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It has been widely recognized in the literature that irregular low-density parity-check (LDPC) codes exhibit naturally an unequal
error protection (UEP) behavior. In this paper, we propose a general method to emphasize and control the UEP properties of LDPC
codes. The method is based on a hierarchical optimization of the bit node irregularity profile for each sensitivity class within the
codeword by maximizing the average bit node degree while guaranteeing a minimum degree as high as possible. We show that this
optimization strategy is efficient, since the codes that we optimize show better UEP capabilities than the codes optimized for the
additive white Gaussian noise channel.
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1. INTRODUCTION

The subject of the paper is the enhancement of unequal er-
ror protection (UEP) properties of low-density parity-check
(LDPC) codes suitable for UEP transmission schemes (scal-
able image transmission, etc.). UEP transmission schemes
are considered to take into account the different error sen-
sitivities of the source bitstream. For example, semantic in-
formation like headers have to be almost error free to avoid
the crash of the source decoding, whereas the data symbols
can usually tolerate some errors. The UEP can significantly
enhance the performance of the global communication sys-
tem compared to an equal error protection scheme since the
overall redundancy is allocated in order to provide more pro-
tection to the most sensitive parts of the bitstream.

Apart from multilevel coded modulations, there are com-
monly two ways to provide unequal protection depending
on the transmission scheme we consider. Firstly, one can
adapt the protection level by adaptively changing the code
rate through puncturing. Some methods for an efficient de-
sign of such adaptive coding schemes are proposed in the
literature either for punctured convolutional codes [1], for
punctured or pruned turbocodes [2, 3], or for punctured
LDPC codes [4, 5]. As these schemes are implemented using
a unique mother code, which is punctured depending on the
required level of protection, they have been widely proposed
in combined source and channel coding (CSCC) schemes
for the purpose of multimedia transmissions (see, e.g., [6]

and references therein). In these UEP coding schemes, rate-
compatible error correcting schemes are combined with a
rate-allocation algorithm to mainly minimize the distortion
of the source at the receiver. As the channel code design and
UEP allocation algorithm are considered separately, making
the design of good rate compatible coding schemes com-
pletely independent of the considered CSCC scheme, these
coding schemes can be further improved by considering a
joint source-channel (de)coding approach (see [7, 8], e.g., in
case of LDPC codes). In these approaches, the distortion-rate
or mutual information transfer function are directly used for
the optimization of the irregularity profiles, and thus, UEP
allocation could naturally arise from the optimization pro-
cess.

Secondly, one can design codes that provide inherent un-
equal error protection within a codeword. This was early
studied in [9, 10] to design linear UEP codes. For such codes,
the bits within a codeword do not have the same protection
level and error correction capability. For example, if we con-
sider packet-based transmissions with no possibility of re-
transmission, an error in network/transport layer headers is
much more critical than an error in the payload to avoid the
rejection of the packet. Moreover, for some wireless video-
based communications, syntax reordering mechanisms, such
as data partitioning, are used to reorder data in the bit-
stream in accordance with their semantic importance (e.g.,
I/P/B frames or movement vectors) and their required level
of protection. In all these cases, for a given source codeword,
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the most sensitive bits are associated to information bit posi-
tions with the highest protection level.

In this context, irregular LDPC codes can provide inher-
ent unequal error capability due to the different connection
degrees of the bit nodes. As widely observed, it appears that
highly connected nodes are more protected than weakly con-
nected ones. This irregularity can be used to provide inher-
ent UEP, in the sense that high sensitivity bits are associated
with high connection degree bit nodes [11, 12]. The opti-
mization of the LDPC irregularity has already been proposed
for different channels as the binary erasure channel (BEC)
[13] or the additive white Gaussian noise (AWGN) channel
[14]. In these approaches, the codeword irregularity is glob-
ally optimized for a specific channel considering therefore
that each and every bit in the codeword has the same aver-
age error probability. Thus, the existing optimization tech-
niques do not necessarily ensure a good UEP capability, as
underlined in [15]. The work in [15] first proposed an ad-
hoc graph-based approach to optimize the irregularity pro-
file in order to have UEP within a codeword with two classes
of sensitivity. This work has been more formally stated and
extended by [16–18], for the design of UEP LDPC codes
for the BEC: considering two information classes, they first
derive the density evolution for the BEC channel using a
more refined parametrization to take into account the UEP
characterization. Then, they optimize the irregularity profile
in order to improve the performance of the most sensitive
class; but they only consider partially regular (same variable
node degree per class), leading to a limited solution search
space. More recently, the studies for the UEP characteriza-
tion of LDPC codes have been extended to the case of Raptor
codes [19]; but however, no other channel than the BEC has
been considered so far for the characterization of the UEP
behavior of LDPC codes. All these approaches are mainly
based on asymptotic assumptions to derive good irregular-
ity profiles, even if they present some algebraic construction
aspects for finite-length design [17]. Apart from these con-
tributions, LDPC-based algebraic constructions for UEP ap-
plications were proposed. A simple scheme based on lower
block triangular parity-check matrix has been proposed in
[20] with a two-stage decoding algorithm. The UEP property
arises directly from the simple structure of the designed code.
A more refined algebraic construction has been proposed in
[21], where a layered Plotkin-based construction is proposed
based on LDPC component codes. In this scheme, the op-
timization consists of selecting good component codes, and
UEP arises from the structure of the layered coding scheme.
Note that for that kind of construction, multistage decoding
(or an improved version) is preferred to belief propagation
decoding due to the inherent presence of short cycles in the
graph of the code.

As opposed to these methods, using asymptotic tools, we
investigate the characterization of UEP for LDPC codes for
the Gaussian channel by allowing parts of the same codeword
to have their own irregularity profiles, regardless of particular
algebraic structures. In this paper, we show that it is possible
to generalize the asymptotic characterization and optimiza-
tion techniques in order to take into account a target UEP
behavior of the LDPC code for the Gaussian channel. As dis-

cussed in details in Section 4, we interpret the UEP proper-
ties of an LDPC code as different local convergence speeds.
Actually, the most protected class will be assigned to the bits
in the codeword which converge to their right value in the
minimum number of decoding iterations.

The new design strategy that we propose is based on two
main differences compared to existing work. Firstly, we show
that by appropriately changing the optimization objective
function and by adding constraints, it is possible to increase
the local convergence speed, and then to enhance the UEP
properties of the LDPC code without significantly degrad-
ing the overall error convergence performance. Secondly, we
use an extended parametrization for the LDPC code irregu-
larity, that is adapted to a desired UEP scheme, by allowing
distinct irregularity profiles for each sensitivity class. We then
propose a hierarchical optimization procedure to design effi-
ciently an LDPC code irregularity in this framework.

The paper is organized as follows. In Section 2, we de-
scribe the UEP parameters and give some notations used in
the paper. In Section 3, we analyze how the irregularity can
be exploited for UEP and derive a cost function suitable for
UEP. The optimization algorithm we propose is given in Sec-
tion 4. Optimization results and finite-length simulations are
given and interpreted in Section 5. Conclusions and perspec-
tives are drawn in Section 6.

2. UEP PARAMETER DESCRIPTION AND
ASSOCIATED LDPC PARAMETRIZATION

2.1. UEP parameter description and notations

The transmission scheme consists of sending a coded bit-
stream under given UEP constraints over the AWGN chan-
nel with binary input and noise variance parameter σ2. The
UEP-coded bitstream can be described and parameterized
as follows: let a channel codeword of a rate R LDPC code
be divided into Nc classes ordered in decreasing order of
their error sensitivity. Thus, considering the set of Nc classes
{Ck | k = 1 . . . Nc}, C1 will be associated with the highest re-
quired protection level and CNc with the lowest. The redun-
dancy bits of the channel codeword are associated with class
CNc and the information bits are associated with the (Nc − 1)
first classes. Let the proportions α = {αk | k = 1 : Nc − 1}
be the normalized lengths of each class corresponding to the
information bits with

∑ Nc−1
k=1 αk = 1. The proportions α are

usually provided by a data partitioning mechanism, for ex-
ample. The proportions of bits in the channel codeword be-
longing to the different classes {Ck/k = 1 . . . Nc} are given by
p = {α1R, . . . ,αNc−1R, (1− R)}.

Example

We consider a rate R = 1/2 code and three sensitivity classes.
The redundancy bits are associated with class C3 and the in-
formation bits are divided into two error sensitivity classes:
C1 is the most sensitive class (typically headers) and C2 is
the less sensitive class (typically data). The proportion dis-
tribution for information bits is given by α = {α, 1 − α}.
The proportions of bits of the channel codeword belonging
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to the different classes {C1,C2,C3} are given by p = {αR, (1−
α)R, (1− R)}.

Let dcmax and ρ(x) =∑ dcmax
j=2 ρjx

j−1 be the maximum check
node connection degree and the generating polynomial of
the proportion of edges connected to check nodes with con-
nection degree j [22], respectively. We assume that ρ(x) is the

same for each class. Let d(k)
vmax be the maximum bit node con-

nection degree in the class Ck. For each class Ck, we define

λ(Ck)(x) = ∑ d(k)
vmax
i=2 λ(Ck)

i xi−1 and λ̃
(Ck)

(x) = ∑ d(k)
vmax
i=2 λ̃

(Ck)

i xi−1 the
generating polynomial of the proportion of edges connected
to bit nodes with connection degree i and the dual generating

polynomial, where λ̃
(Ck)

i is the fraction of degree-i bit nodes.
The following equalities hold:

Nc∑

k=1

λ(Ck)(1) = 1,
Nc∑

k=1

λ̃
(Ck)

(1) = 1;

∀k = 1, . . . ,Nc − 1,
d(k)
vmax∑

i=2

λ̃
(Ck)

i = αkR;

d(k)
vmax∑

i=2

λ̃
(Nc)

i = (1− R).

(1)

The relationbetween λ(Ck)
i and λ̃

(Ck)

i is given by

λ̃
(Ck)

i = λ(Ck)
i /i

∑
k

∑
i′λ

(Ck)
i′ /i′

. (2)

In the sequel, we denote λ(Ck) = [λ(Ck)
2 , . . . , λ(Ck)

d(k)
vmax

]� and ρ

the vectors associated with λ(Ck)(x) and ρ(x), respectively. 1
is a one valued vector and � is used for the transpose vector.

We assume that dvmax = max (d(k)
vmax )∀k = 1, . . . ,Nc. We also

set 1/dv = [1/2, . . . , 1/dvmax ]�, 1/dc = [1/2, . . . , 1/dcmax ]�, and

λ = [λ(C1), . . . , λ(CNc )]�. With these notations, an LDPC code
irregularity is parameterized by (λ, ρ, p).

Note that this detailed parametrization of the bit node ir-
regularity is specifically matched to several classes of different
sensitivities and is a necessary step for LDPC code optimiza-
tion under UEP constraints. By allowing parts of the same
codeword to have their own irregularity profile, it is possi-
ble to exhibit local behavior for the belief propagation (BP)
decoder and the adapted optimization strategy described in
Section 4 capitalizes on this detailed parametrization in or-
der to yield LDPC codes with enhanced UEP properties.

2.2. Mutual information evolution

In order to optimize LDPC codes, we need analytical tools to
study the convergence of the LDPC code depending on of the
code parameters. Using a Gaussian assumption for log den-
sity ratio (LDR) message and independence assumption be-
tween LDR messages (infinite codeword size), we can explic-
itly give the evolution of the mutual information (MI) asso-
ciated with the mean of the LDR messages for one decoding
iteration depending on the code parameters when BP decod-
ing is used [23]. The explicit relation describing the evolution

of the MI from iteration l − 1 to iteration l defines the EXIT
chart associated with the LDPC code.

We denote x(l)
u and x(l)

v , the mutual information associ-
ated with LDR messages at the input of bit nodes and the
mutual information associated with LDR messages at the in-
put of check nodes at the lth decoding iteration, respectively.

Assuming Gaussian approximation [14, 23], we have:

(1) check node message update:

x(l−1)
u = 1−

dcmax∑

j=2

ρjJ
(
( j − 1)J−1(1− x(l−1)

v

))
, (3)

(2) bit node message update:

x(l)
v =

Nc∑

k=1

dvmax∑

i=2

λ(Ck)
i J

(
2
σ2

+ (i− 1)J−1(x(l−1)
u

)
)

, (4)

with J(·) being the mutual information function
J(m) = 1 − E(log 2(1 + e−x)) of a Gaussian random
variable x∼N (m, 2m). Combining (3) and (4) gives
the EXIT chart of the LDPC code:

x(l)
v = F

(
λ, x(l−1)

v , σ2
)
. (5)

For more details on LDPC EXIT charts refer to [23].
The initial condition is given by x(0)

v = 0. The con-
dition F(λ, x, σ2) > x∀x ∈ [0, 1) ensures the conver-
gence of BP algorithm to an error-free codeword.

3. COST FUNCTION FOR LDPC OPTIMIZATION
WITH UEP CONSTRAINTS

In this section, we discuss and analyze how the irregularity of
the LDPC code can be used and optimized to provide UEP.

3.1. Providing UEP with capacity achieving
codes: a valid question ?

LDPC codes exhibit a threshold behavior depending on the
channel signal-to-noise ratio Eb/N0: above a given Eb/N0

threshold δ, the word-error probability Pw is zero as the word
length N tends to infinity. Let us remark at this point that
the asymptotic performance criterion for optimizing fami-
lies of LDPC code is the gap between the convergence thresh-
old and the Shannon limit defined as a zero-frame error rate
[24]. As a consequence, the optimized LDPC codes with large
code lengths cannot provide any unequal error protection
since the goal is to have no errors at all in the codeword.
This complicates the task of providing UEP behavior with
LDPC codes. On the other hand, more and more standards
use modern coding schemes like LDPC or Turbocodes, which
means that looking for UEP capabilities with these codes is
indeed a key research issue. A general discussion about this
issue is done in this section.

When using the asymptotic characterization of the pre-
ceding section, one assumes that all edges are sequentially
updated at the bit node side and the check node side. This
particularly means that the EXIT chart equations express
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only the global behavior of one decoding iteration and no lo-
cal behavior is taken into account. With this approach, there
is no possibility to provide controlled unequal error protec-
tion, which is by nature a local property.

Irregular LDPC codes are however codes which are nat-
urally well suited for UEP if we consider the different pro-
tection levels as parts of the codeword which converge more
rapidly than others. In an irregular LDPC code, some bits
are more protected than others after a single decoding itera-
tion since the connectivity differs from one bit to another.
For example, if a bit is connected to a large number of edges,
sometimes denoted as elite bit, it gets a lot of information in
a single iteration while a low connected bit receives less in-
formation and will be less protected.

So even with asymptotic analysis, it is possible to have
UEP LDPC codes with the effect of different local convergence
speeds. The general idea is then to have the most sensitive
class which converges the most rapidly in order to have it er-
ror free with the minimum number of iterations. Of course,
the difference in error protection will be diminished with an
increased number of decoding iterations, and eventually van-
ish with an infinite number of iterations.

Let us then illustrate the link between bit node irregu-
larity and the associated bit error probability after a finite
number of iterations. If we assume that the graph is locally
a tree (in the sense of [24]), the bit error probability at the
lth decoding iteration for bit nodes with a connection degree
i under Gaussian approximation [14] is given by

P(l)
i = Q

⎛

⎝

√

(2/σ2) + iJ−1(x(l)
u )

2

⎞

⎠ , (6)

where Q(·) is the Gaussian tail function given by

Q(x) = 1√
2π

∫ +∞

x
e−z

2/2dz. (7)

Above a threshold δ, J−1(x(l)
u ) is strictly increasing with

decoding iteration l. Q(·) being a strictly decreasing func-
tion, (6) shows that, at a given iteration l, the more connected
a bit node is, the more “protected” it is, in the sense that it has
a smaller error probability. This also implies that the conver-
gence is faster for the highly connected bits. Now that we have
explained how the irregularity can help us to provide UEP, we
focus on the case of a specific class of sensitivity in a coded
bitstream.

3.2. Protection within a single class of sensitivity

As defined in Section 2.1, the codeword is divided into Nc

sensitivity classes. For a given code profile, each and ev-
ery class Ck within the codeword is associated with a dual

parametrization polynomial λ̃
(Ck)

(x) =∑ dvmax
i=2 λ̃

(Ck)

i xi−1.

According to [14], the bit error probability P(Ck)
l for the

class Ck is defined as

P(Ck)
l = 1

αkR

dvmax∑

i=d(k)
vmin

λ̃
(Ck)

i Q

⎛

⎝

√

(2/σ2) + iJ−1(x(l)
u )

2

⎞

⎠ . (8)

d(k)
vmin is the minimum bit node degree in the class Ck. From

(8), we can derive a lower and an upper bound on the bit er-
ror probability in class Ck (see (9)). The lower bound is ob-
tained using convexity arguments on the Q(·) function and
the upper bound is obtained using the decreasing property
of the Q(·) function. Note that these bounds are in general
very loose and we will use them only to justify our approach:

Q

⎛

⎜
⎜
⎝

√
√
√
√ (2/σ2) + λ̃

(Ck)
J−1(x(l)

u )
2

⎞

⎟
⎟
⎠

≤ P(Ck)
l ≤ Q

⎛

⎝

√
(2/σ2)+ d(k)

vmin J−1(x(l)
u )

2

⎞

⎠ .

(9)

In (9), the average bit node degree associated with the class
Ck is defined as

λ̃
(Ck) = 1

αkR

dvmax∑

i=d(k)
vmin

λ̃
(Ck)

i i. (10)

The lower bound corresponds to the case where we con-
sider the bit error probability associated with the mean of
the a posteriori LDR messages associated with class Ck using
a Gaussian assumption. The upper bound is the limit case
of a uniform connection degree distribution associated with
class Ck, as if the LDPC code would be regular with degree

d(k)
vmin in the class.

According to (9), the bit error probability is closely re-

lated to λ̃
(Ck)

and d(k)
vmin . However, it is not easy to track the

behavior of the bit error probability with (9) since the MI

at the lth iteration x(l)
u is a function of both quantities λ̃

(Ck)

and d(k)
vmin . To circumvent this dependance, we make the as-

sumption that two codes with close thresholds have almost
the same convergence rate (the evolution of the quantities

x(l)
u are very close), regardless of the parameters values λ̃

(Ck)

and d(k)
vmin .

Based on this assumption, we can study the influence of

λ̃
(Ck)

and d(k)
vmin on the bit-error probability:

(1) for a given λ̃
(Ck)

, by maximizin d(k)
vmin , we force the in-

equality to be as tight as possible;

(2) by setting λ̃
(Ck)

as large as possible, we try to minimize
the minimum bit-error probability we can reach for
this class.

This implies that, by jointly optimizing the average bit
node degree and the minimum bit node degree associated
with a class, we expect to obtain a bit-error probability as
small as possible for a fixed and relatively small number of
decoding iterations. Therefore, for a given class Ck, we pro-
pose to use as a cost function the maximization of the average

bit node degree λ̃
(Ck)

subject to a maximum bit node degree

d(k)
vmin .
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Inserting (2) in (10) and considering that the code rate

R is constant (and so,
∑

k

∑
i′λ

(Ck)
i′ /i′ is constant), the maxi-

mization of (10) is equivalent to the maximization of

dvmax∑

i=d(k)
vmin

λ(Ck)
i . (11)

This can be interpreted as a maximization of the propor-
tion of edges in the part of the parity check matrix associated
with the the class Ck. Thus, more messages will transit to this
part of the graph ensuring a faster local convergence.

4. A HIERARCHICAL APPROACH FOR LDPC CODES
OPTIMIZATION WITH UEP CONSTRAINTS

In this section, we present our optimization strategy to en-
hance UEP properties of LPDC codes when transmission
over the AWGN channel is considered. Based on the previous
observations, we show that the optimization problem can be
solved through a hierarchical process, each step consisting of
the optimization of the average bit node degree in a single
class subject to a maximized minimum degree and some con-
straints provided by previous steps. Each step can be achieved
by linear programming.

According to [14, 22], we will consider the LDPC codes
that converge to a vanishing bit error probability at a given
Eb/N0 (the code threshold). Let us denote δ the threshold of
the optimized LDPC irregularity without UEP constraints as
in [14]. An optimization algorithm that takes into account
the specific UEP constraints will result in an optimized code
with a threshold greater than δ (worse threshold).

In order to be sure that the UEP constraints do not lead
to a too-large degradation of the threshold, we limit the set
of possible LDPC codes to those whose convergence thresh-
old lies within [δ, δ + ε], with ε a small constant fixed in the
optimization algorithm. If ε is small enough, the global con-
vergence of the code will be approximatively the same as for
the code obtained without UEP constraints, as explained in
Section 3.2.

4.1. The optimization of a class profile as a conditional
linear programming problem

In this section, we only focus on the optimization of a sin-
gle class Ck, that is, the optimization of the irregularity for
the part of the codeword associated with this class. We as-
sume that all the optimizations for classes {Ck′ , k′ < k}
have already been performed and the results of these opti-
mizations are used as constraints in the current optimiza-
tion process. At the beginning of the optimization of a sin-
gle class Ck, we assume that the following parameters are
given: dvmax , ρ(x), δ, ε, α, and λ(Ck′ )∀k′ < k (The last param-
eters are assumed to be known from previous optimization
steps).

The proposed optimization is performed by maximizing
the average bit node degree of the class Ck for a decreasing

d(k)
vmin from dvmax to 2. The iterative procedure is stopped when

a solution of an LDPC code is found which converges at a

(1) Initialization d(k)
vmin = dvmax .

(2) While optimization failure (any constraint is not fulfilled):
(a) maximize the average bit node degree (cf. (10)

and (11))

max
λ
λ(Ck)�1 (12)

under the following constraints
• global constraints:
[C1] rate constraint:

∑

k

λ(Ck)�1/dv = (1− R)−1ρ�1/dc, (13)

[C2] proportion constraints:

(i)
∑

k

λ(Ck)�1 = 1, (14)

(ii)
∀k ∈ {1, . . . ,Nc − 1},

λ(Ck)�1/dv = αc
R

1− Rρ
�1/dc,

(15)

[C3] convergence constraint (cf. (5)):

F(λ, x, σ2) > x, (16)

[C4] stability condition:

∑

k

λ
(Ck)
2 < e1/2σ2

/
dcmax∑

j=2

ρj( j − 1), (17)

• class constraint:
[C5] minimum bit node degree constraint:

∀i < d(k)
vmin

, λ
(Ck)
i = 0, (18)

• conditional constraints:
•[C6] Previous optimizations constraints:

∀k′ < k, λ(Ck′ ) is fixed (19)

(b) d(k)
vmin = d(k)

vmin − 1
end

Algorithm 1

fixed threshold ∈ [δ, δ + ε]. For a given threshold δ + ε (and
then a given noise power σ2) and a check node degree dis-
tribution ρ(x), the optimization of the class Ck can be stated
as a linear programming problem subject to three types of
constraints as shown in Algorithm 1.

When the optimization process is successful, we store the
distribution associated to the class being optimized in order
to use it as a constraint for the next class.

The cost function used in (12) only depends on λ(Ck),
which is a cost function only afferent to the class to be op-
timized. The optimization results are however the vectors
{λ(Ck′ )

opt ∀k′ ≥ k} which are involved in the global constraints.
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(1) Choose Eb/N0 = δ + ε.
(2) For k = 1 . . . Nc − 1:

a) find λ(Ck)
opt and d(k)

vmin opt with the optimization
procedure described in Section [4.1].

b) compute the constraints of the next step

with {(λ(Ck′ )
opt ,d(k′)

vmin opt)∀k′ ≤ k}

Algorithm 2: Hierarchical UEP optimization algorithm.

The conditions [C1]–[C4] are global constraints related to
code convergence, rate, and proportion distribution con-
straints. [C5] is related to the local constraint of the mini-
mum bit node degree of the class Ck; and finally [C6] takes
into account the optimized irregularities of the previous
classes.

4.2. Hierarchical optimization algorithm

We propose a hierarchical approach for the successive op-
timization of all classes. We will start to optimize the most
sensitiveclass and perform the hierarchical optimization in
decreasing order of sensitivity. Assuming that dvmax and ρ(x)
are given, Algorithm 2 illustrates this hierarchical approach.

Optimizing the classes in decreasing order of sensitivity
tries to take into account that the source data are partitioned
in decreasing order of sensitivity and that the source decod-
ing is usually sequential. In the following section, we will
apply this algorithm with different values of ε and compare
to an LDPC code optimized for the AWGN channel without
UEP constraints.

5. RESULTS

In this section, some simulation results are presented to illus-
trate the performance of the LDPC codes optimized for the
AWGN channel with UEP constraints. First, we analyze the
results provided by the linear programming optimization in
the case of infinite codeword length. Then, we focus on the
performance in the case of finite codeword length.

5.1. Influence of threshold offset on
the code irregularity

We consider a UEP transmission scheme with 3 classes
within a codeword: C1 is the high error sensitivity infor-
mation bits class, C2 the low error sensitivity information
bits class, and C3 is assigned to redundancy bits. The infor-
mation bits proportions are given by α = (α1,α2), which
can take different values. We will consider rate R = 1/2
LDPC codes. We assume that dvmax is fixed to dvmax = 30.
ρ(x) = 0.0437x7 +0.9563x8 is fixed to the value of the AWGN
optimized LDPC code [25]. δ is the Eb/N0 threshold in dB of
the AWGN optimized code and ε is the Eb/N0 offset.

Figure [1] gives the minimum degree for the first class
versus ε for different information bit proportions α =
(α1,α2). As we can see, the minimum degree increases with
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Figure 1: Minimum bit node degree for class 1 versus ε. As ex-
pected, the minimum bit node degree increases with ε. The increase
is faster when proportions associated with the class 1 are low.

Table 1: Degree distributions for R = 1/2 AWGN code with α =
(0.3, 0.7). The higher connection degrees are associated with the
more sensitive class as done in [11].

AWGN

C1 C2 C3

λ7 0.0271 λ3 0.1765 λ2 0.2114

λ8 0.1587 λ5 0.0541 λ3 0.0180

λ30 0.2943 λ7 0.0599 — —
∑

iλ
(C1)
i 0.4801

∑
iλ

(C2)
i 0.2905

∑
iλ

(C3)
i 0.2294

increasing ε values. Therefore, the UEP-LDPC code is ex-
pected to exhibit a better UEP behavior than the AWGN op-
timized code for this class; as for low ε values, the minimum
degree converges to the minimum degree of the AWGN op-
timized code. We also remark that the increase of the mini-
mum degree is less significant when α corresponds to a uni-
form repartition.

Tables 1, 2 and 3 give some degree distributions for α =
(0.3, 0.7), dvmax = 30 and ρ(x) = 0.0437x7 + 0.9563x8. As we
can see, when ε increases, the minimum degree of the first
class is increasing and the total edge proportion associated to
the first class is maximized. For the second class, we can see
the effect of the hierarchical procedure: we have less diver-
sity in terms of connection degrees associated with the sec-
ond class. This results in a concentration of the connection
degrees of the second class on lower connection degrees.

In order to predict the behavior of the expected gain
achieved by the UEP-LDPC codes, we study the asymptotic
Eb/N0 gains achieved for class 1 and 2 with l = 7 decoding it-
erations and bit error rate BER= 10−5 when using MI evolu-
tion. In order to compare UEP capabilities of the UEP-LDPC
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Table 2: Degree distributions for the different classes with ε = 0.05.
R = 1/2.

UEP (ε = 0.05)

C1 C2 C3

λ10 0.2310 λ3 0.14615 λ2 0.2100

λ11 0.0218 λ4 0.11795 λ3 0.0201

λ30 0.2529 — — — —
∑

iλ
(C1)
i 0.5058

∑
iλ

(C2)
i 0.2641

∑
iλ

(C3)
i 0.2301

Table 3: Degree distributions for the different classes with ε = 0.5.
R = 1/2.

UEP (ε = 0.5)

C1 C2 C3

λ16 0.4774 λ3 0.2346 λ2 0.2210

λ17 0.0573 — — λ3 0.0036

λ18 0.0027 — — — —

λ19 0.0010 — — — —

λ20 0.0024 — — — —
∑

iλ
(C1)
i 0.5408

∑
iλ

(C2)
i 0.2346

∑
iλ

(C3)
i 0.2246

codes and the AWGN optimized LDPC codes, we assign for
the AWGN optimized code the information bits belonging to
the first class to the α1R most connected bit nodes, the in-
formation bits of the class C2 to the α2R most connected re-
maining bit nodes, and so on up to the N th

c − 1 class. Finally,
the redundancy bits are associated to the remaining (1 − R)
bit nodes. This is the natural way of assigning bit nodes to
provide enhanced UEP capabilities to the first classes.

The study is done for various α and dvmax = 30 and
dvmax = 15 and R = 1/2. For dvmax = 15, we have the follow-
ing parameters ρ(x) = x7 and α = (0.3, 0.7). The simulation
results are given in Figure 2.

The asymptotic Eb/N0 gain is defined as the difference in
Eb/N0 to reach a BER= 10−5 (8) between the LDPC codes op-
timized with UEP constraints and the LDPC code, optimized
for the AWGN channel without UEP constraints. In all cases,
the Eb/N0 gain for the first class increases when ε increases. In
that sense, we have improved the UEP capability for the first
class. For the second class, the UEP behavior depends on ε.
For small values of ε and dvmax = 30, the second class exhibits
also a slight improvement compared to the AWGN optimized
code. However, when ε increases, the UEP-LDPC codes per-
form worse than the AWGN code for the second class. This
can be interpreted as follows: when ε increases, since we first
optimize the more sensitive class, we assign too many edges
to the first class. The second class will be more constrained
and will have concentrated low degrees. Moreover, with in-
creasing ε, the global convergence of the UEP-LDPC codes
become worse, and since the second class is weaker, it is more
sensitive to convergence weakness. For a given α, we observe
that, for dvmax = 15, we reach the best UEP capability faster
than for dvmax = 30.; but this has to be balanced with the
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Figure 2: Eb/N0 gain for information classe C1 and C2. The Eb/N0

gain is obtained for BER = 10−5.

performance of the second class: the asymptotic Eb/N0 loss is
less for dvmax = 30 than for dvmax = 15. Finally, it can be seen
that for a given dvmax , the gain can be better for α that are far
from uniform distribution, since we can allocate more edges
for the first class.

All these observations are confirmed by simulations.
Hence, in order to select a good candidate for improved UEP,
we have to find a code leading to a good tradeoff regarding
the performance of the two classes.

5.2. Finite length simulation results

In this section, we study the performance of LDPC codes
optimized for the AWGN channel with UEP constraints for
finite-length codewords and the case of three classes of sensi-
tivity.

The parameters in this section are ρ(x) = 0.0437x7 +
0.9563x8, dvmax = 30, N = 4096 and N = 30000, R = 1/2,
α = (0.2, 0.8), ε = 0.1, and ε = 0.5. We compare the
BER performance for class 1 and 2 versus Eb/N0 between the
UEP-LDPC code and the AWGN optimized LDPC code after
l = 7 decoding iterations. As seen in Figures 3 and 4 for BER
= 10−5 and ε = 0.1, we have improved performance for both
information classes: about 0.5 dB for class 1 for N = 4096
or N = 30000, and for the second class, about 0.25 dB for
N = 4096 and 0.2 dB for N = 30000. For ε = 0.5, we have
improved performance only for the first class: about 0.8 dB
for N = 30000 and 0.7 dB for N = 4096. For the second
class,as predicted by asymptotic curves, we have a slight loss
in performance: −0.25 dB for N = 4096 and −0.2 dB for
N = 30000.
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Figure 3: Bit error rate performance of different classes versus
Eb/N0 after 7 decoding iterations. We have improved performance
for class 1 and 2 for the LDPC code optimized with UEP constraints
N = 4096.
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Figure 4: Bit error rate performance of different classes versus
Eb/N0 after 7 decoding iterations. We have improved performance
for class 1 and 2 for the the LDPC code optimized with UEP con-
straints N = 30000.

6. CONCLUSION

In this paper, we have proposed a general method to optimize
LDPC codes under UEP constraints. The proposed strategy
takes advantage of the link between UEP and local conver-
gence speed, and is based on the hierarchical optimization of
irregularity profiles in each class of sensitivity under specific
UEP constraints. As a local objective function, we have pro-

posed the maximization of the average bit node degree in a
given class while guaranteeing a minimum degree as high as
possible. This strategy shows encouraging results, since the
codes optimized with UEP constraints show better UEP ca-
pabilities than existing codes. Note that our method could be
extended to other types of memoryless channels without dif-
ficulties and we successfully applied it in a progressive image
transmission context [26].

One should however recall that LDPC codes are very in-
teresting UEP codes if the number of decoding iterations is
limited to a reasonable number, which would be fixed by a
target latency of the decoder. For example, if the decoder has
to work in real time, the number of decoding iterations will
be fixed by the channel bit rate as well as the clock frequency
and the level of parallelism of the decoder hardware.
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