
Towards Autonomous Mobile Agents with Emergent
Migration Behaviour

Tino Schlegel
∗

Swinburne University of
Technology

Faculty of Information and
Communication Technologies

Hawthorn, 3122 Victoria,
Australia

tschlegel@ict.swin.edu.au

Peter Braun
Swinburne University of

Technology
Faculty of Information and

Communication Technologies
Hawthorn, 3122 Victoria,

Australia

pbraun@ict.swin.edu.au

Ryszard Kowalczyk
Swinburne University of

Technology
Faculty of Information and

Communication Technologies
Hawthorn, 3122 Victoria,

Australia

rkowalczyk@ict.swin.edu.au

ABSTRACT
Along with manifold advantages of distributed multi-agent
systems, increased network traffic produced by highly com-
municative agents in large distributed systems has to be
considered as their practical downside. We suggest to apply
the programming paradigm of mobile agents to reduce this
network overhead by allowing agents to meet at the same
network node before commencing communication. A remote
communication between two agents could then be replaced
by one or two agent migrations, followed by local communi-
cation. Since only in trivial cases it is possible to decide at
design time whether remote communication or agent migra-
tion with subsequent local communication would perform
better, this decision has to be made at run-time based on
environmental parameters and agents’ past experience. We
present an adaptive approach, which is inspired by a so-
lution of the El Farol problem. Every agent forecasts the
network load of the next communication step and applies a
simple mathematical model to decide between the two al-
ternatives at run-time. In addition, our approach does not
only consider network load but also server load by enabling
agents to dynamically forecast the number of agents migrat-
ing to a specific agent server. The approach is evaluated
with simulation experiments in static and dynamic server
load environments.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Intelligent
agents

General Terms
Performance

∗PhD student.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’06May 8–12 2006, Hakodate, Hokkaido, Japan.
Copyright 2006 ACM 1-59593-303-4/06/0005 ...$5.00.

Keywords
mobile agents, collective and emergent agent behaviour

1. INTRODUCTION
In most distributed multi-agent systems, communication

and coordination between agents is based on asynchronous
message passing. If agents are located on distant agent
servers, sending messages between agents generates network
traffic between the corresponding network nodes. As ev-
ery network traffic causes higher execution time by network
transmission and latency compared with a centralized so-
lution, a trade-off between advantages of agent distribution
and drawbacks regarding their execution time has to be con-
sidered. For example, a promising application area of multi-
agent systems is the management of Grid services [8,13,14].
Agents can act as representative of a service instance and
supplement the service’s functionality by intelligent tech-
niques for negotiating QoS parameters [12]. Multi-step ne-
gotiation based on the iterative contract-net protocol be-
tween widely distributed agents can impose high network
overhead, which might question the applicability of nego-
tiations at large. We believe that this important problem
has not sufficiently been recognized by the agent commu-
nity so far and current agent development methodologies do
not provide solutions to this problem.

Mobile agents have been introduced as a paradigm for dis-
tributed systems, in particular to reduce network traffic by
moving code close to the place where the data is. A mobile
agent is a program that can migrate from one host to an-
other host in a network of heterogeneous computer systems
and fulfil a user-given task. It can autonomously work and
communicate with other agents and host systems. During
the self-initiated migration, the agent carries its code and
some kind of execution state with it [4, 21].

Mobile agents are a solution of our scenario of negotiat-
ing agents, because both agents could decide to meet at the
same agent server and then communicate only locally with-
out generating any network traffic except of the migration.
Mobile agents can not only reduce network load and increase
application response time but can also improve reliability by
making the application more robust against network failures
and reduce power consumption in case of mobile devices. In
the last years, many research groups have carried out em-
pirical evaluations to evaluate which of these two paradigms

 585

(remote communication or migration followed by local com-
munication) performs best regarding network load and pro-
cessing time in various application scenarios [15,17,18].

It is obvious to see that mobile agents can only produce
lower network load, if, simply speaking, the mobile agent’s
code and state that have to be transmitted are not larger
than the amount of data that can be saved by the use of a
mobile agent. It depends on the message size, the code and
state size, and the network environment to decide whether
mobile agents perform better than remote communication.
In the following, we call this the migration decision problem.
Most current solutions of the migration decision problem are
based on mathematical models of the application’s network
load using parameter estimations (e.g. the number of ne-
gotiation steps, average message size, etc.) and lead to a
decision at design time. We believe that in most application
scenarios it will be beneficial to address the migration deci-
sion problem at run-time, because only then all influencing
parameters (network throughput, latency, request message
size, code size) can be actually known.

In this paper we present an approach to solve the migra-
tion decision problem at run-time involving dynamic predic-
tion of message sizes based on historical information about
previous communication acts. The agents do not only fore-
cast message sizes but also the load of the remote agent
server that an agent would migrate to. Although an agent
might opt for migration when considering only message sizes,
a remote communication could be the better alternative if
also server load is taken into account. Our solution is in-
spired by the concept of inductive reasoning and bounded
rationality introduced by Arthur [1] and does not rely on ad-
ditional communication between the agents to decide which
agent should migrate to which agent server. It performs
well for large and highly dynamic systems and can easily
be adapted to various system sizes. In addition, the overall
system performance is not affected in case of agents fail or
leave the system.

The remainder of the paper is structured as follows: The
next section gives an overview of the related work already
done in the area of network aware programs. Section 3 de-
scribes the model for communication and coordination costs
that is used for this work and our assumptions and con-
straints. It is following a section describing our simulations
and the experimental validation of the simulation results.
An outlook to the future work concludes the paper.

2. RELATED WORK
Current approaches for deciding between remote commu-

nication and agent migration are based on static mathemat-
ical analysis of the application and network models. We
argue that such static approaches are not sufficient for all
kinds of application and should be complemented by adap-
tive decision models which enable the agent to decide be-
tween remote communication and migration during run-time
autonomously.

To illustrate our discussion, we use the following simple
model. In the remote communication approach, agent A1

sends a request message of size Breq to the remote agent
A2, which answers with a result message of size Bres. The
amount of bytes that are sent over the network equals BRC =
Breq + Bres. In the migration approach, agent A1, which
contains code of size Bc and state information of size Bs +
Breq migrates to the remote agent server (here we confine

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 1000 2000 3000 4000 5000

ne
tw

or
k

lo
ad

 [b
yt

e]

result size [byte]

B*

Mobile Agents
Remote Communication

Figure 1: Evaluation of a simple mathematical
model with [kB] Breq = 50, Bc = 2000, Bs = 100, ς = 0.7
and break-even point B∗ ≈ 3143

to one mobile agent, instead of two as in the more general
case mentioned in the previous section). At the remote agent
server, the agent communicates locally with agent A2, which
does not produce any network load. Agent A1 has code to
filter or compress the reply message, so that only (1−ς)Bres

must be carried to the agent’s home agency. Note that the
agent neither carries its code nor the request message back
home, because the code is already available at the home
server and the request message is no longer needed. How-
ever, state information must be sent back to the agent’s
home agency. Thus, the amount of bytes sent in the mobile
agent approach equals BMA = Bc+2Bs+Breq +(1−ς)Bres.
When we evaluate this model using an artificial parameter
setting, we see that there is a break-even point B∗, at which
the migration overhead produced by mobile agents’ code
and state relocation is compensated by their ability for data
reduction (compare Fig. 1).

Picco’s approach is to estimate all influencing parameters
and decide statically between these two design paradigms
[16]. That approach is suitable for scenarios in which all the
parameters are known to have constant size (e.g. the result
message is a telephone number). Even if the size of param-
eters (e.g. the result size) are Poisson distributed with an
expectation λ and B∗ � λ or B∗ � λ (i.e. the probability
for a wrong decision is very low), a static decision is suffi-
cient. In contrast, if B∗ is close to λ or the distribution of
reply sizes is not Poisson, changes over time or is simply un-
known, a static decision on design paradigms is error-prone.

Another drawback of Picco’s approach is that it does not
take into account the possibility of a mixture of remote com-
munications and agent migrations. It was already identified
by Chia and Kannapan to be beneficial in terms of net-
work load in the case of only two data servers [7]. Later,
Strasser and Schwehm developed an algorithm to determine
the optimal agent’s itinerary of n data servers under the
assumption of full knowledge [19]. In their approach, the
agent only migrates to a subset of all data servers, whereas
the other servers are accessed using remote procedure calls.
The optimal agent itinerary depends on the size of requests
and results, the number of communication steps and on the
network quality between each pair of nodes. All these pa-
rameters are assumed to be estimated or known in advance.

 586

Later, this approach was extended by a technique to provide
information about network quality using distance maps be-
fore planning the optimal migration itinerary [20].

The second problem that has to be considered is the load
of the agent server to which a mobile agent wants to migrate
to. Even if a migration is beneficial from the perspective of
network load, a migration has to be dismissed, if the des-
tination agent server is already overloaded by other agents
or server tasks. This problem has mainly been accounted
from the server or system perspective so far. For exam-
ple, Flüs [9] has proposed techniques for capacity planning
of mobile agent servers and extended the Tracy [3] agent
toolkit by techniques to avoid server overloading by refusing
or queuing incoming agents. From a system perspective, the
problem of load balancing between different agent servers is
very important. Georgousopoulos et al. [10] present a load
balancing mechanism based on a combination of state and
model-based approaches. Cao et al. [5] describe a load bal-
ancing mechanism for Web servers based on the mobile agent
paradigm.

A combined solution of both problems can be considered
as a self-organizing approach to minimize network and server
load of a multi-agent systems. To the best of our knowledge,
there is no approach in the literature that combines both
network load optimization and server load optimization so
far.

3. MODEL DESCRIPTION
We model a distributed multi-agent system as a network

of nodes L = {L1, . . . , Lm} on each of which an agent server
is running. The agent system comprises of agents A =
{A1, . . . , An}, each located on its home agent server h(Ai)
at the beginning of its life-cycle. The map P : A → L de-
fines the location of each agent in general. Agents that are
bound to large databases or otherwise immobile legacy sys-
tems are called stationary. All other agents are considered
to be mobile.

Each agent has to process a list of communication steps
C = {ci | i : 1 . . . p} as part of its task. Each communication
step ci = 〈Aa, Ab, mk, mj〉i defines that a request message
mk is sent from agent Aa (source) to agent Ab (destination),
which responses with a reply message mj. Each message mk

can be seen as an arbitrary sequence of bytes of the length
Bm(mk). The network cost for a remote communication
step is calculated as follows:

BRC(ci) =

{
0 if P(Aa) = P(Ab)

Bm(mk) + Bm(mj) otherwise
(1)

Before each communication step, both involved agents
(provided they are mobile) have to decide, whether to mi-
grate from their current location P(Ai) to another location
P(Ai)

′ before commencing the communication act. In the
following we assume that both agents migrate to the same
destination server. The network load only comprises of the
cost for transferring the agents’ code of size Bc and state of
size Bs (which is equal to the size of the request message) but
no costs for local communication. After the communication,
both agents migrate back to their home agent servers (with-
out code, because the code is already available at their home
agent servers). Agent Aa carries back state information and
results of size (1−ς)Bm(mj) with 0 ≤ ς ≤ 1, because the size
of the original reply message could be reduced (e.g. filtered

Figure 2: Communication model with multiple
agents and a single server.

or compressed). The mobile agent communication network
cost is calculated by

BMA(ci) =

 0 ifP(Aa) = P(Ab)
Bc(Aa) + Bm(mk)+

Bc(Ab) + (1− ς)Bm(mj) otherwise

(2)
if both agents are mobile. If only the sender agent is

mobile, code transmission of agent Ab has to be disregarded.
The last formula is independent of the location of the

destination agent server because we only consider network
load and not transmission time at this stage. Formulas 1
and 2 can be used to decide between the two alternatives
at run-time, provided that all message sizes are known. To
further reduce the complexity of our model, we assume for
our first experiments that all agents exchange messages with
only one agent S1, which is stationary and located on L1,
see Fig. 2.

4. TOWARDS EMERGENT MIGRATION BE-
HAVIOUR

4.1 Introduction – The El Farol Problem
We present a combined approach for reducing network

load and agent server load, which is based on predicted en-
vironment parameters at run-time. As mentioned in the
previous section, an agent has to decide before each commu-
nication step ci between remote communication and agent
migration. This decision must be based on limited knowl-
edge, which only includes its own code size Bc and the re-
quest message size Bm(mk). The size of the reply message
Bm(mj), the selectivity factor ς, and the current remote
agent server load are not known in advance.

Naturally, we have to assume that neither of these values
is distributed uniformly within their domain. In that case,
there would be no chance to predict these values based on
past experience. In order to apply machine learning algo-
rithms for these values, they must render a certain pattern,
for example some kind of probability distribution. One of
our hypotheses is that in many application scenarios the re-
ply size can be described by well-known distributions such as

 587

Poisson or Gaussian distributions. It should be clear that
this approach can be successfully applied to many appli-
cation scenarios, for which a static analysis is possible as
proposed by Picco [16] and Schwehm and Strasser [19]. In
these cases, the reply message size, selectivity factor, and
server load have a straightforward distribution (e.g. a con-
stant value), which is easy to learn by our approach.

The prediction mechanism is inspired by inductive reason-
ing and bounded rationality principles introduced by Arthur
[1] and demonstrated as solution of the El Farol bar prob-
lem. The original problem setting consists of 100 people to
decide repetitively and independently, whether to go to the
El Farol bar on a specific day of the week or not. All people
have the same preference in order to decide: they will go
to the bar, only if they expect less than 60 people to show
up. Choices are unaffected from previous visits. There is no
communication between people (e.g. to form coalitions or
coordinate their decisions) and the only information avail-
able to every agent is the number of people that attended
the bar in the past weeks.

Arthur’s solution of the El Farol bar problem consists of
a set of predictors for each patron, each able to forecast the
number of patrons by applying very simple pattern based on
past experience. At the beginning of the simulation, each
person is assigned a randomly chosen set of predictors. In
each step of the simulation the predictor that has performed
best in the last week, is used to forecast the next number
of attendants. The interesting result of Arthur’s simulation
shows a fast stabilizing process around the optimal number
of 60 attendants. For more information about the El Farol
bar problem, we refer to [6].

Our problem can be mapped to the El Farol bar problem
by assuming agent S1 (to which all communication is di-
rected to) and its agent server to be the bar with limited re-
sources. All other agents have to decide whether to migrate
to that agent server or not. An agent will migrate only if
the migration will reduce network costs and the destination
agent server is not overloaded yet. The latter requirement
can be simply modelled by a number of agents executed in
parallel. We have to deal with similar effects as in the El
Farol problem: if all agents believe that the server will not
be overloaded, all agents will migrate and if all agents believe
that the server will be overloaded, no agent will migrate –
both experiences would invalidate the agents’ beliefs in the
environment.

The advantage of our approach is that no additional com-
munication overhead is introduced because agents learn from
their past experiences. In contrast to the original El Farol
problem, we do not assume free information dissemination
about the current server load to agents that did not mi-
grate to the agent server recently. That is, only agents that
have migrated to the agent server recently can benefit from
up-to-date knowledge.

4.2 Network Cost Prediction
Each agent predicts environment parameters that are not

know in advance but necessary for the migration decision
based on its own historical data. For the prediction of mes-
sage sizes and selectivity factors, this technique provides
good results because we do not only use one predictor but
a set of different predictors to provide a better accuracy.

The predictor that is used for the next prediction of the
message size and the selectivity factor is called active pre-

dictor. After an agent has executed a communication step,
its history information is updated with the measured values
and all predictors will be rated again. The most accurate
predictor in the last steps is chosen as the new active predic-
tor because it is the most prospective for the next prediction.
To reduce the computational overhead of the predictor eval-
uation, it is possible, to use the active predictor until it’s
relative error δ exceeds a pre-defined threshold.

As the migration decision of agent Aj based on the net-
work costs is independent of any other agent Ak, it is fair
to assign all agents the same set of predictors. Of course,
the quality of the predictors influences the quality of the
predicted values and it might be reasonable to introduce
specialized predictors that can be applied to specific prob-
ability distributions. However, in our first experiments we
were keen to learn about the quality of very simple predic-
tors. Actually, it is not important to achieve a correct pre-
diction of the environment parameters rather than making
the correct decision based on the predicted values. The best
predictor will be chosen automatically, while less accurate
predictors will not be considered in the future.

For our experiments we have developed the following pre-
dictors:

• same value as nthlast communication step,

• moving average of last n steps,

• the trend of the last n steps,

• random value in the interval between current minimum
and maximum,

• Poisson distribution based on the current history data.

4.3 Agent Server Load Prediction
Agent server load prediction differs slightly from message

size prediction, because all agents compete for the same re-
source and agents’ decisions regarding server load are depen-
dent on each other. If all agents would predict the same re-
source load, than this would invalidate their beliefs. There-
fore, it is important to ensure agents make different and
adaptive decisions in their environment.

The selection of the active predictor differs from the tech-
nique presented previously. In contrast to the message re-
ply size and selectivity prediction, the selection of the next
server load predictor is not deterministic but has a level of
uncertainty. The probability that a predictor is chosen as
the new active predictor increases with the predictor’s ac-
curacy. The accuracy of a predictor is calculated from the
number of correct and wrong decisions, i.e. the agent has
predicted a not overloaded resource and decided to migrate.

Only the last n values are considered for calculation of the
predictors accuracy because this allows a faster adaptation
to changes. The number n can be configured by the agent
designer. For every correct decision (the agent migrated and
the resource was not overloaded), a predictor gets a positive
rating. For a wrong prediction only the responsible active
predictor gets a negative rating. To improve the learning
process for new predictors and predictors with old histori-
cal values, they get a positive rating for correct predictions,
but no penalty for wrong predictions, until they reach m
predictions with m ≤ n. The overall rating is the sum of
all positive and negative ratings. The relative error of the
prediction is not considered for the resource load prediction.

 588

For example, if predictor P1 predicted in 60% of the consid-
ered cases that the resource is not overloaded and the agent
migrates to the resource while predictor P2 predicted only
30% of the cases correct the probability of choosing P1 is
twice the probability of choosing P2.

Usually, the agent bases the migration decision on local
knowledge which means the resource load information is up-
dated only if the agent migrates to the resource. Some ex-
periments were conducted with global knowledge in which
we updated the resource load information after every migra-
tion decision to learn about the differences.

The current approach uses a set of simple predictors, sim-
ilar to the El Farol approach. Developed predictors include:

• n-period cycle predictor: predicts the same as nth-last
history value.

• moving average predictor: predicts the average of all
values in a window of the last n history values.

• linear or non-linear predictors: predicts interpolated
values the considers the last n history values.

4.4 Rule Based Configuration
For the strategic migration decision the agent uses a rule

based decision system. The rules are based on the parame-
ters provided by the message size and server load prediction
to check which paradigm offers a better performance. Dif-
ferent rule sets can be configured to provide different con-
figurations and priorities. The owner of an agent can decide
which of the rule sets from a number of predefined rule sets
are to be used for the decision making to meet different user
preferences.

4.4.1 Data Collecting Phase
In the initial phase when agents have no (or not enough)

historical data it is necessary to use a different type of
predictors–not based on historical information and not pre-
dicting message size, but simply deciding between remote
communication and migration, such as:

• Random migration strategy: The agent migrates with
a given probability to the destination host.

• Always migrate strategy: The agent always migrates
to the destination host. This is the fastest way to get
required information for the learning phase.

• Never migrate strategy: The agent always uses re-
mote procedure calls. In this case, the agent will never
switch to the learning phase because no resource load
information is updated.

After the agent has collected enough data so that at least
some of the predictors are working, the agent switches to
the working phase.

4.4.2 Learning and Working Phase
In the working phase, the agent uses the predicted data of

message reply sizes, agent selectivity, and the expected agent
server load based on local knowledge to come to a migration
decision. Based on the rule set that reflects best the user
preferences, an agent makes an autonomous decision which
paradigm offers the highest benefit for the user.

• Minimal Network Load: Only the network load is con-
sidered for the migration decision. If the resource is
crowded, the agent accepts waiting times.

• Balanced strategy: The agent will use migration when
it offers benefit compared to RPC and the resource
won’t be crowded.

• Best Performance: Same as minimal network load,
except that the migration probability increases linear
with the age of the newest historical data or the av-
erage age of historical data in the sliding window, if
the resource load data is out of date. This prevents
that an agent create the habit not to migrate, if it has
decided once like this. The predictor always predicts
not to migrate, based on the same historical values.

5. EXPERIMENTAL VALIDATION

5.1 Outline
We have developed a first simulation test-bed in the Java

programming language for a distributed multi-agent system
independent of any specific agent toolkit. Our simulation
environment enables different configurations of the number
of agents, the number of communication steps for each agent,
various distributions of reply sizes and selectivity factors for
each agent, etc. The simulation uses an event-driven model
to trigger agent activities. Network load equals the number
of bytes transmitted without taking network protocol over-
head (IP, TCP, application layer) into account. The latter
will be considered in the near future, when the simulation
environment will be re-designed to work with a well-known
network simulation tool such as NS-2 or Omnet++. Net-
work transmission time is modelled by taking bandwidth
and latency between each pair of network nodes into ac-
count.

We have tested a number of different configurations of our
simulation environment and for the evaluation we measured
the following system metrics:

Reply size: The size of the reply message.

Selectivity factor: The agent’s selectivity factor for the
reply message.

Agent server load: The number of agents that attended
the server in the last simulation step.

Several sets of experiments were conducted with differ-
ent simulated configurations. We repeated each experiment
several times and show results of representative experiments
and some average values for illustration.

The first set of experiments focuses on the accuracy of
message size and selectivity factor prediction. Both form
the foundation for the strategic migration decision based
on network load. The second set of experiments focuses
on prediction of message size as well as agent server load,
and investigates if and how fast agents can adapt to varying
levels of server availability.

Usually we run experiments while varying only one param-
eter and keeping all other parameters constant. A detailed
description of the simulation environment and the observed
parameters follows in the next sections.

 589

Figure 3: Comparison of the predicted message size
and the real message size.

Figure 4: Average absolute and relative error of the
reply message size prediction.

5.2 Message Size Prediction
In this section we report on results of message size and

selectivity factor prediction. For this set of experiments we
have selected different artificial Gaussian distributions of the
message size with parameters µ = 5000, 10000, 50000 Byte
and σ2 = 10%, 20%, 40% of these mean values.

To validate the migration decision, we set the other pa-
rameters as follows: the agent size is 35 KByte, the agent
performs 200 predictions using a set of 7 different predic-
tors. The predictors for this experiment include 5 different
period cycle predictors, a moving average predictor, and a
linear predictor. Fig. 3 shows one example of message size
prediction, in which the real message size is Gaussian dis-
tributed N(10000Byte, 3250Byte) with an increasing mean
value. We measured the absolute and relative error of the
prediction and prediction correctness, i.e. whether the pre-
dicted value leads to the correct migration decision. Fig. 4
shows that the absolute error finally reaches 3000 KB and
the relative error is below 20%.

In addition, we measured the cumulative values of these
parameters. Figure 5 compares the network load of the re-
mote communication and migration approach for different
selectivity factors and message reply sizes for a representa-
tive message reply size distribution with µ = 10000 Byte
and σ = 32, 5% = 3250 Byte. Considering only a statistical
analysis of a fixed set of parameters and the given message

Figure 5: Comparison of mobile agent and remote
communication paradigm.

Figure 6: Development of server load for 200 cycles
with resource limit of 135 units.

reply size distribution, we can calculate that the break even
point for the mobile agent paradigm with a selectivity of
70% is at 5000 Byte. An incorrect decision is made in less
than 6,3% of all cases. We expect that real applications have
certain patterns for the reply size distribution, and a small
derivation.

5.3 Combined Prediction
In this section we report on results of combined message

size and agent server load prediction mechanisms. In the
first experiments we have selected a set of 200 agents with
same agent resource requirements of 1 unit (memory, pro-
cessor cycles). These agents want to use agent S1 located
on host L1, which has available resources of n = 135 units.
Fig. 6 shows the agent server load usage when the avail-
able server resources are constant. It can be seen that after
only few executions, the average resource load balances be-
low the maximum value. Only in few cases, the prediction
over-estimates the real number of resources available. Fig. 7
shows that the number of migrations is similar for all agents.
There is no group of agents that always migrates while other
agents never migrate.

A second set of experiments uses the same parameters as
the previous one, but the available server resources are var-
ied at run-time after every 75 executions. The goal of this
experiment is to see how fast the agents prediction mech-
anism can adapt to varying environmental parameter. We

 590

Figure 7: Attendance of mobile agents at the remote
agent server for constant resource limit.

Figure 8: The adaptation of one server to varying
resource capabilities.

set up an environment with different numbers of agents, and
varying resource capabilities over time and measured the
number of resources used by agents. We conducted experi-
ments in which all agents have the same resource consump-
tion as well as different resource consumption. Fig. 8 shows
for one agent server that the adaption to varying server ca-
pabilities works surprisingly fast. Only in few cases, the
available server capabilities are over-estimated, whereas in
many cases the current server capabilities are close to the
maximum values. In addition, Fig. 9 shows that even in the
case of varying server resources the number of migrations is
similar for all agents.

Finally, we tested two variants of updating the historical
data of agents. At first, agents update their history values
after every execution step, independent of having migrated
to that server or not. This case resembles the original El
Farol behaviour. Secondly, agents have limited and hetero-
geneous agent server load information. History values are
only updated if an agent has migrated to the remote agent
server.

Interestingly, the adaptive solution works better when
agents have only limited and heterogeneous knowledge. Fur-
thermore, the limited knowledge is preferred in real systems
because it has no additional communication costs and it
would be difficult to distribute resource information to po-
tential agents.

Figure 9: Attendance of mobile agents at the remote
agent server for varying resource capabilities.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have presented an approach for reducing

communication overhead in a distributed multi-agent sys-
tem by agent mobility at run-time. Our approach also con-
siders system performance by balancing agent server load.
Our approach is based on mobile agents that decide at run-
time between remote communication and migration. It was
inspired by inductive learning and bounded rationality prin-
ciples. The prediction of the required environment parame-
ters enables mobile agents to autonomously make a strategic
migration decision and adapt to the dynamic environment.
From a system perspective, this solution can be considered
as a self-organizing mechanism to minimize network load
and server load in a multi-agent system.

We have presented and evaluated a number of simulation
experiments involving agents in static and dynamic server
load environments. The results show that this new approach
for strategic migration optimization based on inductive rea-
soning and bounded rationality principles is very promising
and justifies further investigations. The advantages of this
approach are its fast adaptability to different system sizes,
its simplicity, and its easy extensibility. These are known ad-
vantages, although in this particular application area rarely
used. With different rule sets, agents can be configured for
different user preferences.

A possible improvement would be to share historical data
between all agents of one agency in order to increase the
learning speed and provide better predictions since histor-
ical data are up-to-date. After we have proven that this
approach works fine with the event driven model we will up-
grade our Java implementation. Our next step is to switch
to a more realistic asynchronous simulation environment.
The simple event-driven multiple agents using one resource
approach will be extended with techniques for multiples re-
sources. Agents will not only migrate to one agent server,
but can freely migrate in the whole multi-agent system.
Each agent will have a set of tasks to fulfil that need a certain
amount of system capabilities. A set of system providers lo-
cated on some of the servers offer services that also consume
system capabilities. These services are used by each agent
to fulfil its task either using remote communication or agent
migration.

Our approach for optimizing network load in multi-agent
systems must be supplemented in the longer run with tech-

 591

niques to optimize the migration behaviour of mobile agents.
In this paper we have assumed rather simple migration tech-
niques (the agent carries all its code and data information),
despite of already known techniques to optimize the migra-
tion strategy of mobile agents [2, 11].

7. REFERENCES
[1] W. B. Arthur. Inductive Reasoning and Bounded

Rationality. American Economic Review (Papers and
Proceedings), 84(2):406–411, May 1994.

[2] P. Braun and S. Kern. Towards adaptive migration
techniques for mobile agents. In Z. Guessoum, editor,
Fifth Workshop on Adaptive Agents and Multi-Agent
Systems (AAMAS 2005), Paris (France), March 2005,
2005.

[3] P. Braun, I. Müller, T. Schlegel, S. Kern, V. Schau,
and W. Rossak. Tracy: An extensible plugin-oriented
software architecture for mobile agent toolkits. In
M. Calisti, M. Klusch, and R. Unland, editors,
Software Agent-Based Applications, Platforms and
Development Kits, Whitestein Series in Software
Agent Technologies, pages 357–382. Birkhäuser
Verlag, 2005.

[4] P. Braun and W. R. Rossak. Mobile Agents–Basic
Concept, Mobility Models, and the Tracy Toolkit.
Morgan Kaufmann Publishers, 2005.

[5] J. Cao, Y. Sun, X. Wang, and S. K. Das. Scalable load
balancing on distributed web servers using mobile
agents. Journal of Parallel Distributed Computing,
63(10):996–1005, 2003.

[6] D. Challet, M. Marsili, and G. Ottino. Shedding light
on El Farol. Technical Report 0406002, Economics
Working Paper Archive at WUSTL, June 2004.

[7] T.-H. Chia and S. Kannapan. Strategically mobile
agents. In K. Rothermel and R. Popescu-Zeletin,
editors, Proceedings of the First International
Workshop on Mobile Agents (MA’97), Berlin
(Germany), April 1997, volume 1219 of Lecture Notes
in Computer Science, pages 149–161. Springer-Verlag,
1997.

[8] L. Chunlin and L. Layuan. Apply agent to build Grid
service management. Journal of Network and
Computer Applications, 26:323–340, 2003.

[9] C. Flüs. Capacity Planning of Mobile Agent Systems
Designing Efficient Intranet Applications. PhD thesis,
Universität Duisburg-Essen (Germany), Feb. 2005.

[10] C. Georgousopoulos and O. F. Rana. Combining state
and model-based approaches for mobile agent load
balancing. In SAC ’03: Proceedings of the 2003 ACM
symposium on Applied computing, pages 878–885, New
York, NY, USA, 2003. ACM Press.

[11] S. Kern and P. Braun. Towards adaptive migration
strategies for mobile agents. In Second GSFC/IEEE
Workshop on Radical Agent Concepts (WRAC),
NASA Goddard Space Flight Center, Greenbelt, MD
(USA), September 2005. Springer Verlag, 2005.

[12] A. Ludwig, P. Braun, R. Kowalczyk, and B. Franczyk.
A framework for automated negotiation of service
level agreements in service grids. In 1st International
Workshop on Web Service Choreography and
Orchestration for Business Process Management in
conjunction with the Third International Conference

on Business Process Management (BPM 2005), Nancy
(France), September 2005. Springer Verlag, 2005.

[13] B. D. Martino and O. F. Rana. Grid performance and
resource management using mobile agents. In
V. Getov, M. Gerndt, A. Hoisie, and A. M. B. Miller,
editors, Performance analysis and grid computing,
pages 251–263. Kluwer Academic Publishers, 2004.

[14] I. Müller, P. Braun, and R. Kowalczyk. A
classification scheme for the integration of software
agent and service-oriented paradigms. In L. Cavedon,
R. Kowalczyk, Z. Maamar, D. Martin, and I. Müller,
editors, Workshop on Service-Oriented Computing and
Agent-Based Engineering (SOCABE’2005) in
conjunction with 4th International Joint Conference
on Autonomous Agents and Multi-Agent Systems
(AAMAS’2005), Utrecht (The Netherlands), July
2005, pages 57–60, 2005.

[15] A. Outtagarts, M. Kadoch, and S. Soulhi.
Client-Server and Mobile Agent: Performances
Comparative Study in the Management of MIBs. In
A. Karmouch and R. Impey, editors, Mobile Agents
for Telecommunication Applications, Proceedings of
the First International Workshop (MATA 1999),
Ottawa (Canada), October 1999, pages 69–81. World
Scientific Pub., 1999.

[16] G. P. Picco. Understanding, Evaluating, Formalizing,
and Exploiting Code Mobility. PhD thesis, Politecnico
di Torino (Italy), 1998.

[17] A. Puliafito, S. Riccobene, and M. Scarpa. Which
paradigm should I use? An analytical comparison of
the client-server, remote evaluation and mobile agent
paradigms. Concurrency and Computation: Practice
and Experience, 13(1):71–94, 2001.

[18] G. Samaras, M. D. Dikaiakos, C. Spyrou, and
A. Liverdos. Mobile Agent Platforms for
Web-Databases: A Qualitative and Quantitative
Assessment. In D. S. Milojicic, editor, Proceedings of
the First International Symposium on Agent Systems
and Applications (ASA’99)/Third International
Symposium on Mobile Agents (MA’99), Palm Springs
(USA), October 1999, pages 50–64. IEEE Computer
Society Press, 1999.

[19] M. Straßer and M. Schwehm. A performance model
for mobile agent systems. In H. R. Arabnia, editor,
Proceedings of the International Conference on
Parallel and Distributed Processing Techniques and
Applications (PDPTA’97), Las Vegas (USA),
volume 2, pages 1132–1140. CSREA Press, 1997.

[20] W. Theilmann and K. Rothermel. Dynamic distance
maps of the internet. In Proceedings IEEE INFOCOM
2000, The Conference on Computer Communications,
Volume 1, Nineteenth Annual Joint Conference of the
IEEE Computer and Communications Societies,
Reaching the Promised Land of Communications, Tel
Aviv (Israel), March 2000, pages 275–284. IEEE
Computer Society Press, 2000.

[21] J. E. White. Mobile agents. In J. Bradshaw, editor,
Software Agents, pages 437–472. The MIT Press,
Menlo Park, CA, 1996.

 592

