A Discrete-event Simulation Tool for the Analysis of
Simultaneous Events

Patrick Peschlow
University of Bonn
Department of Computer Science IV
Roemerstr. 164
53117 Bonn, Germany

peschlow@cs.uni-bonn.de

ABSTRACT

Discrete-event simulation is a very popular technique for
the performance evaluation of systems, and in widespread
use in network simulation tools. It is well known, however,
that discrete-event simulation suffers from the problem of
simultaneous events: Different execution orders of events
with identical timestamps may lead to different simulation
results. Current simulation tools apply tie-breaking mecha-
nisms which order simultaneous events for execution. While
this is an accepted solution, a legitimate question is: Why
should only a single simulation result be selected, and other
possible results be ignored?

In this paper, we argue that confidence in simulation re-
sults may be increased by analyzing the impact of simul-
taneous events. We present a branching mechanism which
examines different execution orders of simultaneous events,
and may be used in conjunction with, or as an alternative to
tie-breaking rules. We have developed a new simulation tool,
MOOSE, which provides branching mechanisms for both se-
quential and distributed discrete-event simulation. While
MOOSE has originally been developed for network simula-
tion, it is fully usable as a general simulation tool.

1. INTRODUCTION

Simulation is in widespread use for the performance eval-
uation of computer networks and communication protocols.
The most popular technique used in network simulation is
discrete-event simulation (DES). The underlying concept of
discrete-event models is simple: The state of the simulated
system is stored as a set of variables, and actions are mod-
eled as events scheduled for execution at discrete points in
simulation time. In network simulation, typical events are
the beginning and the end of packet transmissions, or the
expiration of timers. An important advantage of DES is that
standard techniques exist for parallel and distributed sim-
ulation on multiprocessor systems or interconnected hosts.
Compared to sequential DES on a single processor, parallel

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

NSTools ’07, October 22, 2007, Nantes, France

Copyright 2007 ICST 978-963-9799-00-4.

Peter Martini
University of Bonn
Department of Computer Science IV
Roemerstr. 164
53117 Bonn, Germany

martini@cs.uni-bonn.de

and distributed simulation (PDES) is able to speed up sim-
ulation runs and provides more memory. This facilitates the
simulation of very large networks and the scalability analysis
of communication protocols.

Despite its popularity, discrete-event simulation suffers
from the well-known problem of simultaneous events: The
execution order of two or more events with identical times-
tamps is unspecified. Different execution orders, however,
may lead to different simulation results. Moreover, some
execution orders may cause behavior not intended by the
system modeler. In previous research, several techniques for
handling simultaneous events have been proposed and im-
plemented in simulation tools. Most approaches are based
on tie-breaking rules, which use priorities to enforce deter-
ministic event execution orders. Tie-breaking rules have two
main benefits: First of all, properly assigned event priorities
guarantee the reproducibility of simulation runs. Secondly,
user-defined priorities may be used to prevent unintended
behavior, i.e. execution orders not in the sense of the model.
While, especially in distributed simulation, a consistent as-
signment of priorities is a complex task, adequate solutions
for tie-breaking rules have been found. We give a detailed
overview of tie-breaking rules in section 2.

Although tie-breaking rules are generally accepted as a
solution to the problem of simultaneous events, they have
a considerable drawback: Often, a single correct execution
order of simultaneous events and thus a single correct sim-
ulation result do not exist. We illustrate this with two ex-
amples: Assume a completely filled packet buffer, with an
enqueue event and a dequeue event scheduled to happen si-
multaneously. Now, in case the dequeue event is executed
first, buffer capacity is freed and the arriving packet may be
enqueued. Otherwise, the packet has to be dropped. Both
execution orders are correct in the sense of the simulation
model, yet they may well lead to different results. This
means, however, that selecting a single simulation result by
ordering the events according to a tie-breaking rule implic-
itly labels the other result as irrelevant. As a second exam-
ple, consider a communication protocol using retransmission
timers, e.g. TCP [29]. Whenever a timeout event and the
corresponding acknowledgement reception happen simulta-
neously, the execution order decides whether the packet will
be retransmitted or not. This is a typical example of simul-
taneous events arising due to limited timestamp precision.
Note that user-defined priorities are not a solution in these
cases, since they would bias results by favoring certain event
types, e.g. timeouts.

An alternative to tie-breaking rules is the use of a branch-
ing mechanism. Branching means examining the different
execution orders of simultaneous events, and analyzing their
impact on simulation results by splitting the simulation into
different branches. The computation of a whole set of simu-
lation results was first proposed in [32], and a first step to-
wards a branching mechanism for sequential DES was taken
in [1] by introducing a formal framework for the analysis
of simultaneous events. Analyzing simultaneous events may
increase confidence in simulation results as well as the sim-
ulated system itself, especially in cases where the effects of
simultaneous events cannot be estimated in advance.

In this paper, we present a discrete-event simulation tool,
MOOSE, which provides branching mechanisms for the anal-
ysis of simultaneous events in both sequential, and parallel
and distributed DES. Since branching may noticeably in-
crease simulation run-times, we have particularly focused
on its efficiency, and also support using combinations of
branching and tie-breaking rules. The structure of MOOSE
is highly modular, which makes the branching mechanism
easily configurable and extensible. While MOOSE was pri-
marily designed for network simulation, it is nevertheless
fully usable as a general-purpose simulation tool.

The paper is structured as follows: In section 2, we give an
overview of previous research on simultaneous events, and
discuss the handling of simultaneous events in network simu-
lation tools. In section 3, we introduce the general branching
concept and its implementation for sequential DES. Section
4 describes our design and implementation of branching for
parallel and distributed simulation. In section 5, we give an
overview of the components of MOOSE and the configura-
tion of the branching mechanism. Section 6 summarizes the
paper and outlines directions of possible future work.

2. SIMULTANEOUS EVENTS

In this section, we give an overview of previous research
on simultaneous events. In the process, we also discuss the
handling of simultaneous events in network simulation tools.

2.1 Tie-breaking rules

In sequential DES, all pending events are stored in a sin-
gle, global future event list (FEL). Events are always exe-
cuted in increasing timestamp order, and may modify the
system state, schedule new or delete existing events. When
the FEL contains two or more events with identical times-
tamps, they are referred to as simultaneous events. The
most common way of handling simultaneous events is to
simply execute them in the order they are returned by the
data structure used for the FEL. Since there is only a single
thread of execution in sequential DES, this is sufficient to
guarantee deterministic event scheduling, and thus repro-
ducibility. Many network simulation tools follow this ap-
proach, e.g. JIST/SWANS [14], or J-Sim [12].

Although the simple approach ensures reproducibility, it
has an important disadvantage: Depending on the FEL im-
plementation, FIFO behavior is not guaranteed, i.e. simulta-
neous events are not necessarily executed in the same order
they are inserted into the FEL. For example, this may hap-
pen with the commonly used binary heap data structure. If
FIFO behavior is not guaranteed, however, this may lead
to effects not intended by the system modeler. A classic ex-
ample of unexpected behavior caused by the FEL scheduling
policy is described in [27]. Thus, in order to guarantee FIFO

basic timestamp extension timestamp

- AN)
' N

virtual time tie-breaking fields

Figure 1: Extended event timestamp.

behavior, some simulation tools rely on tie-breaking rules
with unique IDs as event priorities. All IDs are generated by
a global counter and automatically assigned to events when
they are created. By sorting events with equal timestamps
according to their IDs, the FEL ensures FIFO behavior in-
dependent of its implementation. Network simulators which
use this technique are e.g. GTNetS [10], and ns-2 [19]. How-
ever, a more flexible way of avoiding unintended execution
orders are user-defined priorities, which may be assigned at
the beginning of the simulation, or stored in a library. Net-
work simulation tools with support for user-defined priorities
are NCTUns [18], and the sequential version of GloMoSim
[9]. Both tools provide standard priorities which may be
used by the application programmer.

We summarize that tie-breaking rules are usually kept
simple in sequential DES; since reproducibility is inherently
guaranteed. The majority of network simulation tools does
not provide the user with any means of specifying priorities.

In parallel and distributed simulation, the system state
is partitioned into logical processes, which are distributed
onto the participating processors or hosts. Each logical pro-
cess (LP) has its own FEL and is responsible for handling
all events related to its part of the state. Other events are
forwarded to their destination LPs. Since this creates the
possibility of events arriving at LPs out of order, a synchro-
nization mechanism is required to ensure the correctness of
the simulation. Commonly, conservative or optimistic syn-
chronization is used. For a detailed overview of PDES tech-
niques and synchronization mechanisms see [8].

In contrast to sequential DES, reproducibility is not in-
herently guaranteed in PDES. In two simulation runs with
identical setup, simultaneous events may arrive at their des-
tination LP in different orders, e.g. due to network delays
or background load. As a consequence, an appropriate tie-
breaking mechanism is required in order to ensure repro-
ducibility. Still, many PDES network simulation tools like
OMNET++ [20] and PDNS [22] abstain from the use of such
tie-breaking rules.

The first challenge with regard to the realization of tie-
breaking rules in PDES is that synchronization mechanisms
have to respect event priorities, although they only know
about event timestamps. For example, with conservative
synchronization, an event may only be executed when it is
guaranteed that no simultaneous event with a higher prior-
ity will be received. With optimistic synchronization, an al-
ready executed event has to be rolled back when a simultane-
ous event with a higher priority arrives. An elegant solution
has been found, however, by extending event timestamps
with additional bits which encode priorities. This way, syn-
chronization mechanisms do not have to be modified in order
to respect event priorities. Figure 1 shows the structure of
an extended event timestamp. The basic timestamp contains
the floating point value representing simulation time, while
the extension timestamp contains tie-breaking information.
See [30] for a recent example.

Although assigning consistent priorities to events, and us-
ing the timestamp-encoding scheme, ensures reproducibility
for some simulation scenarios, this is not sufficient in the
general case. Further mechanisms are required when LPs
are able to schedule zero-delay events at each other. Zero-
delay events have identical scheduling and execution time,
and are commonly used to implement query events, or to
model advances in simulation time that are too small for the
time resolution. For further examples, see [7]. A simulation
model contains a zero-delay cycle, if two or more LPs are able
to send zero-delay events in a cyclic scheme. Zero-delay cy-
cles are a fundamental challenge in PDES: If the simulation
model contains a zero-delay cycle, conservative synchroniza-
tion mechanisms are in danger of deadlock. With optimistic
synchronization, zero-delay cycles may catch the simulation
in an endless rollback loop [16, 26]. This means that tie-
breaking rules do not only have to guarantee reproducibility,
but also ensure progress of the simulation.

With regard to zero-delay cycles, research has concen-
trated on two approaches. The first approach makes restrict-
ing assumptions about the occurrence of zero-delay cycles in
order to realize tie-breaking rules which are solely based on
user-defined priorities. As shown in [13], with some syn-
chronization mechanisms it is necessary that the simulation
model does not contain any zero-delay cycle at all. With
other synchronization mechanisms, however, it is only re-
quired that zero-delay events are not actually sent in a cycle
during the simulation. It is also much easier to fulfill the
common requirement that the result of a distributed simu-
lation is equal to the result of the corresponding sequential
simulation, when the simulation model is free of zero-delay
cycles [4]. In case assumptions about zero-delay cycles are
not possible, it is necessary to follow a different approach:
Supporting zero-delay cycles by including information about
the causality of events into priorities. This may be realized
with sophisticated tie-breaking rules based on automatically
assigned priorities. As an example, the tie-breaking rule in
[16] extends event timestamps by a tuple consisting of an age
field, as well as an identifier and a message counter of the
LP which created the event. In [26], a detailed discussion
of automatic tie-breaking rules is given. Furthermore, it is
shown that they may be extended by user-defined priorities,
as long as the user obeys certain rules. Altogether, this ap-
proach constitutes the most complete tie-breaking solution
to the reproducibility problem.

In PDES network simulation tools, only simple variants
of these approaches have been implemented. The parallel
version of GloMoSim, which is based on the ParSec simula-
tion kernel [21], provides two priority values for tie-breaking,
which is not sufficient for reproducibility. In SWAN [28],
which is based on DaSSF [6], tie-breaking with automati-
cally assigned priorities (process ID, age) may be used op-
tionally. This, however, does neither include user-defined
priorities nor guarantee reproducibility in all cases.

In summary, research has produced adequate tie-breaking
rules which guarantee reproducibility in PDES. Neverthe-
less, parallel and distributed network simulation tools only
use simple variants of them, if at all.

2.2 Analyzing simultaneous events

The impact of simultaneous events on simulation results
was first discussed in [32] in the context of aviation simu-
lation. Later, examples from network simulation were pre-

event [| €--------- root
execution e

state
o
€ €
€3 e €5 e € €1 leaf state
o
<«-----> branches
V'S

Figure 2: Execution tree for 3 simultaneous events.

sented in [31], where otherwise identical simulations setups
led to noticeably different results when different tie-breaking
rules were used. It was concluded that, for a proper evalua-
tion of the simulation model, all execution orders of simul-
taneous events would have to be taken into account [26].

First steps towards the analysis of simultaneous events
were taken in [1] by establishing a new term of event interac-
tion and a formal framework for the analysis of simultaneous
events. The framework contains a mechanism for specifying
user knowledge about event interactions, which can be used
to identify simultaneous events worth of examination dur-
ing the simulation. Furthermore, it was proposed to analyze
simultaneous events with a branching mechanism if differ-
ent execution orders may lead to different states. Finally,
branching algorithms for sequential DES were outlined.

Based on this framework, we have developed a branch-
ing mechanism for both sequential DES and PDES. In the
following sections, we describe the design and implementa-
tion of our branching mechanism, as well as its usage in the
simulation tool MOOSE.

3. BRANCHING IN SEQUENTIAL DES

In this section, we first describe the general design of our
branching mechanism. Then, we present our implementa-
tion for sequential DES.

The possible execution orders of simultaneous events can
be visualized as an ezecution tree (cf. figure 2). Nodes repre-
sent system states, and transitions conform to event execu-
tions. Every path from the root to a leaf state corresponds
to a different execution order. The task of a branching mech-
anism may then be summarized as follows: When simulta-
neous events are detected, their execution orders shall be
analyzed by calculating the leaf states of the execution tree.
Then, the simulation shall be continued for all different leaf
states. We refer to the resulting simulation runs as branches.
Every branch is identified by a unique branch ID.

In sequential DES, the detection of simultaneous events
is simple: It only has to be checked whether the FEL is
headed by two or more events with identical timestamps.
Accessing the smallest and the second smallest element in
the FEL, and comparing their timestamps, is straightfor-
ward with the commonly used binary heap implementation.
However, if a data structure which bundles events with iden-
tical timestamps, e.g. the enhanced heap [2], is used for the
FEL implementation instead, the overhead of detecting si-
multaneous event is negligible.

€4
e e e
e, e e NN N
& N N P
es NP N
” > APK matrix

Figure 3: Using a-priori-knowledge.

When simultaneous events have been detected, the next
step is to calculate the leaf states of the execution tree. In
principle, this may be accomplished with standard search
algorithms. However, since exploring the execution tree
includes saving and restoring possibly large system states,
traversing the whole execution tree may get time-consuming
when the number of simultaneous events is large. Here, an
important observation is that several nodes of the execution
tree may be equal. In particular, leaf states may be equal.
Thus, it may not be necessary to compute the whole execu-
tion tree in order to determine the different leaf states. De-
pending on the simulation scenario, it is even possible that
all execution orders lead to one and the same leaf state.
Therefore, we use two techniques to keep execution trees
small by eliminating unnecessary (or duplicate) computa-
tions: Node comparisons and a-priori-knowledge.

Node comparisons are possible after every transition in
the execution tree. Whenever a newly created node is equal
to an existing node, the branches are immediately merged
together. For the comparisons, each node is represented by
a tuple (Eexec, Epend, Enew, S), where Eexec is the set of already
executed simultaneous events, Epend is the set of simultane-
ous events yet to execute, and Enew is the set of all events
created on the corresponding branch. Together, the three
event sets represent the relevant part of the scheduler state,
while S represents the current system state, e.g. the set of
system state variables. Since the system state may contain
a large number of variables, the scheduler states are always
compared first. Only when they are equal, the system state
variables of the nodes are compared. We implemented node
comparisons by storing nodes in buckets according to Eeec.
This way, we are able to identify potentially equal nodes
immediately. In order to maximize the efficiency of state
comparisons, we provide the programmer with means of or-
dering the system state variables for comparison, so that
differing states are identified very fast.

While node comparisons eliminate all duplicate states,
they also have two disadvantages: With large system states
they may get costly, and they can only be performed af-
ter the execution of events. Therefore, we use an addi-
tional mechanism, a-priori-knowledge (APK), which is much
cheaper in terms of computing resources and can already be
employed before events are executed. The concept of APK
was introduced as part of the framework in [1]. The ba-
sic idea is to store programmers’ expert knowledge about
possible event interactions permanently in a repository, and
provide means to access and utilize this knowledge at simu-

lation run time. In our implementation, three types of event
interactions may be specified: Two events e; and e, are non-
interacting (N), if both execution orders (e1;e2) and (e2;e1)
lead to identical states whenever e; and e» occur simulta-
neously. Similarly, with surely-interacting (S) events, it is
guaranteed that both execution orders always lead to dif-
ferent states. Finally, with possibly-interacting (P) events,
both ways are possible, depending on the circumstances.
Event interactions can be formalized as a function APK :
E x E — {N,P,S}, where E is the set of all types of events
which may occur in the simulation. During the computation
of the execution tree, the APK function is evaluated. When-
ever a subset of simultaneous events is found to be non-
interacting, only one execution order is calculated. Thus,
depending on the number of non-interacting events, many
event executions are avoided. Furthermore, since node com-
parisons are never required for non-interacting and surely-
interacting events, they are only performed after the execu-
tion of possibly-interacting events.

With regard to the implementation, APK may be utilized
in different ways. Our implementation keeps an interaction
table of events, which is updated when events are executed.
Each simultaneous event keeps counters representing its in-
teraction with the other events. As soon as the counters
suggest that an event is non-interacting with the other re-
maining events, it is executed immediately. Furthermore, we
keep APK tables small by setting up only the required APK
for each simulation run. This is done automatically during
the initialization of the simulation modules at the beginning
of the simulation. Altogether, APK usage may often result
in a very fast calculation of execution trees, which makes it
a powerful tool for analyzing simultaneous events efficiently.
Figure 3 shows an example, with the APK function visual-
ized as a symmetric matrix.

In addition to preventing unnecessary transitions in the
execution tree, APK provides a way of combining branching
with tie-breaking rules. We extend the APK function by
user-defined priorities: APK? : E x E — {N,P,S,N.,N>}.
If e; has a higher priority than e;, then APK? (e1,e2) = N<.
The definition of N is analogous. Note that, in contrast
to APK, the function APK? is not symmetric. At run time,
the branching mechanism always executes higher-prioritized
events before events with lower priorities.

During the calculation of the execution tree, zero-delay
events may be created. While they are not as problematic
as in PDES (cf. section 4), they nevertheless have to be han-
dled in a consistent way. In our implementation, zero-delay
events are scheduled immediately after their creation, and
thus included into the branching process. As a consequence,
however, all APK values have to account for possible zero-
delay events, too.

When the set of different leaf states of the execution tree
has been computed, the simulation has to be continued for
all resulting branches. Therefore, all leaf states are saved
to hard disk, together with a snapshot of the global system
state, and one of them is restored immediately for simula-
tion. Whenever simultaneous events are encountered again,
another execution tree is analyzed which may lead to the
creation of further branches. When the end of a branch is
reached, i.e. the termination condition of the simulation is
fulfilled, one of the saved branches is restored and the sim-
ulation is resumed. Finally, when all branches have been
completed, the simulation is over.

LP A

‘LLS;

‘LLSE

‘LLSQ

‘LLSS

CLS, CLS, cLs, CLs,

Figure 4: Combined execution tree for two LPs.

The described branching mechanism guarantees the cal-
culation of all possible simulations results. It is efficient in
the sense that, with the help of APK and node comparisons,
unnecessary overhead is reduced and duplicate branches are
avoided. Generally, we found the computation of execution
trees to have almost negligible run-time, in the order of sec-
onds. Furthermore, when compared to independent runs
with different tie-breaking rules, all computations up to a
branching point are shared among the branches. Neverthe-
less, the run-time of a simulation may become large when
many branches are created. If, at a branching point, n dif-
ferent branches are created, the remaining simulation takes
about n times as long as with tie-breaking rules. There-
fore, it may pay off to compute multiple branches in parallel
by distributing them onto other hosts or processors (if they
are available). During the design and implementation of the
branching mechanism for PDES, however, we discovered a
way which may strongly increase performance even when
additional hosts are not available. We will return to this at
the end of section 4.4.

4. BRANCHING IN PDES

The design of a branching mechanism for parallel and dis-
tributed simulation presents several challenges when com-
pared to sequential DES. First of all, when simultaneous
events with timestamp t are detected at an LP, its FEL
does not necessarily contain all events for t. Furthermore,
simultaneous events may occur at different LPs at the same
time, yet with different timestamps. While, in sequential
DES, the analysis of different sets of simultaneous events
with different timestamps is always performed in increas-
ing timestamp order, this is not guaranteed in distributed
simulation and leads to the danger of globally inconsistent
simulation states [26]. Finally, calculating the execution tree
is a complex task, since simultaneous events with identical
timestamps may be spread among different LPs.

It is important that possible zero-delay events sent be-
tween LPs are taken into account during the calculation of
the execution tree. Otherwise, there is the danger of “over-
looking” possible execution orders [26]. Therefore, the anal-
ysis of simultaneous events at a timestamp t has to be per-
formed in coordinated fashion, and either a global control

or a communication protocol between the LPs is required.
Each LP | is only able to calculate its local execution tree
and its local leaf states (LLS). A local leaf state represents
the state of | after executing the events in a specific order,
and is defined as a 2-tuple LLS} = (Si, Ei), i=1...n, withn
being the number of different leaf states. S' is the resulting
system state of |, and E' is the set of future events created by
| on the corresponding branch. In the process of branching,
the combined leaf states (CLS) of the combined execution
tree have to be computed. Figure 4 shows an example of
a combined execution tree for a simple scenario with two
LPs. Every CLS contains the LLS of all LPs Iy,...,Iy on
the corresponding branch: CLSy, = {LLSE, R LLS;: }, where
i1,...,in are the identifiers of the different LLS, and k is the
unique ID of the resulting branch. Note that one and the
same LLS is usually contained in more than one CLS.

In the following, we divide the discussion of the PDES
branching mechanism into three sections: The detection of
simultaneous events, the distributed branching procedure,
and the computation of the resulting branches. Each section
gives an overview of the used concepts, based on the detailed
descriptions in [24, 25], and at the same time presents and
discusses interesting implementation details.

4.1 Detection of simultaneous events

We use a central control, the Branching Manager (BM),
for the coordination of the LPs. When an LP detects simul-
taneous events, say with timestamp t, in its local FEL, it
reports them to the BM and requests a global synchroniza-
tion at t. This is done in order to reach a consistent simula-
tion state, and may be realized with a simple communication
protocol as is commonly used for barrier synchronizations.
In case the BM receives another report about simultaneous
events with a timestamp t' < t, it cancels the former bar-
rier and issues a new one at t'. Note that, with optimistic
synchronization, this may require artificial rollbacks. When
all LPs have stopped the simulation at the smallest reported
timestamp, a branching point is reached [24].

In order to avoid unnecessary global synchronizations, an
LP may check the interaction of simultaneous events already
before reporting them to the BM, if APK (cf. section 3) is
available. If all events are found to be non-interacting, the
LP refrains from reporting them. The number of global
synchronization points may be reduced further if the user
is only interested in certain types of simultaneous events.
For example, when evaluating a new TCP variant, the user
may be interested in simultaneous occurrences of events like
“received acknowledgement” and “timeout”, since their exe-
cution order may well affect the behavior and throughput
of TCP flows. In contrast, the user may consider other si-
multaneous events as irrelevant for the concrete simulation
study and decide not to examine them. We therefore offer
the possibility of declaring candidate events during simu-
lation initialization. In the course of the simulation, LPs
only report simultaneous candidate events to the BM. All
other simultaneous events are handled normally, e.g. with
tie-breaking rules. This provides a way of using the branch-
ing mechanism in conjunction with tie-breaking rules [25].

We examined two different ways of implementing candi-
date events. The first implementation simply distinguishes
candidate events from normal events. While a boolean flag
would be sufficient, it is impractical to make the scheduler
and the synchronization mechanism aware of this distinc-

) ©®
Figure 5: Lookahead graph and influence graph.

tion. A solution is to integrate candidate event information
into extended event timestamps (cf. section 2.1), so that
timestamps are identical only for candidate events. How-
ever, depending on the concrete tie-breaking rule, the ex-
tension timestamp may contain arbitrary combinations of
bits. Therefore, whenever a candidate event is created, we
set its extension timestamp to “1...1”, i.e. the highest possi-
ble value. This way, all candidate events with identical basic
timestamps have completely identical timestamps, and are
thus detected as simultaneous events. This implementation
ensures that branching is only carried out on simultaneous
events that are of interest to the user. Note that all non-
candidate events with the same basic timestamp have al-
ready been executed when simultaneous candidate events
are detected. Nevertheless, in our opinion, this is the most
convenient way. If, for example, the extension timestamps
of candidate events were set to “0...0” instead, further can-
didate events generated by other simultaneous events might
be missed. If this danger exists, however, we suggest to
simply declare the other events as candidate events, too.

An alternative implementation of candidate events is pos-
sible by using APK tables: All pairs consisting of two candi-
date events are set possibly-interacting, while all other event
pairs are declared non-interacting. This is an elegant, trans-
parent solution and allows for an exact specification of si-
multaneous events of interest.

4.2 Distributed branching procedure

When a branching point at timestamp t has been reached,
the combined execution tree has to be calculated. Since LPs
with only a single event at t may generate or receive zero-
delay events, they have to be included into the branching
process. Therefore, as a first step, the BM discovers all LPs
with events at t by sending query messages. Let the set of
LPs with at least one event at t be M. Then, the BM has
to coordinate the branching process among the LPs in M so
that their interdependencies are respected and all combined
leaf states are calculated.

The complexity of the branching procedure varies depend-
ing on possible zero-delay events, or cycles (cf. section 2.1).
Therefore, the BM utilizes available lookahead information
between the LPs in order to determine its further actions.
Let i and j be two LPs, and t the local simulation clock of
LP i. Then, i can guarantee that any event it schedules at j
has a timestamp of at least t + x. We define lookahead;; as
the largest value x > 0 which holds that guarantee. If i is
not able to send events to j at all, then lookahead;; = oco.

We define a directed weighted graph L = (V,E) with V =
{v:vis LP}, E = {(u,v) : lookahead,, < oo}, and a weight
function w : E — R with w(u,v) = lookahead, . L is called
the lookahead graph.

From L, we derive the influence graph, a directed un-
weighted graph I = (V',E’) with V' =V, and E' = {(u,v) €
E : w(u,v) = 0}. I reflects possible zero-delay events be-

tween the LPs. An example of a lookahead graph as well as
the derived influence graph is shown in figure 5.

While lookahead information can often be extracted from
simulation models, it is well known that especially in dy-
namic simulation scenarios the specification of precise looka-
head values is sometimes hard. However, this is unprob-
lematic here: In order to construct the influence graph, it
is sufficient to know whether lookahead values are greater
than or equal to zero. For example, in network simulation,
the concrete values of propagation delays are irrelevant, as
long as they are greater than zero. Therefore, it should be
possible to construct influence graphs for many simulation
models found in practice.

At the beginning of the simulation, if lookahead informa-
tion is available, the BM computes I and performs a cycle
check with well-known graph algorithms. The result defines
the branching routine used for the coordination of LPs dur-
ing the simulation: Acyclic branching or cyclic branching.

If I is available and acyclic, the BM triggers branching at
individual LPs iteratively, depending on possible zero-delay
events. All LPs stay ready to calculate their LLS on receipt
of a branch message from the BM. During the calculation
of its local execution tree, an LP | schedules all internal
zero-delay events immediately after their creation, just as
in sequential DES. When | is finished calculating its LLS, it
stores them (i.e. the corresponding system state variables as
well as all created future events) to hard disk. Finally, | sends
identifiers of the saved states to the BM, together with all
created zero-delay events for other LPs. This way, the BM
can deliver all created zero-delay events to their destination
LPs in the further branching process by including them into
the branch messages. Since it may be necessary to branch an
LP more than once (with different sets of zero-delay events
as input), every LP saves its original state before branch-
ing, and restores that state when receiving the next branch
message.

When calculating its local execution tree, an LP | uses
node comparisons and APK (cf. section 3) in order to elim-
inate duplicate branches. This guarantees that each LP
only returns different LLS to the BM. Since the local ex-
ecution tree of | only contains events handled by I, it is
possible to reduce the two concepts to LP scope: For node
comparisons, the tuple introduced in section 3 is replaced
by (Eexec; Epend; Enew, Si), where the new component S; de-
notes the state variables of |I. Thus, much smaller sets of
state variables have to be compared than with sequential
DES. Furthermore, with regard to APK, it is clear that two
events handled by different LPs are always non-interacting.
We define the local APK function of | as APK, : E; x Ej —
{N,P,S,N<,N=}, where E, is the set of all events that may
be scheduled at |. The possible values of the local APK func-
tion are the same as in sequential DES. Local APK usage
reduces the size of APK tables considerably.

The iterative branching procedure is based on sets of safe
LPs. Branching at an LP | is called safe when it is guar-
anteed that no other LP will create any zero-delay events
destined to |. In every iteration, the BM computes the safe
set Z = {v € V : indeg(v, I) = 0}. Z contains the LPs
in I without any incoming edges (in figure 5, these are the
gray-colored LPs). With Z, the branch set B =M N Z may
be computed. After sending branch messages to the LPs in
B, and receiving their computed LLS, the BM updates the
combined execution tree and adds new LPs to M depending

on the destinations of created zero-delay events. Finally,
the BM calculates the next safe set and proceeds with the
next iteration. Since [is acyclic, eventually M = (), and all
CLS have been calculated. Algorithm 1 summarizes acyclic
branching in pseudocode.

Algorithm 1 : Acyclic branching

input: influence graph I = (V',E’)
M < all LPs € V' with events at t
Z < {v eV :indeg(v, I) =0} // initialize safe set
while M # () do
B < MnNZ// compute branch set
M <= M\ Z // update M
I <I\Z//update I
if B # () then
perform local branching for all LPs in B
for all received LLS s do
update combined execution tree with s
end for
for all newly created zero-delay events e do
M < M U destination LP of e
end for
end if
Z < {veV :indeg(v, I) = 0} // update safe set
end while

If I contains a cycle, or is not available at all, there is no
clear ordering of the LPs in M, and cyclic branching has to
be used. We provide two alternative strategies, which the
user may choose from at the beginning of the simulation:
FEvent-based branching and batch-based branching.

The event-based branching algorithm guarantees the cal-
culation of the complete combined execution tree. First of
all, the BM requests information about the events at t from
all LPs in M, in order to construct a global view. In the
following, it emulates the branching procedure used for se-
quential simulation (cf. section 3) by always triggering the
execution of single events, thus largely ignoring the LP par-
titioning. Each LP | waits for event ezecution requests from
the BM. On reception of an event execution request for event
e, | executes e and saves the resulting state. Then, | performs
node comparisons with already existing states and sends a
reply containing the result as well as any created zero-delay
events to the BM. The BM updates the combined execu-
tion tree and delivers all zero-delay events to their destina-
tion LPs. Note that, in contrast to acyclic branching where
APK is used by the LPs, here the BM uses APK to avoid
unnecessary event executions.

Obviously, event-based branching has a much higher syn-
chronization overhead when compared to acyclic branching.
However, if the user declares candidate events, and APK
is already used during the detection of simultaneous events,
the set of simultaneous events will typically be small in many
simulation scenarios. Thus, in most cases arising in practice,
event-based branching should easily be feasible. Algorithm
2 summarizes event-based branching.

The alternative algorithm, batch-based branching, reduces
the complexity of the branching process noticeably but only
guarantees the calculation of a (potentially large) subset of
branches. The BM sends branch messages to all LPs in M
immediately and updates the combined execution tree with
all received LLS. In the next iteration, M is defined as the
set of all destination LPs of zero-delay events. Then, new

Algorithm 2 : Event-based branching
M <« all LPs with events at t
for all LPs | in M do
request the set of events with timestamp t from |
end for
E < all received events // complete event set
Emulate sequential branching of E.

branch messages including the zero-delay events are sent to
the LPs in M, together with identifiers of their correspond-
ing LLS of the last iteration. The LPs then restore these
LLS one after another, and perform local branching for the
received zero-delay events. This procedure is repeated until
no more zero-delay events are created. Thus, batch-based
branching is similar to acyclic branching, with the difference
that an LP may enter M more than once. See algorithm 3.

Algorithm 3 : Batch-based branching

M <= all LPs with events at t
while M # () do
perform local branching for all LPs in M
M <0 // clear M
for all received LLS s do
update combined execution tree with s
end for
for all newly created zero-delay events e do
M < M U destination LP of e // update M
end for
end while

In this section, we have discussed different algorithms for
the coordination of branching. Acyclic branching takes ad-
vantage of available information in the form of an influence
graph, and may be used when zero-delay cycles are not pos-
sible. If zero-delay cycles may occur, however, cyclic branch-
ing has to be performed. Depending on the simulation sce-
nario, either event-based branching or batch-based branch-
ing may be preferable. An important property of all algo-
rithms presented here is that they guarantee both progress
and reproducibility of the simulation.

4.3 Computation of branches

The branching mechanism for sequential DES (cf. section
3) stores branches on hard disk by taking snapshots of global
system states. Then, they are computed successively, one af-
ter another. In PDES, however, the partitioning into LPs
makes it possible to reduce simulation run-times by using
cloning techniques. The basic idea of cloning is to explore al-
ternative scenarios, but share common computations among
them. This is achieved with the help of virtual LPs, which
represent LPs in specific scenarios, and physical LPs, which
perform the actual computations, e.g. execute events. By
mapping multiple virtual LPs to the same physical LP, com-
putations can be shared among different scenarios. A physi-
cal LP which performs computations for more than one vir-
tual LP is called a shared LP. Cloning is usually triggered
at decision points, when one or more LPs are required to
show different behavior. For example, an LP may represent
a packet marker, and the possible alternative actions are
to mark a packet in order to drop it, or let the packet pro-
ceed. At a decision point, new scenarios are created globally,

and new physical LPs are created for all LPs that are im-
mediately affected by the alternative actions. For all other
LPs, virtual LPs are created and mapped to existing phys-
ical LPs. In the further course of the simulation, all shared
clones monitor the messages they receive. Whenever an LP
receives different messages for different scenarios, it clones
itself, which leads to the creation of a new physical LP and
an update of the LP mapping table. For an overview of
cloning techniques see e.g. [3, 11].

Branching points logically correspond to decision points,
and branches correspond to scenarios. Therefore, we have
implemented cloning as an alternative to our original method
(in the following referred to as classical branching). We have
realized a flexible integration of cloning based on an inter-
face: At a branching point, when the combined execution
tree has been calculated, the interface receives all combined
leaf states. Then, with classical branching, the save-and-
restore approach is taken. With cloning, however, the com-
bined leaf states are examined and new physical LPs are
created for all involved LPs. All other LPs are set as shared
clones accordingly. Finally, all future events created in the
process of branching are extracted from the combined leaf
states and scheduled at their receiving LPs. Then, the sim-
ulation is resumed, and all branches are simulated at once,
sharing event computations as much as possible [25].

4.4 Performance

In this section, we examine the performance of our PDES
branching mechanism. We have conducted several simula-
tion series with different synchronization mechanisms, and
compare the run-times of branching to corresponding simu-
lation runs with tie-breaking rules. The branching mecha-
nism was configured to use cloning techniques. For all sim-
ulations, we used 4 hosts with clock speeds of 1.8GHz and
Ubuntu linux 2.6.15-26-38. We ran multiple replications of
all simulations, and calculated 95% confidence intervals.

For our simulations, we used the synthetic workload model
described in [23], since it provides easy configurable scenar-
ios with well-defined behavior. The model consists of nodes,
which send events to each other. Each node is mapped to its
own LP. When a node executes an event with timestamp t,
it schedules a new event at another, randomly chosen node.
The timestamp of the new event is randomly chosen from the
interval [t+1,t+ 10]. We configured the model to consist of
300 nodes, with 3 initial events at every node. Additionally,
we explicitly scheduled 3 simultaneous events at one spe-
cific node at the beginning of the simulation, and another
3 simultaneous events shortly afterwards. Thus, a total of
3! 3! = 36 branches had to be computed. With regard to
APK, we set all events to be possibly-interacting, so that ex-
ecution trees had to be explored completely. All simulations
were run for 1,000 units of virtual time.

Let tpranching be the run-time of a simulation with branch-
ing, and tiiebreak the run-time with a tie-breaking rule instead.
Then we define the branching overhead as

BO = tbranching
ttiebreak
Obviously, the smaller the branching overhead, the better
the performance of the branching mechanism. Note that, in
the simulation scenarios at hand, with classical branching
we would always have BO ~ 36 (the number of branches),
independent of the synchronization mechanism.

36 4

30 4

24 4

18 A

12 A

Branching overhead

0 [1] —

Opt. Cons. DD Sync.

Cons. DA

Figure 6: Run-time of the branching mechanism
compared to tie-breaking.

Figure 6 shows the branching overhead when cloning is
used. For all synchronization mechanisms we find BO < 36.
First of all, this means that the simulations with cloning run
faster than with classical branching. There are, however,
large differences depending on the synchronization mecha-
nism. With optimistic synchronization (“Opt.”), BO = 18.5,
which means that the computation of all 36 branches takes
about 18 times as long as the simulation with a tie-breaking
rule. If, however, a conservative deadlock detection scheme
(“Cons. DD”) is used, our results show BO = 3. This means
that the simulations with branching only took three times
as long as the corresponding simulations with tie-breaking
rules. Even more encouraging are the results with a com-
pletely synchronous, globally clocked synchronization mech-
anism (“Sync.”). With BO = 1.3, the cost of branching
is almost negligible. We therefore conclude that the use
of cloning is especially profitable when frequent global syn-
chronization between the LPs is required. This is confirmed
by our simulations with a conservative deadlock avoidance
scheme (“Cons. DA”). Here, BO = 35, which means that
the use of cloning brings almost no benefit. We attribute
this to the fact that the increasing number of LPs also leads
to a much larger amount of null messages.

In summary, cloning always achieved speedup in compari-
son to classical branching. Furthermore, with some synchro-
nization mechanisms, the branching overhead was extremely
small. Thus, it is possible to analyze the effects of simulta-
neous events at a relatively low cost. If we take into account
that the examined simulation scenarios are far from optimal
for cloning (we made sure that all shared LPs were eventu-
ally cloned), this an encouraging result.

When comparing the PDES branching mechanism to the
implementation for sequential DES, we observe that detect-
ing and analyzing simultaneous events is much more compli-
cated in PDES. On the other hand, this is more than com-
pensated by the performance gains resulting from the use of
cloning, which is possible due to the partitioning into LPs.
We therefore think that an LP partitioning may also benefit
the analysis of simultaneous events in sequential simulation.
It has already been shown that the use of PDES concepts
for sequential simulation speeds up simulation runs in some
simulation scenarios [5, 15]. Therefore, we expect noticeable
performance improvements when incorporating cloning into
the sequential branching mechanism.

5. MOOSE

As the preceding sections have shown, analyzing simul-
taneous events is much more complex than the use of tie-
breaking rules. While the calculation of execution trees may
be implemented largely independent of the simulator core, it
requires some effort to “hook” the branching mechanism into
an existing simulation tool. For example, a sequential simu-
lation tool has to provide the following functionality which
is essential for branching:

e Simultaneous events have to be detected explicitly by
the event scheduler.

e It must be possible to save and restore global states.
This includes the system state variables of the simula-
tion modules as well as the state of the simulator.

e All simulation modules have to support state compar-
isons, so that duplicate states may be removed from
execution trees.

Additional functionality is required in case of a parallel
and distributed simulation tool:

e The simulator has to support a consistent way of stop-
ping the simulation at a branching point. Although
this is easily realized with modified barrier synchro-
nizations (cf. section 4.1), it may require some exten-
sions to an existing simulator core.

e Depending on the implementation of candidate events
(cf. section 4.1), they either have to be supported by
extended event timestamps, or APK tables have to be
made accessible by the scheduler.

e Events which are created during the branching pro-
cess have to be “intercepted” instead of being sched-
uled normally by the LPs. These events have to be
stored together with the LP system states in order to
represent combined leaf states correctly.

e For an efficient computation of branches, it is neces-
sary to use cloning techniques (cf. section 4.3). The
implementation of a cloning mechanism, however, has
several implications, as described in [11].

For these reasons, we have decided to develop a new sim-
ulation tool, MOOSE [17], which implements the branching
mechanisms for both sequential DES and PDES. Further-
more, MOOSE also supports the handling of simultaneous
events with tie-breaking rules, as well as several other fea-
tures commonly found in simulation tools. It is, however,
still under active development and by no means completed.
In the following, we give an overview of MOOSE, with a fo-
cus on the components related to the branching mechanism.

MOOSE is written in Java and can be divided into four
logical components (cf. figure 7). The simulator core con-
tains all objects responsible for running the simulation, e.g.
schedulers, LPs, and communication instances. Apart from
sequential DES, MOOSE supports multithreading for paral-
lel simulation and different synchronization mechanisms for
distributed simulation.

The branching component contains the algorithms for the
analysis of simultaneous events described in this paper. In
case of PDES, there are specific interdependencies with the

simulator | _ module
. ————————
core = library
A A programmer
candidate events
v
branching (¢ config [«-------
branching
strategy user

Figure 7: Central components of MOOSE.

simulator core: For a consistent detection of simultaneous
events, every synchronization mechanism provides a method
for globally synchronizing all LPs. Furthermore, some parts
of the two techniques for computing branches, i.e. cloning
and classical branching (cf. section 4.3), have been imple-
mented separately for each synchronization mechanism.

The module library contains the simulation modules, rep-
resenting e.g. network technologies and communication pro-
tocols. Although MOOSE has been developed for network
simulation in the first place, there are general base classes for
modules, which allows for the specification of any discrete-
event simulation model. The base classes also provide stan-
dard interfaces for the execution of events, event scheduling,
and trace output, so that module implementations are com-
pletely independent of the internals of the simulator core.
In order to be able to compare system states during branch-
ing, each simulation module has to implement a standard
function for an equality check. Furthermore, if specified by
the programmer, a module may provide an APK library to
increase the efficiency of branching (cf. section 3). If a mod-
ule does not provide APK, all its events are assumed to be
possibly-interacting.

The configuration for specific simulation runs may be done
either with command line parameters or a configuration file.
Currently, MOOSE configuration files are written in Groovy,
an object-oriented scripting language for the Java platform.
However, support for other scripting languages, e.g. Jython,
is easily possible. Apart from standard settings like the
scheduler type, or whether sequential or parallel and dis-
tributed DES is used, the strategy for handling simultane-
ous events may be specified: Tie-breaking rules, classical
branching, or branching with cloning techniques. Further-
more, the user may mark event types, or pairs of events, as
candidate events for branching.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we have discussed the issue of simultaneous
events in discrete-event simulation, which is the most popu-
lar technique used for network simulation. We have argued
that the user should have a means of examining different ex-
ecution orders of simultaneous events, and presented a new
simulation tool, MOOSE, which provides this functionality.

Simultaneous events are analyzed with a branching mech-
anism, which we have designed and implemented for both
sequential, and parallel and distributed simulation. With
APK tables and candidate events, the branching mechanism
may be used together with tie-breaking rules.

Our experiments with cloning techniques have shown en-
couraging results with regard to the overhead of branch-
ing. It appears that cloning can make branching a practical
method. Therefore, we plan to use the LP paradigm for se-
quential branching, too. We expect this to lead to a much
more efficient analysis of simultaneous events in sequential
simulation.

In future work, we are also going to examine the perfor-
mance of branching in a wider range of simulation scenarios,
and perform case studies in network simulation. In the pro-
cess, we will further extend the module base as well as the
APK library of the simulator.

7. REFERENCES

[1] C. Barz, R. Gopffarth, P. Martini, and A. Wenzel. A
new framework for the analysis of simultaneous
events. In Proceedings of the 2003 Summer Computer
Simulation Conference (SCSC ’03), 2003.

[2] L. Bononi, M. Bracuto, G. D’Angelo, and
L. Donatiello. Analysis of high performance
communication and computation solutions for parallel
and distributed simulation. In Proceedings of the 2005
International Conference on High Performance
Computing and Communications (HPCC ’05), 2005.

[3] D. Chen, S. J. Turner, W. Cai, B. P. Gan, and
M. Y. H. Low. Algorithms for HLA-based distributed
simulation cloning. ACM Transactions on Modeling
and Computer Simulation, 15(4):316-345, 2005.

[4] B. A. Cota and R. G. Sargent. Simultaneous events
and distributed simulation. In Proceedings of the 1990
Winter Simulation Conference (WSC ’90), 1990.

[5] R. Curry, C. Kiddle, R. Simmonds, and B. Unger.
Sequential performance of asynchronous conservative
PDES algorithms. In Proceedings of the 19th
Workshop on Principles of Advanced and Distributed
Simulation (PADS ’05), 2005.

[6] DaSSF. version 3.2.5. http:

//www.crhc.uiuc.edu/" jasonliu/projects/ssf/.

[7] R. M. Fujimoto. Zero lookahead and repeatability in
the high level architecture. In Proceedings of the 1997
Spring Simulation Interoperability Workshop, 1997.

[8] R. M. Fujimoto. Parallel and Distributed Simulation
Systems. Wiley Interscience, 2000.

[9] GloMoSim. version 2.03.
http://pcl.cs.ucla.edu/projects/glomosim/.

[10] GTNetS. http://www.ece.gatech.edu/research/
labs/MANIACS/GTNetS/.

[11] M. Hybinette and R. M. Fujimoto. Cloning parallel
simulations. ACM Transactions on Modeling and
Computer Simulation, 11(4):378-407, 2001.

[12] J-Sim. version 1.3. http://www.j-sim.org/.

[13] V. Jha and R. Bagrodia. Simultaneous events and
lookahead in simulation protocols. ACM Transactions
on Modeling and Computer Simulation, 10(3):241-267,
2000.

[14] JiST/SWANS. version 1.0.6.
http://jist.ece.cornell.edu/.

[15] C. Kiddle, R. Simmonds, and B. Unger. Channel
based sequential simulation. In Proceedings of the 37th
Conference on Winter Simulation (WSC ’05), 2005.

[16] H. Mehl. A deterministic tie-breaking scheme for
sequential and distributed simulation. In Proceedings
of the 6th Workshop on Parallel and Distributed
Simulation (PADS ’92), 1992.

[17] MOOSE - Module-based Object-Oriented Simulation
Environment.
http://web.cs.uni-bonn.de/IV/MOOSE/.

[18] NCTUns. version 3.0.
http://nsl.csie.nctu.edu.tw/nctuns.html.

[19] Ns-2. http://www.isi.edu/nsnam/ns/.

[20] OMNET++. version 3.4b2.
http://www.omnetpp.org/.

[21] ParSec. version 1.1.
http://pcl.cs.ucla.edu/projects/parsec/.

[22] PDNS. version 2.27.1a. http:
//www.cc.gatech.edu/computing/compass/pdns/.

[23] P. Peschlow, T. Honecker, and P. Martini. A flexible
dynamic partitioning algorithm for optimistic
distributed simulation. In Proceedings of the 21st
Workshop on Principles of Advanced and Distributed
Simulation (PADS ’07), 2007.

[24] P. Peschlow and P. Martini. Analyzing simultaneous
events in distributed simulation. In Proceedings of the
19th European Modeling and Simulation Symposium
(EMSS ’07), October 2007.

[25] P. Peschlow and P. Martini. Efficient analysis of
simultaneous events in distributed simulation. In
Proceedings of the 11th IEEE International
Symposium on Distributed Simulation and Real Time
Applications (DS-RT ’07), October 2007.

[26] R. Rénngren and M. Liljenstam. On event ordering in
parallel discrete event simulation. In Proceedings of
the 13th Workshop on Parallel and Distributed
Simulation (PADS ’99), 1999.

[27] T. J. Schriber and D. T. Brunner. Inside
discrete-event simulation software: How it works and
why it matters. In Proceedings of the 2006 Winter
Simulation Conference (WSC ’06), 2006.

[28] SWAN. version 1.0.1a.
http://www.eg.bucknell.edu/swan/.

[29] TCP. Transmission Control Protocol (RFC 793), 1981.

[30] X. Wang, S. J. Turner, and S. J. E. Taylor. COTS
simulation package (CSP) interoperability - a solution
to synchronous entity passing. In Proceedings of the
20th Workshop on Principles of Advanced and
Distributed Simulation (PADS ’06), 2006.

[31] A. Wenzel. Experiences with simultaneous events
using discrete-event simulation. In Proceedings of the
TASTED International Conference on Modeling and
Simulation, 1999.

[32] F. Wieland. The threshold of event simultaneity. In
Proceedings of the 11th Workshop on Parallel and
Distributed Simulation (PADS ’97), 1997.

