
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
ValueTools’06 , October 14, 2006, Pisa, Italy  
© 2006 ACM 1-59593-504-5/06/10…$5.00

OPEDo: A Tool Framework for Modeling and Optimization
of Stochastic Models

Peter Buchholz Peter Kemper
Dennis Müller Axel Thümmler

Informatik IV
Universität Dortmund

D-44221 Dortmund, Germany

opedo@ls4.cs.uni-dortmund.de
http://ls4-www.cs.uni-dortmund.de/Opedo

ABSTRACT
A model-based design of systems requires appropriate tool
support in many ways. It requires a modeling notation that
suits the application problem, a set of analysis techniques
that provide qualitative and/or quantitative results, and fi-
nally some optimization methods that help a designer to
make appropriate design decisions. The challenge is to inte-
grate those components into a homogenous framework such
that a model based design takes advantage from synergy ef-
fects that result from a sophisticated combination of model-
ing formalism, analysis and optimization technique. In this
paper, we present OPEDo, a tool framework that integrates
modeling tools and analysis engines with state-of-the-art op-
timization methods. With respect to modeling, it contains
the ProC/B editor for specifying open process-oriented sim-
ulation models, the APNN Toolbox for modeling with sto-
chastic Petri nets, and OMNet++, for modeling using a
simulation language. OPEDo provides analysis techniques
for stochastic models based on discrete event simulation,
based on queueing network analysis and numerical analysis
techniques for continuous time Markov chains with the help
of HIT, OMNeT++, and APNN Toolbox. Optimization of
stochastic models has particular challenges due to the cost
of model evaluation and the precision of results that can be
achieved, so OPEDo contains specially adjusted variants of
a variety of optimization methods, which includes response
surface methodology, evolutionary strategies, genetic algo-
rithms, and Kriging metamodeling techniques.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: PERFORMANCE
OF SYSTEMS; G.3 [Mathematics of Computing]: PROB-
ABILITY AND STATISTICS; I.6 [Computing Method-
ologies]: SIMULATION AND MODELING

General Terms
Algorithms, Performance, Reliability, Measurement

1. INTRODUCTION
Providing adequate tool support for the design of real world
systems has been stimulating research in modeling tech-
niques and tools for decades. A multitude of frameworks
has been developed, many of those emphasize quantitative
system properties. If the purpose of a framework is on de-
cision support, there are three aspects that require consid-
eration. First, a modeling notation that provides means to
describe a model as well as to formulate requirements or
properties that are of interest for a quantitative evaluation.
Second, some analysis techniques that are applied to obtain
quantitative values for those properties of interest. Third,
a notation and methodology for optimization is necessary.
The notation is used to formulate degrees of freedom for
a model and to formulate objectives that shall be achieved
while the optimization methodology is necessary to identify
optimal configurations. The latter is based on some search
technique that evaluate an objective function with results for
individual models computed with some analysis techniques.

Even if we restrict ourselves to stochastic models of discrete
event dynamic systems (DES), each of those three aspects
above allows for a variety of choices and most existing tools
support a particular combination thereof. Fu et al provide
an overview in [8]. Examples for such combinations in com-
mercial simulation tools are Automod with Autostat, which
uses evolutionary and genetic algorithms, similarly for Ex-
tend with Evolutionary Optimizer, RISK with RISKOpti-
mizer, which uses genetic algorithms, WITNESS with Opti-
mizer, which uses simulated annealing and tabu search. An
example for a more rich set of combinations is OptQuest,
which can be combined with a variety of simulation engines
including Arena, Crystal Ball, and ProModel, and which
uses scatter search, tabu search and neural networks. How-
ever, choices for optimization methods and analysis methods
are more rich than what is currently available and we see a
demand for a more flexible and open solution. An optimiza-
tion engine that supports a multitude of optimization meth-
ods can be combined with any analysis engine that is able
to evaluate an objective function for a given model configu-
ration. However, analysis of stochastic DES has particular



challenges that an optimization method should reflect to be
efficient. Simulation results are not precise, but estimates
that come with confidence intervals and small confidence
intervals can require substantial computation effort. Exact
numerical analysis of Markovian and specific non-Markovian
models can be computationally very costly, while approxi-
mate techniques usually give results with an unknown ap-
proximation error. Most queueing network techniques are
computationally inexpensive but restrictions and abstrac-
tions used to model a system by a queueing network may
imply an approximation error on the modeling side.

In this paper, we describe OPEDo, the Optimization and
Performance Evaluation tool from the University of Dort-
mund, which integrates multiple modeling formalisms and
multiple analysis techniques with state-of-the-art optimiza-
tion methods. In its current version, OPEDO is dedicated
to single criterion optimization problems. Parameters of an
objective function, resp. factors in operations research ter-
minology, can be taken from both discrete and continuous
domains. Corresponding models are parameterized in the
sense that fixing values of all parameters yields a stocha-
stic model that can be evaluated by conventional analy-
sis techniques, for instance by a discrete event simulation.
We have investigated synergy effects among analysis tech-
niques and optimization methods, e.g., using evolutionary
strategies with Ranking and Selection algorithms and sim-
ulation [6], using evolutionary strategies and exact and ap-
proximate analysis techniques of Markov Chains [4] and us-
ing response surface methodology with numerical analysis
of Markov chains [11].

The rest of the paper is structured as follows. In Section
2, we describe in further detail which modeling formalisms
are currently supported, how other notations can be inte-
grated due to an open interface and how parameters can be
specified. In Section 3, we briefly recall common analysis
techniques that are supported, namely discrete event sim-
ulation, queueing network analysis and numerical analysis
techniques for finite Markov chains. We focus in particu-
lar on those properties that are relevant for optimization
methods. Section 4 briefly summarizes optimization meth-
ods that are supported in OPEDo, namely response surface
methodology, pattern search, Kriging metamodels and var-
ious evolutionary strategies. Section 5 is devoted to the
mutual requirements and synergy effects between analysis
techniques and optimization methods and how those are
addressed in OPEDo. Section 6 illustrates OPEDo’s soft-
ware architecture and interfaces, while Section 7 exercises
an application example to shed some light on how to apply
OPEDo in practice. We conclude in Section 8.

2. MODELING
The design of a modeling notation for DES is usually influ-
enced by the envisaged application area, analysis technique,
and theoretical considerations. OPEDo currently supports
the ProC/B notation and stochastic Petri nets as two exam-
ples of rather complementary notations. Furthermore OM-
Net++ as a general simulation is integrated.

2.1 ProC/B notation
The ProC/B modeling formalism [1] is a full-fledged sim-
ulation language following the common process interaction

approach for simulation modeling. ProC/B models typically
describe service networks based on a hierarchy of virtual ma-
chines that provide services to their environment. A virtual
machine (a functional unit in ProC/B terminology) performs
a service with the help of resources it contains. Such re-
sources can be virtual machines or some basic resource like
a queueing server or a counter for passive resources with
limited capacity. Services of resources are used by entities
whose behavior is described with the same means as ser-
vices and whose generation is described in some dedicated
source nodes in case of open models. Closed models with a
finite population of entities that show a cyclic behavior can
be modeled as well but open models are more to the core
application of ProC/B.

The definition of the ProC/B formalism originates from mod-
eling logistic networks, however, in practice, it turns out to
be a process-oriented simulation language that has a par-
ticular notation of hierarchy based on service calls and in-
clusion of resources. Hence it also applies to common fields
of simulation modeling, like computer and communication
networks, manufacturing and production systems. The op-
timization of a logistics system design within the ProC/B
framework is presented in [5], where we have shown that
the combination of the ProC/B formalism, simulation and
the Repsonse Surface Methodology is beneficial.

A well-defined subset of ProC/B models can be analyzed
with analytical techniques for queueing networks; in general,
discrete event simulation can be applied for the evaluation
of a transient or steady state behavior of a model. Common
measures of interest include measures based on individual
entities and types of entities like the mean and variance of
lead times for particular types of entities and measures based
on resources like their utilization, average response times
for services of resources, and throughput of service calls and
entities.

In the context of optimization, ProC/B models can be pa-
rameterized in many ways, e.g., parameters of continuous
type that determine the workload intensity and the speed
of active resources, and parameters of discrete type that di-
mension storage capacities or cardinalities of resources.

2.2 Stochastic Petri Nets
Generalized stochastic Petri Nets (GSPNs) are a modeling
notation that is rooted in a well-developed theory of con-
current systems. In OPEDo, we support Petri Nets of the
type supported by the APNN toolbox [2]. Petri nets in
OPEDo can be hierarchically structured based on refine-
ment of places and transitions, nets can have shared places
and transitions. Places can have a finite number of colors.
Transitions can have a finite number of colors and have an
associated priority. In OPEDo, we allow for several types of
distributions for firing transitions, which means that simula-
tion is the best choice in the general case. However, GSPNs
are included as a particular subset that can be analyzed
by the numerical analysis of its associated continuous time
Markov chain. E.g., in [11] we have shown how synergy
effects between the Response Surface Methodology and nu-
merical analysis can be used to reduce the overall time spend
for numerical analysis while we keep the quality of the re-
sults of the optimization.



In summary, we provide a notation that is based on an ar-
bitrary but finite number of state variables (places) that
can be manipulated by a finite set of state-transformation
rules (transitions). Petri nets can serve as a basis for dif-
ferent modeling paradigms, that can be used for modeling
open systems where entities flow through a network as well
as for networks of communicating automata, where commu-
nicating can be of synchronous type (rendez-vous) or asyn-
chronous type (message-passing). Typical measures of inter-
est that are formulated in Petri net models are throughput of
certain transitions, mean values or quantils for the values of
state variables (number of tokens on a place). Measures are
usually defined by rewards based on the time being in some
state (rate rewards) or the frequency of performing some
transition (impulse reward). Since Petri nets are based on
few language constructs, there is a limited number of options
for defining parameters, for instance the number of tokens
in the initial marking, the numerical constants for incidence
functions, the value of a priority or the type of distribution
and its parameter settings at some transition.

2.3 The simulation tool OMNeT++
OPEDo also integrates OMNeT++, which is a discrete event
simulation environment, that has been mainly used to model
communication systems and protocols, but can be applied
as a general purpose simulation language. A model in OM-
NeT++ consists of communicating modules. Modules are
hierarchically structured and communicate via exchanging
messages. Message transfer can be immediate or delayed
to model processing and transfer times. An activity can
be implemented in a process-oriented mann or by message-
passing. While the former method is easier to implement
for small processes, it has serious drawbacks on the scalabil-
ity of the model. Therefore larger models use the message-
handling approach. Due to the hierarchical structure of OM-
NeT++ basic modules can be reused and several basic mod-
els, in particular for communication systems, are already
available. For further details about OMNeT++ see [23].
Since OMNeT++ is written in C++ and is open source
software, it can be easily modified to be used in OPEDo.

Particular application areas may imply preferences for cer-
tain specification techniques, but in any case, for optimiza-
tion, one has to define parameters of a model. Models may
have parameters of continuous or discrete type. Note that
supporting parameterized models create an additional chal-
lenge, because models may give valid results for certain val-
ues of parameters but become faulty for others.

3. EVALUATION
The common set of automated analysis techniques for sto-
chastic models includes analytical techniques for particular
classes of queueing networks, numerical analysis techniques
for stochastic processes, in particular for the class of Markov
processes, and finally discrete event simulation which applies
with little constraints. In the following, we briefly recall par-
ticularities of those three methodologies.

3.1 Queueing network analysis
Techniques for this class of models are computationally inex-
pensive and provide either exact results or good approxima-
tive results for the class of separable (product-form) queue-

ing networks. The resulting values are mean values of com-
mon performance measures like throughput, utilization and
response times. In our context, queueing network techniques
can be applied for certain ProC/B models.

3.2 Numerical analysis of Markov chains
Markov chain (MC) analysis applies to Markov models with
finite state spaces. Techniques take advantage of space ef-
ficient symbolic or Kronecker representations of large MCs
and minimization techniques based on lumpability. A rich
variety of exact and approximate computational methods
are at hand. Most are based on fixed point operations such
that there is often a trade-off between precision and com-
putation effort that can be exploited in combination with
an optimization method. Resulting values are rewards that
aggregate the fine-grained solution of a probability distribu-
tion. In our context, MC analysis applies to stochastic Petri
net models as well as to particular ProC/B models.

3.3 Discrete event simulation
Simulation of stochastic models is a technique that broadly
applies with little constraints. Estimates of performance
measures can be obtained for the steady state as well as for
the transient case. Steady state solutions can be either ob-
tained from a single, long simulation run with the help of the
batch means method as well as with replicated, independent
simulation runs [14]. For transient analysis only replicated
runs apply. Confidence intervals help to estimate quality
of results and an optimization method may take the width
of confidence intervals into account in addition to estimates
of performance measures. Simulation reaches its limits in
case of models with different time scales (rare event simula-
tion). In our context, simulation is applied to all supported
modeling formalisms.

4. OPTIMIZATION
Much research has gone into the development of optimiza-
tion methods and there is an ample variety known in the
literature. However, according to the “no-free-lunch” the-
orems [24], there cannot be a methodology that is supe-
rior in general. In practice and even worse, optimization
methods are typically sensitive to parameter settings of their
own. Hence, our approach on that side is to provide a cer-
tain subset of optimization methods and a set of sophis-
ticated guesses for default method configurations that are
based on empirical evaluations we performed. OPEDo cur-
rently provides four different classes of optimization tech-
niques (see Fig. 3), namely the response surface methodol-
ogy (RSM) [17], pattern search [22], Kriging metamodels [9]
and a family of evolutionary algorithms (EA) [20]. We give
here a brief overview of the used optimization methods and
refer for details to the cited literature.

4.1 Response surface methodology
RSM is a deterministic optimization method that is able to
identify a (local) optimum of a response surface function.
In RSM, the black-box model is evaluated for certain pa-
rameter settings that give design points in the response sur-
face. A regression model is adjusted to match the response
surface at those points and the gradient of the regression
model is used to direct a stepwise search procedure towards
an extreme point. Hence the initial setting determines at



which (local) optimum the procedure will terminate. Fig-
ure 1 shows a possible course of the general RSM procedure
in a two dimensional search space starting in the middle of
the right most square. Note that the gray lines in Figure 1
are contour lines of the real response surface, which is not
known in general and shown here for the sole purpose of
illustration. The graph at the bottom of Figure 1 shows
the response value of the best configuration after each it-
eration. The course of RSM is indicated by the black line
starting at the middle of the right most square. RSM begins
its search with a sequence of first-order regression metamod-
els, combined with a steepest ascent/descent search. In that
phase, four corner points of a square are evaluated, and a
first-order regression model is approximated to characterize
the response surface around the current center point. In the
final optimization phase, RSM uses second second-order re-
gression metamodels to estimate the response surface more
accurately and search for the optimum from the resulting fit.
The final part of the optimization course is not clearly visible
in Figure 1. RSM can be applied for models with continuous
parameters. However, some extensions exist such that also
specific cases with discrete parameters can be handled.

4.2 Pattern search
Pattern search (PS) is a local search method, which belongs
to the group of direct search strategies. A lot research has
been done in this area, leading to different versions like Gen-
eralized Pattern Search. The version, that we are working
with, has been in described in [20].

The general approach is similar to the one used by RSM
though PS does not use metamodels. PS starts at a given
point and searches for better points in a given distance,
which decreases during the iterative optimization. Each it-
eration of PS can be divided into two steps, the search and
the poll step. During the search step PS tests for each di-
mension if the value of this dimension should be increased
or decreased by evaluating accordingly modified points. If
neither increasing nor decreasing the value provides a bet-
ter response, the value of this dimension remains unchanged.
If the search step is successful it achieved a new point with
an improved response. The poll step starts with the calcula-
tion of a vector of differences between the new point and the
starting point of this iteration. New points are calculated
in the direction of that vector and tested for an improved
response until no further improvement can be determined.
Like RSM, PS has been developed for continuous parame-
ters.

4.3 Evolution strategies
Evolution strategies (ES) [20] are a class of optimization al-
gorithms that mimic strategies observed in the evolution of
biological systems. The algorithms use a set of candidate
solutions called population. A population consists of a fixed
number of individuals and each individual is described by a
parameter vector and a vector of strategy variables. In ES,
a new generation of size λ is generated from a parent pop-
ulation of size µ. A new offspring results from a mutation
of an element of the parent generation. The mutation op-
eration is a randomized modification, e.g., a random value
is added that is sampled from a normal distribution N(0, σ)
where the selection of σ depends on the values of strategy
variables of the parent individual. In addition, some vari-

ants of ES employ recombination to obtain new individuals.
Recombination uses values of two parent individuals, e.g.,
each parent contributes half its parameter values to the pa-
rameter vector of the new individual.

ES creates a sequence of generations. Let P(t) be the par-
ent population of the t-th generation. One can distinguish
between (µ + λ)-ES (plus-ES) and (µ, λ)-ES (comma-ES).
In the former case the new parents are selected from the
old parents and the offspring. In the latter case, new par-
ents are selected only from the offspring. It depends on the
optimization problem which of both strategies gives better
results. In every generation t, a set Q(t) of λ new candidate
solutions is created from P(t) with the help of recombination
and mutation operations. The elements of the next parent
population P(t+1) are selected from P(t) ∪ Q(t), resp. from
Q(t), with respect to their fitness, i.e., with respect to their
values of the objective function. The selection rule is deter-
ministic and select the best individuals. ES can be applied
to problems with continuous and discrete parameters.

4.4 Kriging metamodels
Kriging metamodels are a mathematical model that has
been originally developed by a South African mining en-
gineer to find gold. Afterwards they have been applied for
the optimization of deterministic functions [9, 19] and more
recently also for the optimization of stochastic simulation
models [12]. Kriging uses a correlation model for the re-
sponse surface. The model is fitted at some points in the
search space where the model has been analyzed. The re-
sulting Kriging metamodel gives, in contrast to the polyno-
mial metamodel used in RSM, exact results at those points
where experiments have been performed. For the remain-
ing non-explored points in the search space the approach
comes up with estimates for response values and variance.
A fundamental but reasonable assumption of the approach
is that the variance of an estimate for the response value at
a non-explored point increases with an increasing distance
from other explored points. So the metamodel automati-
cally takes into account that more information is available
for points in the search space that are in the neighborhood
of some evaluated points than for points without evaluated
points in their neighborhood. Kriging metamodels can serve
as global metamodels which approximate the whole response
surface and can therefore be used for global optimization by
finding the point in the search space with the largest ex-
pected improvement which takes into account the expected
response value and the variance.

Our optimization algorithm tries to improve the model it-
eratively. An experimental design, which is typically a latin
hypercube sampling, is generated at the beginning. Based
on that design, the first Kriging metamodel is generated.
The model is optimized with respect to a given likelihood
function. The algorithm iteratively identifies a point of max-
imal expected improvement, evaluates that point and adds it
to the Kriging metamodel. The optimization iterates until a
given number of evaluations has been reached. Observe that
searching for the point of maximum expected improvement
is a non trivial optimization problem of its own. Concep-
tually, the approach is described in [9]. However, the prac-
tical realization bears additional problems. In particular,
the method becomes inefficient and numerically unstable if



Symbol Meaning

Dot Evaluated Point
Black Line Path between

Centerpoints or edge
of local region

Gray line Contour line

Figure 1: Visualization of a RSM-Optimization

the number of evaluated points becomes too large and the
maximization of expected improvement is costly. In contrast
to [9], we use EA for the maximization of expected improve-
ment. This increases the quality of the approximation in
some situations. To further improve the approximation we
use penalized likelihood functions as described in [15].

5. COMBINATION
The main issue in the optimization of an objective func-
tion over a family of stochastic models is to find a balance
between the precision of results that is delivered by an anal-
ysis technique for a given model and the precision that is
required by an optimization method to find an optimum.
The trade-off is between saving computation time on the
side of the analyzer for the price that results are not as pre-
cise as possible and saving computation time on the side
of the optimizer that performs faster on exact results. We
worked on that trade-off in several combinations of analysis
techniques and optimization methods and recognized that
this is a valuable source of efficiency. Thus, the combina-
tion of optimization and analysis is definitely more than the
simple connection of an analysis algorithm and an optimiza-
tion algorithm, it has to take into account specific aspects
of the used algorithms into account. Here we describe some
of the combinations that have been realized in OPEDo.

5.1 Optimization with the Response Surface
Methodology

RSM tends to require a modest number of function evalu-
ations to identify a local optimum This makes it attractive
for evaluations that are computationally costly, for instance,
simulation as well as numerical analysis of Markov chains
can require a substantial amount of computation time. RSM
itself is not a specific algorithm but rather a methodology
with many degrees of freedom that must be determined to
achieve an automatic procedure. In [5], we propose a vari-
ant of RSM that is designed for simulation. We conducted a
number of empirical evaluations to achieve a configuration
that is robust and efficient. In particular, we recognized that
first order models are usually sufficient and more efficient to
use, such that we apply second order models only during the

last phase of a search in order to get as close as possible to
a local optimum. Other issues that need to be resolved are
the selection of a stepsize in a line search, a lack-of-fit test
to recognize if the first-order model does not represent the
real surface well enough, scaling factors for the reduction of
the first order model, and many more, for more details on
the fully automatic algorithm for RSM we refer to [5].

The resulting RSM approach for simulation models requires
some adjustments if it is applied for the numerical analy-
sis of continuous time Markov chains (CTMCs). In [11],
we discuss how RSM can be combined with steady analysis
of CTMCs. We recognize that a different measure for the
lack-of-fit test is necessary and suggest to use the adjusted
coefficient of determination. Furthermore, we develop three
heuristic strategies that reduce the computational effort for
the numerical steady state analysis of the set of related
CTMCs that is selected by RSM. The first strategy is to
use an already computed solution of a CTMC (the steady
state distribution) as an initial distribution for a CTMC
whose parameters are similar (the differences are small in
value). Since the solution methods are iterative fixed point
methods, the heuristic can be applied whenever the set of
states remains the same and only transition rates depend
on parameter settings. For the second and third heuristics,
we recognize that convergence of the fixed point iteration is
typically measured at a fine-grain level as the residuals of
the solution of a homogeneous linear equation system and
that this measure may converge much slower than the value
of the objective function if evaluated with intermediate re-
sults. The objective function seems less sensitive since it
is usually an aggregated result and fine-grain errors rather
average out than build up. We can make use of this effect
and determine from some initial evaluation the relationship
between convergence measures for a detailed solution and
aggregated results. This relationship may lower the require-
ments for precision of the detailed solution significantly. Fi-
nally, this approach can be made adaptive by reapplying it
whenever RSM experiences difficulties in the identification
of a direction for improvement. Those three heuristics can
reduce computation times for RSM with steady state anal-
ysis of CTMCs significantly (see [11] for additional details.



Both approaches, RSM for simulation models and RSM for
CTMC analysis, are fully integrated in OPEDo and available
for applications.

5.2 Evolution strategies
A strength of evolution strategies (ES) is their flexibility and
robustness to overcome wrong decisions during the optimiza-
tion process and therefore also their robustness according to
functions with noise. This makes ES suitable for optimiza-
tion of stochastic simulation models. However, a weakness
of ES is that often a huge computational effort is required,
since a large number of function evaluations are necessary
to reach the optimum. This indicates the major challenge
for applying ES in combination with simulation modeling
in practice: The combination must be carefully designed
with respect to efficency of the overall approach. Note that
ES mainly uses simulation results for decision making, i.e.,
it distinguishes among individuals with superior or inferior
values of the objective function, but absolute or precise val-
ues are not necessarily required (in most cases). This implies
that simulation runs have to be just long enough to classify
and rank individuals in a population and even a reasonably
small percentage of false decisions is tolerable for ES.

In ES the selection rule for parents in each generation is
deterministic; individuals with best response values are se-
lected. However, when optimizing a stochastic simulation
model it is not obvious which individual is the best since one
can only compare the mean values of a certain number of
samples. Thus, ES should select the best individuals from
a population with a high probability and with low effort.
In fact, this is a stochastic ranking and selection problem,
which is commonly known in discrete event simulation and
a large number of approaches exists [21].

In OPEDo, we include an evolution strategy that incorpo-
rates statistical procedures for the selection of best individu-
als. In particular, the procedures of Boesel, Nelson, and Kim
[3], Chen and Kelton [7], and Buchholz and Thümmler [6]
as well as traditional procedures of Rinott [18] and Koenig
and Law [13] are included. In the following we consider the
plus-strategy for ES but comma-strategies can be applied as
well. Two different phases where statistical selection occurs
in the optimization process are distinguished. With S1 we
denote the selection strategy. S1 is used for the survivor
selection during the evolutionary process, which repeatedly
selects µ individuals from the µ + λ parents and offspring.
A second statistical selection procedure, denoted as S2, is
applied for the final selection at the end of the evolutionary
process, which selects the best individual from a population
of τ candidate individuals, denoted the elite population.

OPEDo’s enhanced (µ + λ)-ES works as follows. First, the
parameters of the ES are initialized and a feasible search-
space is predefined and the parent population P and the
elite population B are initialized. After initialization, the
evolutionary process continues until a certain termination
condition holds. The most common termination condition
is to stop when a predefined number of generations has
been passed. Other termination criteria can be to stop if
the progress gets sufficiently small, i.e., if the individual of
the elite population with the largest sample mean does not
change for at least 10 consecutive generations.

In each generation of the evolutionary process, λ individu-
als are selected randomly from the parent population. Then
variational operators are applied to these individuals to cre-
ate the offspring. Note that the mutation operator can pro-
duce an individual which is outside the search-space. In this
case, mutation is repeated until an offspring is generated
that lies in the search-space. After mutation, individuals
are evaluated according to selection strategy S1. Note that
the selection strategies only define the number of evaluations
required for each individual. The selection itself is then per-
formed by choosing the individuals with the largest mean
values for the parent population of the next generation. Fi-
nally, when the ES stops the best individual is determined
from the elite population according to selection strategy S2.

Apart from simulation, ES can also be combined with other
solution techniques. It is especially possible to use differ-
ent solution techniques such that fast approximate and slow
exact techniques can be combined for a very efficient opti-
mization process as recently shown in [4].

6. ARCHITECTURE
OPEDos architecture is designed to improve the combina-
tion of state of the art analysis and optimization techniques.
This should be achieved by an extensible multi-paradigm,
multi-solution, multi-optimization framework that is bene-
ficial to researchers as well as practitioners. Figure 2 illus-
trates OPEDos compositional architecture and its interac-
tion with external tools. The left part, which has a light
gray background, illustrates external tools that can be used
to create models for OPEDo. The main part of Figure 2
illustrates the components of OPEDo and their interaction.
The main components of OPEDo are the specification tool,
the optimizer and the black-box model.

The specification tool is the graphical user interface (UI)
of OPEDo (see Figure 3). The UI is divided into multi-
ple areas, which are called ”Global”, ”Model”, ”Optimizer”,
”Solve” and ”Utilities”. The ”Global” area allows to spec-
ify the optimizer, the number of continuous and discrete
parameters with their ranges of values and a set of linear
constraints the parameters have to fulfill. The ”Model”
area provides functionality to configure the model, which
includes selection of parameters and responses and defini-
tion of the response function. The ”Optimizer” area always
contains the label of the selected optimizer and provides ac-
cess to all parameters of the optimizer. In the ”Solve” area
optimizations can be started and managed. Once an opti-
mization is started, the algorithm is fully automated. The
”Utilites” area provides functionality for an in depth anal-
ysis of the configured model. For instance, it is possible to
evaluate a the model for a particular parameter configura-
tion to compare the obtained results with existing data for
the validation of a model.

The second component of OPEDo is the optimizer. The
optimizer manages the execution of the selected optimizer
implementation. Therefore it configures the environment,
initializes the selected analysis method and provides func-
tionality to store statistics. Adding a new optimizer is as
simple as implementing an interface and making the opti-
mizer known to the program. For example it took only a
few lines of code to fully integrate an optimizer provided by



OPEDo
Optimization and Performance Evaluation - Dortmund

Model

configurationModeling

tool

Black-box

model
Model

Response

Numerical solver:

NSolve, …

Integrated models:

Production line, …

Simulation:

HIT, APNN-Sim

Benchmark

models

Petri net:

APNN Toolbox

Process chains:

ProC/B Toolset

Specification

tool

Optimizer

configuration

Parameter

definition

Model

selection

Analysis

method

Specification

tool

Optimizer

configuration

Parameter

definition

Model

selection

Analysis

method

Optimizer

Optimization

request

Evolutionary

algorithms

Response

surface

methodology

Pattern

search

Kriging-based

optimization

Best found

parameters

Figure 2: Architecture of OPEDo

the GNU scientific library (GSL) [10]. Currently we support
RSM, EA, PS and Kriging based optimization, while having
a few others implemented as test cases. A good demonstra-
tion of the power of our approach is the fact, that for the
optimization of the Kriging model’s parameters any of the
available optimizers can be used by simply changing the se-
lection in the UI.

The third component of OPEDo is the Black-Box model,
which uniformly wraps the access to an analysis method.
The Black-Box model uses the performance figures that are
computed by the selected analysis method and determines a
response value, which is then returned to the optimizer. The
Black-Box model component provides a simple interface for
analysis tools. Note that the integration of an analysis tech-
nique can be implemented in different degrees. The basic
implementation provides an optimizer access to the anal-
ysis tool, calculates a response out of a set of parameter
values and forwards the response to the optimizer. This
implementation is a true Black-Box which, as already men-
tioned, often does not yield an efficient optimization ap-
proach. Thus, the interface has been extended to provide
information about the progress and the state of the opti-
mization to the analysis tool and vice versa. As we have
shown in [11] this extension can be successfully used to re-
duce computation time, while maintaining the quality of the
optimization. The resulting combination can be named as
Grey Box combinations.

During an optimization the components interact as follows.
The specification tool sends the selected options as an op-
timization request to the optimizer, which chooses and ini-
tializes the appropriate model and optimization technique.
While the optimizer iteratively improves the model config-
uration, it sends parameter configurations to the model,
which then returns a response value, which is calculated
from the results of the analysis tool. Specification-tool and
optimizer co-operate to keep the user informed on the cur-
rent state of the optimization process. Figure 1 illustrates
this for the case of RSM. The last part of the optimiza-
tion is not clearly visible in the figure and OPEDo provides
some zoom-functionality to overcome that difficulty. Fig-

Figure 3: Specification tool

ure 1 mainly serves for illustration purposes; the precise
values are collected and accessible in different tables and
graphics for subsequent text processing and documentation.

7. EXAMPLE
In this chapter we will evaluate the functionality of OPEDo.
It is organized as follows. First we describe the model and
the evaluation method, that we are using. Second we intro-
duce the parameters of the model, the performance measures
and the response function. Afterwards we give information
about the experimental setup. In the last paragraph we
evaluate the results from our experiments.

7.1 Description of the model
We will use a practical example, which is based on ”Case
Study II: A Web Server” from [16]. In this example, a new
webserver is planned. More precisely, it is a fileserver, which
has to fulfill requests for two different types of files: zip-
and pdf-files. While the zip-files have a mean size of 1155.6
kilobyte, the pdf-files have a mean-size of 377.6 kilobyte.
Furthermore about 60% of the requested files are zip-files.



Figure 4: OMNeT++: Dyna

The server includes one cpu and six hard-disks. The hard-
disks are separated into two groups. The first four hard-
disks store the zip-files and the other two hard-disks store
the pdf-files. This partition is motivated by the fact that
the mean file size of zip-files is larger than that of pdf-files
and the probability for a download request is higher than
for pdf-files. Using a benchmark it has been determined
that the reference cpu required about 0.1 milliseconds per
processed kilobyte and that the reference harddisc requires
about 0.4 milliseconds per kilobyte.

The files are transferred to the clients through a 100MBit
network with a central switch (see Figure 4). The net-
work communication is packet oriented, where request- and
status-messages have a size of 64 byte and data-messages
can have a size up to 16 kilobyte. Since the connection is
via a local area network we consider a timeout value of 2
seconds. 60 clients are connected to the network. At peak
times each client produces a request two seconds after the
last request has been finished or timed out.

We use OMNet++ as analysis and simulation method. The
dyna example (see Figure 4), which comes with the OM-
NeT++ distribution, serves as a starting point for our im-
plementation. We keep the structure of the model, but make
several changes to increase the scalability of the model.

7.2 Optimization properties
Several parameters of the model can be changed for opti-
mization. As we are focusing on an evaluation of our opti-
mization techniques and not on an in depth optimization of
the model, we will list the properties that may be changed
and then focus on two properties, that will be used during
our evaluation. The parameters that may be modified are

• the speed of the cpu,

• the number of cpus,

• the speed of each hard-disk (or the speed of the hard-
disks grouped by filetype),

• the number of hard-disks per filetype and

• the speed and the buffersize of the switch.

The configuration of the server will be modifiable in two
aspects: The speed of the cpu and the speed of the hard-
disks. Both parts can be exchanged with components that
have up to ten times the speed of the reference component.
We assume that the costs for the components raise quadrat-
ically with the speed. We will denote the configuration of
the server as vector c = (c0, c1), where c0 is the speed of the
used cpu relative to the reference cpu and c1 is the speed of
the hard-disks relative to the reference hard-disk.

The requirements for the server are as follows. The first re-
quirement is that during peak times the ratio of unserved to
served requests should not exceed 1%. The second require-
ment is to minimize the cost of the server. We will denote
the number of successfully requests as s(c) and the number
of unfulfilled requests as u(c).

With this definition, the formal optimization problem is:

c2
0 + c2

1 → min with constraint
u(c)

s(c)
< 0.01 (1)

The constrained optimization problem (Figure 1) can be
transformed into the unconstrained form with the help of
a penalty function

f(c) = c2
0 + c2

1 + β · max 0,
u(c)

s(c)
− 0.01 (2)

where β is the penalty coefficient. A penalty coefficient is
required to weight the penalty function to equation 1. To
ensure that the penalty function is respected, we chose β =
100000.

7.3 Experimental Setup
Before we start the evaluation of the optimization tech-
niques, we are going to evaluate the response function. Since
the analysis of this model is not very time consuming, we
can afford to evaluate the model on a grid over the param-
eters. The resulting three dimensional plot can be seen in
Figure 5. As the response surface is very steep at the lower
bounds of the parameters, we used a logarithmic scale on
the response axis.

We are going to compare four optimization algorithms: RSM,
PS, Kriging and EA. For the first three algorithms two differ-
ent configurations are used, which only differ in the number
of replicated model evaluations. Since our EA implementa-
tion selects the number of replication dynamically, we will
use only one configuration. RSM will always analyze design-
points once but center-points will be evaluated in the first
configuration once and three times in the second configu-
ration. PS and the Kriging are configured like RSM, but
they only use center-points. It can easily be seen, that the
response function has a global minimum near c = (1, 2) and
no local minima. In these situations RSM and PS normally
perform better than EA. Our Kriging approach typically
performs about the same as RSM and PS in these situations.
But it can also be seen, that the main parts of the response



 1  2  3  4  5  6  7  8  9  10CPU  1  2  3  4  5  6  7  8  9  10

Harddisk

 0.01

 0.1

 1

 10

 100

 1000

Response

Figure 5: Response surface

surface are quite flat. This is typically a situation which is
bad for RSM and PS. RSM and PS are able to detect low
increases of the response function in the search area, but in
combination with simulation errors this becomes more dif-
ficult. EA and Kriging can usually handle these situations
much better. Therefore we expect the following: All opti-
mization techniques will perform about the same, when we
focus on the average result of the optimization. EA will have
a tighter 95% confidence interval but also a much higher
number of evaluations of the model. The configurations of
the optimizers with replicated model evaluations will pro-
vide better results buts need more evaluations.

Since the model is stochastic, the behavior of all optimiza-
tion methods depends on the generated stream of random
numbers. Thus, replicated runs are necessary to obtain sta-
tistical significant results about the optimization quality and
speed. Each algorithm has been run 121 times. Further-
more, the local search strategies RSM and PS are started
from 121 different points.

7.4 Experimental Results
The results of our experiments are shown in Figure 6. For
every optimization technique and configuration two bars are
presented in the Figure. From left to right these are RSM
without replicated evaluations (RSM 1), RSM with repli-
cated evaluations (RSM 2), PS without replicated evalua-
tions (PS 1), PS with replicated evaluations (PS 2), Krig-
ing without replicated evaluations (Krig 1), Kriging with
replicated evaluations (Krig 2) and EA (EA). The left bars
represent the mean response with a 95% confidence inter-
val and are related to the left vertical axis. The right bars
represent the mean number of model evaluations per opti-
mization and are related to the right vertical axis. We use
a logarithmic scale because of the significant differences be-
tween some of the results on the one hand and the similarity
of other results on the other hand.

Approximately the optimum has the coordinates (0.95, 1.6)
and a response of 0.025. Focusing on the responses it is clear
that PS and EA perform best on this model with average
responses of 0.0330 and 0.0296. EA provides slightly better
results but for the cost of a huge amount of evaluations. It
is an interesting situation that PS without and with repli-
cated model evaluations perform about the same. Normally

 0.01

 0.1

 RSM 1  RSM 2  PS 1  PS 2  Krig 1  Krig 2  EA
 10

 100

 1000

R
es

p
o

n
se

E
v

al
u

at
io

n
s

Optimizer

Figure 6: Results

this means that the results of different simulation runs do
not differ significantly. In most situations RSM provides
sligthly better results than PS while needing slightly more
evaluations. However PS is more sensitive to local changes
of the response which pays off in situations where almost no
improvement is possible. Therefore RSM has problems with
the calculated responses which not only results in poorer
performance but also in a large 95% confidence interval.
This means that RSM determines some pseudo local op-
tima due to the error in the model and the small differences
in the responses in wide areas of the parameter space. Nev-
ertheless replicated model evaluations increase the quality
of the results significantly and also reduces the confidence
interval. The Kriging approach performs better than RSM
but not as good as PS and EA, but it can also be seen that
the confidence intervals are rather small and also the num-
ber of model evaluations is less than half of the number of
model evaluations required by PS without replicated model
evaluations.

8. CONCLUSION
OPEDo is a general and open framework for the optimiza-
tion of stochastic models of discrete event systems. It sup-
ports different modeling formalisms, namely, hierarchical
stochastic Petri nets, stochastic automata networks, process
chains and simulation models. A model that is considered
for optimization provides a set of parameters that can be
modified by the optimization method in a predefined dis-
crete or continuous range respecting linear constraints. For
any fixed setting of parameters, we obtain a model config-
uration that can be evaluated. OPEDo supports a vari-
ety of analysis methods to compute performance and de-
pendability measures of a given model configuration. In
the current version, this set of methods includes analytical
techniques for queuing networks, numerical techniques for
Markov models, approximate decomposition techniques and
discrete event simulation. Note that the use of a specific
technique may be model dependent. Modeling formalisms
and analysis techniques are implemented with the help of
the APNN toolbox [2], the ProC/B Toolset [1] and OM-
NeT++ [23]. In addition, OPEDo provides an open inter-



face to combine its optimization methods with other mod-
eling formalisms and tools as well as to combine the inte-
grated modelling formalisms and evaluation methods with
additional optimization methods. In this regard it is a plat-
form for research as wells as applications in the optimization
of complex models of discrete event systems.

9. REFERENCES
[1] F. Bause, H. Beilner, M. Fischer, P. Kemper, and

M. Völker. The ProC/B toolset for the modelling and
analysis of process chains. In 12th Int. Conf.
Modelling Tools and Techniques for Computer and
Communication System Performance Evaluation,
pages 51–70, London, UK, 2002. Springer. LNCS 2324.

[2] F. Bause, P. Buchholz, and P. Kemper. A toolbox for
functional and quantitative analysis of DEDS. In
R. Puigjaner, N. Savino, and B. Serra, editors, 10th
Int. Conf. on Computer Performance Evaluation -
Modelling Techniques and Tools (TOOLS 1998), pages
356–359, Palma de Mallorca, Spain, 1998. Springer.
LNCS 1469.

[3] J. Boesel, B. Nelson, and S. Kim. Using ranking and
selection to clean up after simulation optimization.
Operations Research, 51:814–825, 2005.

[4] P. Buchholz and P. Kemper. Optimization of Markov
models with evolutionary strategies based on exact
and approximate analysis techniques. Technical
report, Submitted for publication, 2006.

[5] P. Buchholz, D. Müller, and A. Thümmler.
Optimization of process chain models with Response
Surface Methodology and the ProC/B toolset. In
H. Günther, D. Mattfeld, and L. Suhl, editors,
Entscheidungsunterstützende Systeme in Supply Chain
Management und Logistik, pages 551–573.
Physica-Verlag, 2005.

[6] P. Buchholz and A. Thümmler. Enhancing
evolutionary algorithms with statistical selection
procedures for simulation optimization. In Proc.
Winter Simulation Conference, pages 842–852,
Orlando, FL, USA, 2005.

[7] E. Chen and W. Kelton. An enhanced two-stage
selection procedure. In Proc. Winter Simulation
Conference, pages 727–735, Orlando, FL, 2000.

[8] M. C. Fu, F. W. Glover, and J. April. Simulation
optimization: a review, new developments, and
applications. In Proc. Winter Simulation Conference,
pages 83–95, 2005.

[9] D. R. Jones, M. Schonlau, and W. J. Welch. Efficient
global optimization of expensive black-box functions.
Journal of Global Optimization, 13:455–492, 1998.

[10] G. Jungman and D. B. Gough. GSL homepage,
http://www.gnu.org/software/gsl/.

[11] P. Kemper, D. Müller, and A. Thümmler. Combining
Response Surface Methodology with numerical models
for optimization of class based queueing systems. In
Int. Conf. on Dependable Systems and Networks
(DSN), pages 550–559, Yokohama, Japan, 2005.

[12] J. P. C. Kleijnen and W. C. M. van Beers. Kriging
interpolation in simulation: a survey. In Proc. Winter
Simulation Conference, pages 113–121. IEEE, 2004.

[13] L. Koenig and A. Law. A procedure for selecting a
subset of size m containing the l best of k independent
normal populations, with applications to simulation.
Communications in Statistics Simulation and
Computation, 14:719–734, 1985.

[14] A. M. Law and W. D. Kelton. Simulation modeling
and analysis, 3rd edition. Wiley, 1999.

[15] R. Li and A. Sudjianto. Analysis of computer
experiments using penalized likelihood in Gaussian
Kriging models.

[16] D. Menasce, V. Almeida, and L. Dowdy. Performance
by Design. Pearson Education, Inc., 2004.

[17] R. H. Myers and D. C. Montgomery. Response Surface
Methodology. Wiley, 2002.

[18] Y. Rinott. On two-stage selection procedures and
related probability-inequalities. In Communications in
Statistics Theory and Methods A7, pages 799–811,
1978.

[19] T. J. Santner, B. J. Williams, and W. Notz. Design
and Analysis of Computer Experiments. Springer,
2003.

[20] H.-P. Schwefel. Evolution and Optimum Seeking. John
Wiley & Sons, Inc., 1995.

[21] Swisher, S. Jacobson, and E. Yücesan. Discrete-event
simulation optimization using ranking, selection, and
multiple comparison procedures: A survey. In ACM
Transactions on Modeling and Computer Simulation
13, pages 134–154, 2003.

[22] V. Torczon. On the convergence of pattern search
algorithms. SIAM Journal on Optimization, 7(1):1–25,
1997.

[23] A. Varga. OMNeT++, http://www.omnetpp.org.

[24] D. H. Wolpert and W. G. Macready. No free lunch
theorems for optimization. IEEE Transactions on
Evolutionary Computation, 1(1):67–82, April 1997.


