A Churn and Mobility Resistant Approach for DHTs

Olaf Landsiedel, Stefan Gétz, Klaus Wehrle
Distributed Systems Group
RWTH Aachen, Germany

firstname.lasmame@CS.rwth-aachen.de

ABSTRACT

Mobile ad-hoc networks (MANETS) and distributed hash-tables
(DHTs) share key characteristics in terms of self organization, de-
centralization, redundancy requirements, and limited infrastructure.
However, node mobility and the continually changing physical topol-
ogy pose a special challenge to scalability and the design of a DHT
for mobile ad-hoc network. The mobile hash-table (MHT) [9] ad-
dresses this challenge by mapping a data item to a path through
the environment. In contrast to existing DHTs, MHT does not to
maintain routing tables and thereby can be used in networks with
highly dynamic topologies. Thus, in mobile environments it stores
data items with low maintenance overhead on the moving nodes
and allows the MHT to scale up to several ten thousands of nodes.

This paper addresses the problem of churn in mobile hash tables.
Similar to Internet based peer-to-peer systems a deployed mobile
hash table suffers from suddenly leaving nodes and the need to
recover lost data items. We evaluate how redundancy and recov-
ery technique used in the internet domain can be deployed in the
mobile hash table. Furthermore, we show that these redundancy
techniques can greatly benefit from the local broadcast properties
of typical mobile ad-hoc networks.

Categories and Subject Descriptors
D.2.4 [Distributed Systems]: Distributed applications

General Terms
Algorithms

Keywords
Peer-to-peer, distributed hashtable, mobility, ad-hoc network, DHT

1. INTRODUCTION

Peer-to-peer networking has changed the way to store data dis-
tributed in a network. Peer-to-peer networks are self maintaining,
resilient, and only need limited infrastructure and control. The de-
velopment of structured peer-to-peer networks, e.g. DHTs, extends

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MobiShare’06, September 25, 2006, Los Angeles, California, USA.
Copyright 2006 ACM 1-59593-558-4/06/0009 ...$5.00.

42

these ideas to high scalability, increased resilience and flat hierar-
chies.

Structured peer-to-peer networking provides a number of key
properties enabling efficient data access in mobile ad-hoc networks:
(1) commonly, ad-hoc networks have limited or even no infrastruc-
ture. Thus, a fully distributed and hierarchy-less substrate — such
as a DHT - is required for efficient data storage and access. (2)
The high scalability of DHTs enables large mobile crowds. (3)
Furthermore, the fragile ad-hoc network can benefit strongly from
the redundancy and resilience provided by structured peer-to-peer
networks.

However, the random movement of nodes in a mobile ad-hoc
network makes it challenging to deploy a structured peer-to-peer
network. Thus, until recently the node movement itself was con-
sidered churn as the topology and routes of the ad-hoc networks
consistently change. The mobile hash table (MHT) addresses these
challenges and forms a substrate for scalable mobile peer-to-peer
networking.

DHTs map data items, i.e. key-value pairs, on node IDs. Com-
monly, a key is computed via a hash function from a string describ-
ing the corresponding data item. And a node ID is derived from
its IP-address [22, 17] or its geographic position [18]. MHT — in
contrast — introduces semantics to the keys: it derives a geographic
position, direction, and speed from the key of a data item and stores
this item on the node which matches these properties best. Thus, a
data item is assigned a path along which it moves by being stored
on a node moving along a similar path.

Nonetheless, churn, i.e. nodes leaving the network unexpectedly,
is still a challenge to the MHT’s integrity and resilience. Typically,
churn is handled by adding multiple copies of a data item to the
DHT. The nodes holding these copies exchange messages at some
interval to ensure that the data items are still available. When a node
has left the network, i.e. the ping fails, the new node responsible for
the data item is determined and a copy placed on it.

In this paper we evaluate how churn can be handled in the mo-
bile environment. The mobility and wireless communication do
not allow to adapt the techniques used in the Internet based DHTs
blindly. For example, when placing the copies MHT can greatly
benefit from the local broadcast properties of the wireless ad-hoc
network. The copies are placed in the communication range of the
current data item’s node. As a result the necessary ping-pong mes-
sages between the original data item and its copies are only local
broadcasts and do not add an additional load on the routing system
of the ad-hoc network.

The remaining paper is structured as follows: Section 2 discusses
the limitations of current mobile peer-to-peer technologies and in-
troduces techniques used in Internet based DHTs to handle Churn.
Section 3 discusses the MHT design. Section 4 presents the use of

redundancy technique in the mobile environment to handle churn.
Section 5 evaluates the performance of MHTs under churn and sec-
tion 6 concludes and discusses ongoing work.

2. RELATED WORK

Peer-to-peer communication has had a large impact in the In-
ternet research community. Various structured [3, 5, 17, 22] and
unstructured protocols — such as the well known file sharing tools —
have been presented. The peer-to-peer paradigm has been extended
to ad-hoc networks and even sensor networks [1, 18, 10, 21].

Although their high scalability, resilience, and flat hierarchies
make DHTSs an interesting substrate for mobile networking, only a
very limited number of approaches base on this principle. In this
section, we discuss mobile peer-to-peer systems and their short-
comings and compare our work to them.

Most mobile [6, 16, 24], peer-to-peer approaches deploy a struc-
tured peer-to-peer network on top a ad-hoc routing protocol, such
as AODV [15] or DSR [7]. Thus, these approaches require the un-
derlying ad-hoc routing to frequently set up and maintain routes
to all entries in the DHT routing table. The routing protocols use
flooding for route discovery, resulting in a limited scalability. Fur-
thermore, the DHT routing is not aware of the underlying topology,
resulting in high routing and maintenance overhead. Additionally,
all of today’s DHTSs require frequent discovery messages to test
whether their routing entries are still valid. In comparison, our mo-
bile hash table does not depend on this mechanism.

Orion [13] deploys an unstructured peer-to-peer network on top
of a ad-hoc routing protocol. Thus, it suffers from the limited
scalability of ad-hoc routing protocols and the limited scalability
of unstructured networks as both layers strongly rely on informa-
tion flooding. Additionally, it does not use cross-layer optimization
techniques so both layers flood the network without being aware of
each other.

Although not built for node mobility, the geographic hash table
(GHT) [18] is probably the concept most similar to our approach.
GHT maps a key associated with a data item to a geographic lo-
cation. Geographic routing is used to store and retrieve a the data
item at its location. We generalize the ideas presented in this work
to support mobile nodes.

The multi-level peer index (MPI) [12] extends the GHT approach
from providing a specific geographic location to a spatial area.
However, for high node mobility it requires location updates to be
distributed in the entire network which severely limits the scalabil-
ity of this approach.

Recently, Virtual Ring Routing (VRR) [1] has been proposed as a
scalable routing protocol and DHT substrate for ad-hoc networks.
In contrast to MHT, VRR does not rely on geographical position
information. However, VRR needs to maintain and repair the routes
to its virtual neighbors making VRR — from our point of view — not
a ideal candidate for networks with highly dynamic topologies.

We are not aware of any research that looks at churn in DHTs de-
ployed in mobile environments. However, churn in Internet based
peer-to-peer systems — unstructured and structured ones — received
strong attention in the recent years. For example, references [2,
4, 11, 14, 20] evaluate the stability of DHTs like Chord [22] and
Pastry [3] under churn and present techniques to increase stability.
However, this work focuses on the routing tables of DHT which is
not applicable to MHT. Due to the geographic placement of data
items MHT’s routing tables do not suffer from churn. Nonethe-
less, the availability of data items still suffers from churn in MHTs.
Thus, in this paper we evaluate how techniques proposed in the
Internet domain for repairing routing tables under churn can be ap-
plied to MHT.

43

3. INTRODUCING MOBILE HASH TABLES

In this section we describe the design of mobile hash tables. The
main challenge for structured mobile peer-to-peer networking is to
apply a structure to the unstructured and seemingly random node
movements. Assuming that each node knows its position, speed,
and direction, we show how a structured DHT can be set up.

To map data onto the moving nodes, we use following scheme:
for each data item we derive a path from its key. A data item moves
along its path and is stored on the node which moves on the most
similar path. A path consists of two points, between which a data
item moves back and forth, and speed information. As the path of
each data item is derived from its key and the path is a loop, one can
compute the position of a data item at every point in time. Thus,
queries can determine a data item’s position and be routed to it.
In this paper we use a simple path consisting of two points, e.g. we
derive the x and y coordinates of these two points from the key. The
approach also allows for more complex mapping functions, e.g. a
rectangular path, were the points of the rectangle are derived from
the key. Alternatively, a key can denote multiple points in space
from which a spline curve can be derived.

By comparing position, direction, and speed, it is determined
which node carries a data item. The scalability of the proposed
approach bases on the following observation: the more nodes are
in an environment, the higher is the probability that a node with a
path and speed similar to the path of the data item exists. Thus, the
more nodes, the better matches exist. As result, data needs to be
moved between the carrying nodes less frequently.

3.1 Routing in a MHT

Mobile hash tables are built on top of GPSR [8], a geographic
routing algorithm for multi-hop wireless networks. We now briefly
discuss design features of GPSR relevant for our work and then
propose a minor extension to GPSR to integrate the mobile hash
tables.

GPSR is highly scalable, as its routing only depends on local
knowledge. In GPSR, packets are routed geographically, i.e. based
on physical positions of packets and nodes. Packets to be routed
are marked with their destination. Furthermore, each node knows
its own position and those of its immediate neighbors. GPSR uses
this local knowledge to route packets to their final destination. In its
default operation mode, GPSR forwards packets greedily. Greedy
forwarding fails, when a node has no neighbor closer to the final
destination: the packet has reached a local maximum, e.g. a void.
In this case, GPSR switches to perimeter forwarding and routes
packets with the right-hand-rule around network voids. GPSR re-
turns from perimeter routing to greedy forwarding when it reaches
anode closer to the destination than the one at which it switched to
perimeter routing (its position was stored in the packet).

3.2 Extension of GPSR

In GPSR, each node knows the position of its neighbors in one-
hop distance and uses this information for its local routing deci-
sions. In practice, each node regularly announces its position to
the surrounding nodes with local broadcast messages. We extend
this announcement by the current speed and the direction the node
moves at. These values can be easily derived from GPS position
samples. In MHT, we use this extended information to find a node
which has a position, speed, and direction similar to the path of a
data item.

3.3 Joining and Leaving an MHT

MHT bases on wireless communication so it benefits from its
local broadcast properties. There is no need to find the ID space

Figure 1: As long as the data item d is stored not farther away
from its position than r/2, e.g. node ny in the figure, a node n
can reach node ny when it comes into /2 of the data d.

a node is responsible for via a search in the DHT as commonly in
Internet-based systems. For mobile hash tables, it is sufficient that a
joining node starts the regular local broadcast of its position, speed,
and direction. Thus, its surrounding nodes recognize its existence
and will consider this node for their routing and storage decisions.

To leave the system, the leaving node stops sending regular lo-
cal broadcasts. Consequently, its surrounding nodes stop using it
for routing or storage. In such a passive leave, the node does not
announce its departure to its surroundings. However, the DHT’s
routing tables stays consistent after such a passive leave, as all de-
cisions are based on local knowledge. No repair algorithm as in
most Internet based DHTSs — such as fixing finger tables in Chord —
is necessary.

However, nodes may still try to route data via this node until
their knowledge about this nodes times out. Furthermore, all data
stored on this node and all messages it might have been forward-
ing at this moment are lost. Thus, next to the passive leave MHT
supports a so-called active leave, the node announces its leave to its
neighbors. This ensures that the leaving node is not considered for
routing and storage anymore. Furthermore, it forwards all pend-
ing messages to their next hop and stores all data on the now best
matching participant.

3.4 Data Placement

Before discussing lookups and data placement, we explain data
movement in MHTSs. Thus, for now we assume that a data item d
is stored on a node ng and we discuss how and when it is moved to
another node npeq¢. Furthermore, we discuss how this node npeqt
is selected.

For simplicity’s sake, we assume a circular communication range,
e.g. a unit disk model, and that all nodes have the same communi-
cation range'. Let be the communication range of a node, then a
data item d needs to be stored on a node nq not farther away than
r /2 from the data item’s position pq — the position p4 is determined
by the key which describes the data item d. This ensures that a node
n in r/2 distance from pg can communicate to n4 and retrieve the
data item d (see figure 1). Let p,,, be the position of the node n4.
Thus, when |pg — pn,| > 7/2, the data item d needs to be moved
to another node to ensure that queries can successfully find the data
item.

As the data item d has to be stored not farther away than r/2
from its position pg, nq selects the node nnez+ from its surround-
ing nodes. Since all nodes frequently announce their positions,

"Please note that by introducing a factor « to the communication
range, we can easily model heterogeneous communication ranges
and non unit-disk models.

44

directions, and speeds, to their neighbors, no explicit communi-
cation is necessary; ng does a lookup in its neighborhood table.
Among its neighbors, it selects the one node nyeqt, for which
|Pd — Prpess| > 7/2 holds for the longest time. It uses the current
speed and direction of data and nodes to predict future positions.
When no node in range fullfills these requirements the data item
is stored on the node which is closest to the data item’s position.
Thus, it maybe temporarily not reachable when this node is far-
ther away than /2 from the data item’s position. In section 5 we
evaluate the probability that a data item is our of place and thereby
temporarily not reachable.

After discussing how the node which stores a data item is se-
lected, data placement in the MHT is straightforward. A new data
item is forwarded from its source to a node which is not farther
away than /2 from the data item’s position. This node then deter-
mines the node to store the data item the same way that a new node
for storage is selected.

3.5 Data Lookup

Data lookup, i.e. queries, use the same technique as the above
described data placement. Knowing the data items key, the query
compute the item’s position. Thus, the query is forwarded from its
source to a node which is not farther away than /2 from the data
item’s position. A local broadcast from this node reaches the node
carrying the requested data item, as the item itself is always on a
node in /2 or less distance from its position.

Although the data item can be found easily, sending the reply
back to its source is not as trivial because the source moves along its
own path. To find the source, the query and its reply store the posi-
tion, direction, speed and ID of the source. Thus, nodes forwarding
the reply can determine the source position at any time. However,
the source might change its direction or speed at any time. When
this happens, the source places a new (temporary) data item — a
buoy — in the MHT. It is placed at the current position of the source
and moves with the old direction and old speed of the source. Fur-
thermore, it stores the new direction and speed of the source. Thus,
the reply reaches the buoy instead of the the source and retrieves the
new direction and speed of the source. Multiple direction changes
are handled by chains of buoy.

In contrast to existing internet based or ad-hoc network DHTs
(compare section 2) MHT does not maintain a routing or finger
table to nodes which are multiple hops away. This property — next
to the mapping of data items on paths — enables MHT’s scalability
in highly mobile scenarios.

3.6 Realistic Mobility

MHT focuses on systems with a high degree of node mobility.
In the real world, nodes move along a limited set of paths, e.g. the
roads of city. Thus, instead of arbitrary paths, we derive paths along
the roads of a city from the data item’s keys. In our work, we use
the Manhattan grid as an example. As a result, the space and direc-
tion where nodes and data items move become strongly correlated.
Thus, the chance of matching data and node paths increases signif-
icantly and MHT provides better performance.

4. CHURN AND LOAD BALANCING

When a node unexpectedly leaves the network all data items
stored on it get lost. The standard technique to address this churn is
to store copies of a data item on various nodes in the peer-to-peer
network. These data items frequently exchange ping-pong mes-
sages to test for their for availability.

Obviously, such an approach sounds promising for MANETS,
too. However, the local broadcast properties of the wireless com-

9@

6]

“—@ «—0 —0
d n 53

(@) Local Redundancy: adding replicas with the same path,
but slightly different starting points.

(b) Global Redundancy: adding replicas with uncorrelated
paths.

Figure 2: Local vs. global replication in the Manhattan grid.

munication open up two interesting design choices: (1) local repli-
cation and (2) global replication:

4.1 Handling churn with local replication

MHT uses local replication to handle Churn. It places replicas of
each data item close to their positions. Each replica is placed with a
constant offset o to the original data item in the system. This offset
is added to the start and end point — or the center point in case of
traffic adaptation — of the data item. Thus, replicas and original data
items move on the same path, i.e. the same direction and speed, just
slightly apart from each other (see figure 2(a)).

When selecting the offset, one has to take care of two factors:
(1) the offset shall be large enough to ensure that the two copies of
the data item are not placed on the same node. (2) When the offset
is too large, the distance between two copies becomes increases
and the "still-alive” messages need to be routed over multiple hops.
The result is communication overhead. Thus, we select the offset
so that a replica can allways contact the previous and the next copy
directly.

When an item is lost, a copy with the corresponding path in-
formation is created and placed in the hash table. As all items are
close to each other, the “still alive” messages result in low overhead
as they only need to be transmitted via a limited number of hops.
For the same reason, updates to a data item have limited overhead.
Local replication allows MHT to efficiently deal with sudden node
death or departure.

4.2 Load balancing with global replication

Nonetheless, local replication has some limitations. When a data
item is very popular, queries can cause a high load on the routes to
the data item. Global replication addresses this problem by placing
a data item at various unrelated places in the network (see figure
2(b)). This ensures better load balancing and furthermore ensures
that the network stays alive even when parts get disconnected. For
global replication however, “still alive” messages need to be sent
across large parts of the network and so increase the message over-
head drastically.

Concluding, global both replication techniques have different
trade-offs, which depend on the deployment scenario. In this paper
we focus on local replication to handle churn.

45

4.3 Options for local replication

When adding local replication to mobile hash-tables we identify
two import factors next to the offset itself:

e Level of redundancy: Obviously, adding more copies to the
system increases the redundancy. Although the nodes that
carry the replicas are in one hop distance from each other
and therefore “still alive” messages are one hop messages,
the number of exchanged messages increases with a higher
redundancy level. Basically, these messages add a constant
load to the communication system. Thus, the number of
replicas impacts the query and data item maintenance capa-
bilities of the MHT. Although the level of redundancy de-
pends on highly on the application scenario, we want eval-
uate the trade offs of the different redundancy levels in this

paper.

”Still alive” message frequency: The second important fac-
tor is the frequency of the still alive” messages. Obviously,
while one copy of a data item is lost (and not restored yet)
queries to this copy will fail. Furthermore, when all copies
are lost before recovery, the data item will not be available
anymore. Exchanging these “still alive” messages frequently
decreases the chance of loosing a data item from the system
but increases the message load. Thus, next to the redundancy
level we evaluate the frequency of the “still alive” messages
in this paper.

S. EVALUATION

After discussing the MHT design and its features to handle churn,
we evaluate the proposed technique. First we present our simula-
tion setup and then discuss simulation results.

5.1 Simulation Model

We implemented the mobile hash table in the OmNet++ simula-
tor [23] to evaluate the MHT performance and scalability. The mo-
bility scenarios are based on the “random waypoint” model [7, 19].
When not denoted differently, between 5000 and 100000 nodes
move with a speed uniformly distributed between 10 and 15 m/s
in an area of 2000m x 2000m for the scalability simulations and an
area of 1000m x 1000m for the simulations regarding churn. The
wireless radio has a transmission range of 100m and its propaga-
tion bases on the unit-disk model. The simulation duration is 1000
to 3600s and results are averaged over three runs. The offset for
replication is set to 50m.

Our simulation model ignores the capacity of, and the conges-
tion in the network and packet loss. While these assumptions are
obviously unrealistic, they allow the simulator to scale to tens of
thousands of nodes and us to evaluate the scalability of the pro-
posed approach.

We evaluate the following performance metrics:

e Maintenance overhead: this metric evaluates how long a data
item is stored on a node until their paths do not match any-
more and the data item is moved to another node. This metric
is the key metric of MHT, as it describes its scalability.

e Path length: this metric evaluates the hops it takes to resolve
a query in the MHT.

e Data item out of place: when a data item needs to move to
another node and there is no applicable node with similar
path properties in range, the data item can move away from
its path. Thus, queries fail until the data item is back on an
appropriate route.

N
o

250 - 0.4
—+— MHT adaptation]
A35 a — MHT Manhattan 0-35
230 % ——MHT open space || §& 03
"; o ~—8-— GHT Manhattan 2 T
g 25 2 —— GHT open space 20_25
220 s £
s 5 § 02
° 2
E15 2 £0.15
910 < = 04
< g 187
5% < gy () 05
0 : 0 : 0 % &
10° 10° 10° 10° 107 10° 10° 10° 10°
Number of Nodes Number of Nodes Number of Nodes

(a) Maintenance overhead: average duration (b) Query Lookup: number of hops to resolve (c) Probability that a data item is out of place

a data item is stored on a node. a query.

when queried.

Figure 3: Evaluating the performance of MHT for varying node numbers. For comparison GHT performance is depicted, too. The
playground has a size of 2000m x 2000m. Please note the logarithmic scale.

e Loss rate of data items: when a node leaves the network un-
expectedly, i.e. churn, all data items stored on it get lost. Re-
dundant storage of items in the DHT can drastically reduce
the impact of churn.

5.2 Performance Results

Scalability — Varying Number of Nodes

The results for varying the number of nodes in the system are de-
picted in figure 3. With the raising number of nodes the node den-
sity increases. Thus, the probability increases that a data item finds
a node with similar speed and direction to be stored on. As figure
3(a) depicts, the average time a MHT data item is stored on a node
raises with the increasing number of nodes. Consequently, the more
nodes participate in a system, the lower the maintenance overhead
is. This is a very interesting system property, as MHT — in con-
trast to most other systems, including GHT - scales inverse with
the number of nodes. GHT does not show these scaling properties
as it does not benefit from node movement.

Furthermore, figure 3(b) shows that the MHT approach — and
particularly not the adaptation mode — does not impact data lookup.
The average number of hops to resolve a query of MHT is nearly
equal to the hops of GHT. Figure 3(c) depicts the probability that
a data item is stored farther away from its position than half the
transmission range when queried and so cannot be retrieved via
lookups. The figure shows that commonly for MHT this probability
is lower than for GHT. GHT addresses this problem, by storing the
data item on all nodes surrounding the respective area.

Churn resilience

The results for the MHT’s churn resilience are depicted in figure 4.
High churn rates, i.e. a low average duration of participation in the
network, results in high loss rates of data items. Figure 4(a) depicts
that for high churn rates a high level of data replication can reduce
the loss rate of data items drastically. Additionally, figure 4(b) de-
picts that short intervals for the exchange of still alive” messages
can further reduce the impact of churn. Figure 4(c) shows that a
high frequency of “still alive” messages and redundancy can reduce
the data loss to roughly 100 data items per hour, i.e. less than 0.3%
per hour. Concluding the evaluation of MHT’s churn resilience,
it can be said that a high ping frequency and a high number of
replicas reduce the chance for data loss drastically, especially when

46

nodes join the network just for short durations. Nonetheless, both
approaches introduce maintenance overhead and thereby additional
message load. However, due to local replication, the messages are
only exchanged between physical neighbors.

6. CONCLUSION

MHT addresses two key problems of mobile peer-to-peer net-
working: efficient data lookup and scalable routing in a mobile en-
vironment. Our simulation results validate the scalability of the
design — in a network with 100000 nodes it supports efficient data
lookup and has low DHT maintenance overhead. Furthermore, it
shows that MHTs can efficiently use local replication to handle
churn.

Currently, we are implementing MHT on top of a more detailed
simulation models to add packets loss and channel capacity to our
evaluation. Furthermore, we evaluate load balancing with global
replication and how it can interact with local replication.

In this paper, we presented a scalable approach to structured
peer-to-peer networking in mobile environments and evaluated its
churn resilience.

7. REFERENCES
[1] M. Caesar, M. Castro, E. Nightingale, G. O’Shea, and

A. Rowstron. Virtual Ring Routing: Network routing

inspired by DHTs. In Proc. of the conference on

Applications, Technologies, Architectures, and Protocols for

Computer Communications (SIGCOMM), 2006.

M. Castro, M. Costa, and A. Rowstron. Performance and

Dependability of Structured Peer-to-Peer Overlays. dsn,

2004.

[3] M. Castro, P. Druschel, Y. C. Hu, and A. Rowstron. Pastry:
Scalable, distributed object location and routing for
large-scale peer-to-peer systems. In Proc. of IFIP/ACM
International Confernence on Distributed Systems Platforms,
November 2001.

[4] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy,

S. Shenker, and I.Stoica. The impact of DHT routing

geometry on resilience and proximity. In Proc. of the

conference on Applications, Technologies, Architectures, and

protocols for computer communications (SIGCOMM), 2003.

N. Harvey, M. B. Jones, S. Saroiu, M. Theimer, and

A. Wolman. Skipnet: A scalable overlay network with

[2

—

[5

—

1200
Avg. duration of node stay (in sec.)
(a) Churn resilience for various replication

levels and node participation in the network.
The still alive” message interval is kept con-
stant at 60s.

. o (o2}

Avg. loss rate of data items (in items/h)
w

—+—replication level 1
——replication level 2

replication level 3
~-o-replication level 4

N W A N @ ©

N

Avg. loss rate of data items (in items/h)

S —

—+— 20s data item ping interval
—=—60s data item ping interval 1
100s data item ping interval
—o— 140s data item ping interval |

Avg. loss rate of data items (in items/h)

o
o

2100 3000 3600

constant at 3.

1200
Avg. duration of node stay (in sec.)

2100

2 —+—replication level 1
107 —— replication level 2 3
~—replication level 3
4 —o—replication level 4
10 . . . , .
3000 3600 20 40 60 80 100 120 140

Data item ping interval (in sec.)

(b) Churn resilience for various “still alive” (c) Churn resilience for various replication
message intervals and node participation in levels and “still alive” message intervals. The
the network. The redundancy level is kept avg. node participation is kept constant at

1200s.

Figure 4: Evaluating churn resilience. The number of nodes in simulation is 5000 and it contains 50000 data items, nodes move in
the Manhattan grid.

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

practical locality properties. In Proc. USENIX Symposium on
Internet Technologies and Systems (USITS), March 2003.

Y. C. Hu, H. Pucha, and S. M. Das. Exploiting the Synergy
between Peer-to-Peer and Mobile Ad Hoc Networks. In
Proc. of HotOS-1X: Ninth Workshop on Hot Topics in
Operating Systems, May 2004.

D. B. Johnson and D. A. Maltz. Dynamic Source Routing in
Ad Hoc Wireless Networks. In Mobile Computing, volume
353. Kluwer Academic Publishers, 1996.

B. Karp and H. T. Kung. GPSR: greedy perimeter stateless
routing for wireless networks. In Proc. of ACM International
Conference on Mobile Computing and Networking
(MobiCom), August 2000.

O. Landsiedel, S. G6tz, and K. Wehrle. Towards Scalable
Mobility in Distributed Hash Tables. In Proc. of the 6th IEEE
International Conference on Peer-To-Peer Computing (P2P),
2006.

O. Landsiedel, K. A. Lehmann, and K. Wehrle. T-DHT:
Topology-Based Distributed Hash Tables. In Proc. of Sth
IEEE Conference on Peer-to-Peer Computing (P2P), August
2005.

J. Li, J. Stribling, T. M. Gil, R. Morris, and M. F. Kaashoek.
Comparing the performance of distributed hash tables under
churn. In Proc. of the 3rd International Workshop on
Peer-to-Peer Systems (IPTPS04), February 2004.

M. Li, W.-C. Lee, and A. Sivasubramaniam. Efficient peer to
peer information sharing over mobile ad hoc networks. In
Proc. of Second WWW Workshop on Emerging Applications
for Wireless and Mobile Access (MobEAO4), May 2004.

C. Lindemann and O. Waldhorst. Exploiting Epidemic Data
Dissemination for Consistent Lookup Operations in Mobile
Applications. ACM Mobile Computing and Communication
Review (MC2R), 2004.

R. Mahajan, M. Castro, and A. I. T. Rowstron. Controlling
the Cost of Reliability in Peer-to-Peer Overlays. In In

Proc. of the Second International Workshop on Peer-to-Peer
Systems (IPTPS), 2003.

C. E. Perkins and E. M. Royer. Ad hoc On-Demand Distance
Vector Routing. In Proc. of the 2nd IEEE Workshop on
Mobile Computing Systems and Applications (WMCSA),

47

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

February 1999.

H. Pucha, S. M. Das, and Y. C. Hu. Ekta: An Efficient DHT
Substrate for Distributed Applications in Mobile Ad Hoc
Networks. In Proc. of 6th IEEE Workshop on Mobile
Computing Systems and Applications (WMCSA), December
2004.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and

S. Shenker. A scalable content-addressable network. In
Proc. of ACM Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communication
(SIGCOMM), September 2001.

S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan,
L. Yin, and F. Yu. GHT: A Geographic Hash Table for
Data-Centric Storage in SensorNets. In Proc. of ACM
Workshop on Wireless Sensor Networks and Applications
(WSNA), September 2002.

G. Resta and P. Santi. An analysis of the node spatial
distribution of the random waypoint model for Ad Hoc
networks. In Proc. of ACM Workshop on Principles of
Mobile Computing (POMC), October 2002.

S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz. Handling
churn in a dht. In Proc. of USENIX Technical Conference
(USENIX), June 2004.

S. Shenker, S. Ratnasamy, B. Karp, R. Govindan, and

D. Estrin. Data-Centric Storage in Sensornets. In Proc. ACM
Workshop on Hot Topics in Networks (HotNets), October
2002.

L. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and

H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. In Proc. of ACM Conference
on Applications, Technologies, Architectures, and Protocols
for Computer Communication (SIGCOMM), August 2001.
A. Varga. The OMNeT++ Discrete Event Simulation
System. In Proc. of the European Simulation
Multiconference (ESM), June 2001.

T. Zahn and J. Schiller. MADPastry: A DHT Substrate for
Practicably Sized MANETS. In 5th Workshop on
Applications and Services in Wireless Networks (ASWN),
2005.

