processing times of the packets follow a Poisson
distribution with mean µ. There is only one server
(Reactor thread) processing the events, and the queue
size is K. Hence, the Reactor may be modeled as an

2These assumptions are reasonable and are frequently used
to model distributed systems since they form the basis for
many queuing network results. These assumptions are fur-
ther justified in our study since the models are used for per-
formance comparison, with all models being based on the
same assumptions.

Figure 2: The Interaction Diagram of the Reactor
Pattern.

M/M/1/K queue. Once the number of events in the
system reachesK, events are dropped, or blocked. The
model is illustrated in Fig. 5. The metrics we modeled
are:

• Throughput (γ): the number of requests serviced
per unit time,

• Latency (E[T]): the time taken to service the re-
quest, and

For the model of the Reactor pattern, we can obtain
the equations for the three metric from literature [15].
The throughput γ is given by

γ = λ(1− Pk) =
λ(1− ρK)

1− ρK+1

The average number of customers in the system is
given by

E[N] =

(
ρ

1−ρ −
(K+1)ρK+1

1−ρK+1 , for ρ = 1
K
2
, for ρ = 1

Using Little’s law, we can find the average waiting time
or latency for an event in the system using

E[T] =
E[N]

λ(1− Pk)

We have also developed the QNM for the Leader/Follower
pattern [24], which is an efficient multi-threaded event
handling pattern. Details of the model may be found
in [8].

Since our methodology is based on models, it is impor-
tant that the implementations of the design pattern be
consistent with its sequence diagram. Although design
patterns are abstract representations, we analyse soft-
ware implementations of design patterns so that we
model the performance of the actual code. The im-
plementations of components and design patterns may
use different technologies or languages; empirical mea-
surements are used to validate the implementations
and obtain their parameter values. These parameter
values are used as inputs to the model of composite
systems that are built using the module.

2. Parameter Estimation: Once the analytical model
of the pattern is developed, we identify its parameters,

10
0

10
1

10
2

10
3

10
4

0

100

200

300

400

500

600

700

800

900

1000

L
a
te

n
c
y
 i
n
 m

s

Burst size

Latency of the Reactor Pattern

Empirical

Theoretical

Figure 3: Latency comparison of the Reactor pat-
tern

10
0

10
1

10
2

10
3

10
4

0

1000

2000

3000

4000

5000

6000

P
a
c
k
e
ts

/s

Burst size

Throughput of the Reactor Pattern

Empirical

Theoretical

Figure 4: Throughput comparison of the Reactor
pattern

the execution time and queue length. In order to com-
pute µ and K, we empirically measure the metrics of
throughput and latency and use the method of mean
squares to find the analytical parameters. We use ACE
as our testbed since it is based on design patterns and
is a popular framework for building web applications.
This exercise only needs to be performed once and the
parameters may be later used in the network models
for performance prediction.

3. Validation of the QNMs:

This section presents a comparison of the results ob-
tained by evaluating the patterns implemented in the
ACE framework [10] using the analytical model pre-
sented in the paper. The experiments were run with
the following parameters. The packet size was 1000
bytes. The number of messages sent in each trial of the
experiment was 10000. The packets were sent in bursts
of varying size with a time interval between packet
bursts. The parameter values for the Reactor pattern
were found to be K = 400 and µ = 98 respectively .

Fig. 3 and Fig. 4 show the comparison of the latency
and throughput of the Reactor pattern obtained from
the experiment versus the theoretical values obtained
from the queuing model. It can be seen that both
the theoretical and experimental values follow a simi-
lar trend, and hence the model may be used as a good
approximation to describe the performance of the pat-
tern. When the burst size, and hence λ, is low, the la-

tency is also low. As λ increases, the latency increases.
This is because as the number of packets that are be-
ing queued up is increasing, packets spend more time
in the queue waiting to be processed. In the through-
put curve, the number of packets exiting the system
increases with λ and then levels off. This is because
the queue is full and some incoming packets are being
blocked.

4. Composing DRE Frameworks: One of the goals
of our research is to model and analyze the perfor-
mance of DRE middleware frameworks composed from
modules. Toward this goal, we have identified compo-
nents and patterns from middleware frameworks such
as Zen and JAWS as examples to illustrate our method-
ology. We have classified the modules into the follow-
ing three groups based on their architectural function-
ality as illustrated in Fig. 5:

(a) Network Management: This group of pat-
terns belong to the layer responsible for connec-
tion establishment and maintenance in distributed
systems. Examples are the Acceptor/Connector
and Proxy patterns.

(b) Protocol Handling and Event Demultiplex-
ing: These components process the packet head-
ers and classify the packets based on their header
or request type. The event dispatcher and proto-
col pipeline patterns are two examples of patterns
that may be used in this layer.

(c) Request Handling: These components handle
the request processing at the server and include
the Proactor, Leader/Follower, and Reactor pat-
terns. These patterns may in turn be composed
of smaller components depending on the architec-
ture at the server.

Each of these modules can in-turn be modeled as queues
and so that the composite pattern is a network of
queues.

Figure 5: Classification of server patterns

5. Solving the network of queues using MVA: In
order to compute the throughput or latency of a pat-
terns that contain more than one component, such as
the Half Sync/Half Async, we need to analyze it as a
network of queues (Jackson network). This is because
each event will traverse through multiple queues in se-
ries. In these cases, it is often not possible to formulate

Clients {4}

Clients
[10]

(0.5)

Clients

Reactor

Demux
[0.1]

(1) (5)

Server

Handler1
[0.4,0.1]

Handler2
[0.4,0.1]

Server

Figure 6: The LQN model of the Half Sync/Half
Async pattern

simple analytical expressions to model the patterns.
However, solutions for Jackson networks exist in the
form of mean-value analysis (MVA) algorithms [11].

We have identified the Layered Queuing Network Solver
(LQNS) [5] as a suitable used tool for modeling com-
posable systems. The LQN modeler allows us to model
different types of method calls: synchronous, asyn-
chronous, and request forwarding. It allows us to spec-
ify service time in phases, which is useful while mod-
eling event handlers and callback functions. Imple-
mentation specific details such as host CPUs, number
of threads, and service times can be input into the
model. Further details on the LQN model and seman-
tics may be found in the manual [4] and the discussion
is omitted here due to space restrictions.

The Reactor pattern is often used as part of a com-
posite pattern such as the Half Sync/Half Async pat-
tern [23]. The event queue receives requests asyn-
chronously from the network. The Reactor thread is
in charge of dequeuing these events and demultiplex-
ing them to the appropriate event handler. The event
handlers process the event and return the results, and
may be configured as single or multithreaded based on
the application requirements. An LQN representation
of this pattern is illustrated in Fig. 6. The parameters
such as service time and queue length can be obtained
from the QNMs in phase 1, and through running pro-
filing tools.

5. SUMMARY AND FUTURE WORK
The design-time performance prediction of software is a valu-
able tool for developers of DRE applications and frame-
works. Toward this goal, we have defined a methodology
for performance prediction based on analytical QNM analy-
sis. Currently, we have modeled individual server-side pat-
terns as queuing networks and identified their configuration
parameters. Although the main focus of this work is mid-
dleware frameworks, the methodology may be extended to
model component-based applications in general. We have
identified tools and techniques that enable us to model com-

posite patterns as queuing networks and solve them to ob-
tain performance metrics such as end-to-end latency and
throughput. The next steps in this research are the follow-
ing:

1. Analysis of Tradeoffs: Modeling the performance
of patterns allows users to observe the tradeoffs in
different dimensions of performance. The scalability
of components may be influenced by factors such as
message size, arrival rate, service time, and threading
models. For example, although the Reactor pattern
has smaller latency than the Leader/Follower pattern,
it has smaller throughput and does not scale as well
as the latter. However, the Reactor may be config-
ured with a threadpool to improve scalability. It will
be valuable to provide this information to the users
in the form of an analytical model at design time so
that they can visualize the implications of their design
decisions on performance and help them make better
choices of components based on application constraints
and requirements.

2. Additional Components and Patterns: We are
developing modular implementations of framework com-
ponents and patterns and developing their analytical
models. Although the ACE framework served as a
testbed for the validation of QNMs, it may not be the
ideal testbed for validating LQNs because 1) it is not
strictly modular and 2) the QNM parameters cannot
be easily configured. Hence, we are implementing a
new framework that is modular and that can be pa-
rameterized for the LQN validation.

3. Composition and Module Reusability: A key
advantage of model-driven development is reusability
of software in terms of both design and code. We are
building examples of distributed server architectures
from modules described in Fig. 5 to demonstrate this
feature. For example, web servers that may be built
from the following modules: a) Acceptor/Connector,
b) Leader/Follower, and c) Threadpool, and publish/subscribe
systems from the following modules: a) Proxy, b) Pipes/Filters,
and c) Proactor. Further, we are developing the com-
paritive performance models for these architectures and
validating them experimentally.

6. REFERENCES
[1] A. Bogárdi-Mészöly, T. Levendovszky, and H. C.

(Hungary). Using queueing model in predicting the
response time of asp.net web applications. In The
IASTED Conference on Software Engineering,
February 2006.

[2] F. Buschmann, R. Meunier, H. Rohnert,
P. Sommerlad, and M. Stal. Pattern-Oriented Software
Architecture—A System of Patterns. Wiley & Sons,
New York, 1996.

[3] Center for Distributed Object Computing. The ZEN
ORB. www.zen.uci.edu, University of California at
Irvine.

[4] R. G. Franks. The Layered Queueing Network Tutorial.

[5] R. G. Franks. Performance Analysis of Distributed
Server Systems. PhD thesis, Carleton University,
Ottawa, Ontario, Canada, December 1999.

[6] T. Gensler and C. Zeidler. Rule-driven component
composition for embedded systems. In 4th ICSE
Workshop on Component-Based Software Engineering:
Component Certification and System Prediction, 2004.

[7] S. S. Gokhale and J. Lu. Performance and availability
analysis of an e-commerce site. In COMPSAC (1),
pages 495–502, 2006.

[8] S. Gorappa and R. Klefstad. Modeling the
performance of communication framework design
patterns using queuing theory. In Proceedings of the
10th International Symposium on Performance
Evaluation of Computer and Telecommunication
Systems, July 2007.

[9] J. Hu, S. Gorappa, J. A. Colmenares, and R. Klefstad.
Compadres: A Lightweight Real-time Java
Component Middleware Framework for Composing
Distributed, Real-time, Embedded Systems. In
Middleware, November 2007.

[10] S. D. Huston, J. C. E. Johnson, and U. Syyid. The
ACE Programmer’s Guide: Practical Design Patterns
for Network and Systems Programming.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2003.

[11] R. Jain. The Art of Computer Systems Performance
Analysis. John Wiley and Sons, Inc., 1991.

[12] P. Jogalekar and M. Woodside. Evaluating the
scalability of distributed systems. IEEE Transactions
on Parallel and Distributed Systems, 11(6):589–603,
2000.

[13] A. Kogekar and A. Gokhale. Performance evaluation
of the reactor pattern using the omnet++ simulator.
In ACM-SE 44: Proceedings of the 44th annual
southeast regional conference, pages 708–713, New
York, NY, USA, 2006. ACM Press.

[14] A. Kogekar, D. Kaul, A. Gokhale, P. Vandal,
U. Praphamontripong, S. Gokhale, J. Zhang, Y. Lin,
and J. Gray. Model-driven generative techniques for
scalable performability analysis of distributed systems.
In Parallel and Distributed Processing Symposium,
April 2006.

[15] A. Leon-Garcia. Probability and Random Processes
For EE’s (3rd Edition). Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 2007.

[16] Y. Liu and I. Gorton. Performance prediction of j2ee
applications using messaging protocols. In CBSE,
pages 1–16, 2005.

[17] M. Menth and R. Henjes. Analysis of the message
waiting time for the fioranomq jms server. icdcs, 00:1,
2006.

[18] S. Microsystems. Enterprise JavaBeans specification,
v2.1.

[19] I. Pyarali, C. O’Ryan, D. Schmidt, N. Wang,
V. Kachroo, and A. Gokhale. Applying optimization
principle patterns to real-time orbs, 2000.

[20] S. Ramani, K. S. Trivedi, and B. Dasarathy.
Performance analysis of the corba event service using
stochastic reward nets. In SRDS ’00: Proceedings of
the 19th IEEE Symposium on Reliable Distributed
Systems (SRDS’00), page 238, Washington, DC, USA,
2000. IEEE Computer Society.

[21] S. Ramesh and H. G. Perros. A multilayer client-server
queueing network model with synchronous and

asynchronous messages. IEEE Transactions on
Software Engineering, 26(11):1086–1100, 2000.

[22] D. C. Schmidt. Reactor: an object behavioral pattern
for concurrent event demultiplexing and event handler
dispatching, pages 529–545. ACM
Press/Addison-Wesley Publishing Co., New York, NY,
USA, 1995.

[23] D. C. Schmidt and C. D. Cranor.
Half-sync/half-async: an architectural pattern for
efficient and well-structured concurrent i/o. In Pattern
languages of program design 2, pages 437–459.
Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1996.

[24] D. C. Schmidt and et al. Leader/Followers - A Design
Pattern for Efficient Multi-threaded Event
Demultiplexing and Dispatching. In 7th Pattern
Languages of Programs Conference, 2000.

[25] D. C. Schmidt and J. C. Hu. Developing flexible and
high-performance Web servers with frameworks and
patterns. ACM Computing Surveys, 32(1):39–39, 2000.

[26] D. C. Schmidt, M. Stal, H. Rohnert, and
F. Buschmann. Pattern-Oriented Software
Architecture: Patterns for Concurrent and Networked
Objects, Volume 2. Wiley & Sons, New York, 2000.

[27] R. D. van der Mei, R. Hariharan, and P. Reeser. Web
server performance modeling. Telecommunication
Systems, 16(3-4):361–378, 2001.

[28] N. Wang, D. C. Schmidt, A. Gokhale, C. D. Gill,
B. Natarajan, J. P. Loyall, R. E. Schantz, and
C. Rodrigues. Qos-enabled middleware (chapter 6). In
Middleware for Communications. John Wiley & Sons,
2004.

