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Abstract—A substantial portion of the emerging wireless data service consists of non-real-time applications such as content

download. The existing mechanisms based on per-packet performance guarantees used mainly for voice and streaming media do not

suffice for the elastic nature of non-real-time traffic. For a non-real-time user data services, the key performance measure of interest is

the total download time. In this paper, we propose a novel scheduling framework for wireless content service. Specifically, we present a

two-layer scheduling architecture that combines content-aware scheduling with opportunistic scheduling. In terms of content-

awareness, the proposed scheduling policy provides guarantees on the download time of content. In the second stage, the

instantaneous channel conditions of different users are exploited in an opportunistic manner so as to maximize the throughput of the

system. We define service differentiation in two modes—differential and guaranteed—and provide polynomial time algorithms for both

that manipulate the stretch ratio but within allowable limits. Extensive simulations are conducted that verify the efficiency of the

proposed schemes and provide insights into the behavior of the scheduling algorithms for non-real-time data.

Index Terms—Service differentiation, stretch, non-real-time traffic, optimization, deadline scheduling.

Ç

1 INTRODUCTION

DELIVERY of non-real-time content (elastic applications
with no per-packet delay constraints) promises to be a

significant revenue earner for future generation wireless
networks [10]. Such services include file downloads, Web
browsing, interactive games, streaming audio and video,
maps, etc. To cater to future demand for data services, the
emphasis for most of the existing technologies has been to
increase the data rates. For the currently deployed third
generation (3G) cellular systems, new technologies are
being standardized that support the high data rates
required by the data applications. Among the two most
popular are High Speed Downlink Packet Access (HSDPA) [20]
and High Data Rate (HDR) [6] proposed by 3GPP [1] and
3GPP2 [2], respectively, both of which are designed for the
downlink channels where a time-divisioned-based strategy
is employed for allocating channels to the mobile terminals.
The key components of both systems are the scheduling
policies, the goal of which is to maintain good user
performance and overall system throughput. To that extent,
opportunistic scheduling strategies were proposed in [8],
[16], [17], [19], [24] where, in each time slot, the user with
the best channel condition is selected for transmission.
Opportunistic scheduling strategy exploits multiuser diver-
sity and maximizes the overall throughput, which might be
unfair to users with low long-term signal to interference
noise ratio (SINR). To strike a balance between throughput

and fairness, proportional fair (PF) scheduling was pro-
posed in [13]. Many other scheduling policies have been
proposed and analyzed (see [8] and references therein).
Most of these scheduling policies are sensitive to flow-level
dynamics. For example, in a PF scheduler, a user is selected
based on his current average throughput [13]. However, to
a user, it is the total download time of a content that matters
the most and not the average throughput.

This observation motivates us to design scheduling
policies in conjunction with the existing policies that aim to
deliver all the data of a given content within an appropriate
time based on fairness or quality of service (QoS) objectives.
(The word “content” is used both in the singular and plural
forms.) Typically, a user does not care about the speed at
which he receives the initial portion or the initial bits of the
data requested. Therefore, we define the QoS objectives as a
generalized service model that classifies the non-real-time
content in terms of stretch factor [7]. The stretch factor for
content is defined in terms of the increase in the download
time of content in a loaded system with respect to the
download time in an ideal situation where the entire capacity
is allocated to that content. This notion also allows us to
specify and treat every content with a different QoS level. We
define a QoS class for each content based on the stretch ratio
that the content might undergo. Since stretch factor was
introduced in [7], a variety of scheduling algorithms have
been proposed based on this metric, such as minimizing the
average or maximum stretch. This metric has also been used
in the context of scheduling Web servers [23], [25] and
scheduling in CDMA networks [5], [14]. However, to the best
of our knowledge, the problem of providing class-based
stretch differentiation for emerging wireless data networks
has not been addressed so far.

From a content-awareness viewpoint, we set the QoS
objectives in terms of the download time. We try to
maximize the throughput given that the QoS objectives
(deadlines) are met. The goal of the proposed service
architecture is to differentiate the content belonging to
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different classes based on stretch ratio. We propose a
content scheduler that can be located at the base station
(e.g., a proxy server at the base station) that determines how
the different content should be pushed to the already
existing packet scheduler that provides fairness in terms of
achieved bandwidth. Instead of modifying the packet
scheduler, we use the content scheduler to manipulate the
elastic nature of the content so that the per content QoS
objective is met. To that extent, we propose scheduling
algorithms for the content scheduler that assign deadlines
to each content while maintaining the stretch ratio. Based
on the appropriate deadlines, content is simply pushed in
the earliest deadline first (EDF) manner to the packet
scheduler. Thus, we have two scheduling stages at the base
station—content-based and packet-based. In proposing this
content scheduling framework, we specifically make the
following contributions in this paper:

. We propose a new service model for the non-real-
time content delivery based on download time. In
this service model, we classify non-real-time content
based on the stretch factor.

. In order to maximize the throughput under specific
QoS parameters, we provide a two-stage scheduling
framework. The first-level scheduler is based on a
modified earliest deadline first (EDF) policy that
provides the stretch-based QoS. We show that the
EDF scheduling can lead to low throughput unless
content is pushed simultaneously to the base station
in order to accommodate the short term SINR
changes.

. At the second stage packet scheduler, we use data
partitioning to create parallel schedules from the
sequential (EDF) schedules to improve the overall
throughput. The parallel schedule is similar to a
packet-based opportunistic (C/I) scheduler [20].

. We provide scheduling algorithms that can provide
both differential as well as guaranteed service to
content based on the stretch ratio.

. We show that if the content is partitioned into equal
sized chunks and scheduling is done on these
chunks, QoS differentiation can be met, which also
results in the increase in the overall system
throughput. We provide an algorithm with poly-
nomial time complexity to achieve such partition-
based scheduling.

. We conduct extensive simulation experiments to test
the performance of the proposed algorithms. A
scheduling architecture along with the algorithms
was implemented using the event-based simulator
OMNeT [22]. The specific goal of the simulation-
based evaluation is to show the efficacy of the
scheduling strategies in realizing the target QoS on
stretch factor and the overall channel utilization.

The rest of the paper is organized as follows: In Section 2,
we present the service model with respect to the stretch
factor and describe the two-stage scheduling architecture.
In Section 3, we propose the scheduling algorithms that
provide per content QoS based on stretch ratio. In Section 4,
we present the content partitioning algorithm to achieve
block level scheduling for increasing utilization. In Section 5,
we provide the results of extensive simulations which

illustrate the behavior of the scheduling algorithms and
their efficiency. Conclusions are drawn in the last section.

2 SERVICE MODEL AND SCHEDULING FRAMEWORK

Our objective is to formalize scheduling algorithms for non-
real-time content that tries to minimize the download time
of the entire content. We assume that the content size is
known a priori because, for most applications like FTP and
HTTP, the content size is known. This research does not
deal with streaming media where the content size might not
be known in advance.

We consider a single cell cellular system where there is a
single base station transmitting data to multiple active
users. If the total demand of the users exceeds the
transmission capacity of the base station, then the base
station queues the data in its buffer. It can be noted that the
instantaneous total transmission capacity depends on the
channel conditions experienced by the users.

2.1 Download Time and Stretch Factor

Let us consider a content Cp which is admitted into the
system. Let ap denote the origination time—the time at which
it was admitted. Let fp denote the finish time (time at which
the entire content is delivered at the user equipment). Then,
the download time is simply obtained by their difference, i.e.,
fp � ap. It can be noted that download time is the time taken
for the entire content to reach the receiver, i.e., the time
difference between when the request for the content was
sent and when the last bit of the content was received.
Under ideal conditions (when there is no other content
queued in the buffer), let the download time be IðCpÞ.
However, in a realistic situation, there is some load due to
multiple requests for content; let RðCpÞ be the actual
download time. The stretch factor of content Cp is defined
as �ðCpÞ ¼ RðCpÞ=IðCpÞ. The stretch factor shows how the
delivery of a given content is slowed due to the presence of
other content in buffer and channel conditions. Based on the
stretch factor, we define two types of QoS models:

1. Guaranteed service on stretch. In this model, QoS
classes for each content are defined based on the
bound on the stretch factor. In other words, if
content C belongs to the class k, it will have a stretch
factor �ðCÞ < �k, where �k is the bound on the stretch
factor for class k.

2. Differential service on stretch. In this model, QoS
classes are defined in a relative fashion, i.e., the ratio
of the stretch factors between two classes is
considered. For example, let k and kþ 1 denote
two QoS classes where class k has a higher QoS level
than class kþ 1. Let �kðCÞ and �kþ1ðCÞ denote the
stretch factors of content C belonging to class k and
kþ 1, respectively. The class with a higher level has
a smaller stretch factor. This is because content
belonging to a higher class will be given more
priority and the additional delay will be less, thus
the stretch factor will be smaller. Thus, we have a
ratio of the stretch factor between adjacent classes as
tk ¼ �kðCÞ=�k�1ðCÞ, where tk < 1; for 2 � k � K,
where K is the total number of QoS classes. In other
words, content belonging to a higher class has
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proportionally smaller stretch compared to a lower
class [9].

2.2 Terminology

Before we proceed further, let us introduce some of the

notations that would be frequently used. For quick

reference, the notations can be found in Table 1. Let Ci
denote the ith active content that is being downloaded by a

user (active content denotes the content that have nonzero

bytes remaining in the buffer at the base station). Suppose

there are K QoS classes and let �ðiÞ ! ½1; . . . ; K� be the class

of the content Ci. Let Tk ¼ �k
j¼1tj; then, for any two classes l

and m with l � m, �l=�m ¼ Tl=Tm.
Let ai be the arrival time and Si be the effective size of

the content Ci. Effective size is defined as Si ¼ Xi=ð1� pÞ,
where p is the frame error rate and Xi is the actual size of
the content. Let bj be the system specified bandwidth for
channel j with b representing the total bandwidth of all
channels.

2.3 Two-Stage Scheduling Architecture

In order to provide content-level QoS, we propose a two-
stage scheduling architecture as shown in Fig. 1. In the first
stage, we have the content deadline scheduler. The content
deadline scheduler can be realized at the base station just by
having an additional proxy server for content buffering and
scheduling. The content scheduler schedules the overall
dispatch of content in a work-conserving fashion. The
content scheduler serves the per session virtual buffer, i.e.,
the data for each session get queued up in the per session
buffer. The content scheduler works in the following way:
Based on the content scheduling criteria to be met, each
content is given a deadline on the finishing time. Based on
the deadlines, the content scheduler selects the content to be

served at a given time. Once the content is selected, the data
for that content is pushed to the second stage, i.e., to the
packet scheduler. The packet scheduler schedules the packets
to the mobile user as per the C/I scheduling policy [20].
Any packet-level scheduling decision made does not affect
the content-level QoS. In order to perform the content-level
scheduling at the base station, that instantaneous frame
error rate (FER) experienced by each user must be made
available which is estimated from the buffer occupancy at
the packet scheduler. We assume that the FER can be
calculated by noting the difference in the number of frames
transmitted and the number of frames (after correct
decoding) that actually occupy the receiver buffer.

2.4 Content Partitioning for Opportunistic
Scheduling

In HSDPA, the carrier to interference ratio (C/I) scheduler
directs transmission to the user with the best channel
condition, thus maximizing the overall throughput. In order
to take advantage of the C/I scheduler, we try to serve
multiple users at the same time. For that, we need buffers at
the second stage packet scheduler: buffers that would be
nonempty for as many users as possible. This is achieved
through content partitioning.

Let us illustrate through an example where we consider
content C1 and C2 as shown in Fig. 2. C1 and C2 are
partitioned into equal-sized segments, each of which takes
1 ms (say) to download. We assume that the content
scheduler determines the finishing time of C1 and C2 to be
9 ms and 14 ms, respectively (one segment each from C1
and C2 until 9 ms, then five segments of C2). In that case,
the segments can be pushed in parallel from the content
scheduler to the packet scheduler, as shown by the bars. For
example, bar 1 implies that all segments below need to be
delivered before pushing a segment above bar 1. Segment 5
from content C1 before bar 2 signifies that the last segment
of C1 should be pushed before the deadline (9 ms). This
implies that any ordering of segments among themselves
below bar 1 does not affect the QoS differentiation or
guarantee since download time depends upon the time
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when the last bit of content is received. Based on this
parallel schedule, both queues are occupied simultaneously
at the packet scheduler. This makes the C/I scheduler work
effectively in maximizing the throughput. Thus, we observe
that the proposed scheme tries to maximize throughput
with the constraint that the QoS is met.

2.5 Effect of User FER on Scheduling

In order to perform content scheduling, the HS-DSCHs are
modeled as a common pool of bandwidth available for
sharing. However, the scheduler must capture the different
channel quality or frame error rate (FER) of each user and
the corresponding perceived bandwidth. This is done by
defining the effective content size. Due to channel losses
and subsequent retransmissions, the effective bandwidth
observed would be Seff ¼ S=ð1� pÞ, where S is the original
content size and p is the packet loss rate of the channel.
(This equality holds true if we do not restrict the number of
possible retransmissions.) If the system supports soft-
combining, then, instead of discarding corrupted data, the
receiver buffers the data and coherently combines them
with the received soft information of the retransmission of
the bad packet. The error recovery mechanism is initiated
by the radio link control which triggers retransmissions to
salvage the damaged packets. Note that the FER experi-
enced by a packet during its first transmission is not the
same as that during the second transmission. It is smaller in
the latter case because there is at least a 3 dB gain in the bit
energy-to-noise ratio (Eb=No) due to packet combining
(assuming that the channel conditions are relatively static
between transmission and retransmission) [21]. Let us
assume that, due to packet combining, the FER is reduced
by a fraction of c. Then, it can be shown that the effective
size would be Seff ¼ S=ð1� cpÞ.

3 CONTENT SCHEDULING

In this section, we describe the content scheduling
algorithms that try to achieve the target QoS for content
delivery.

3.1 Content Scheduling for QoS Differentiation

Based on the allowable stretch for each content, the content
scheduler must differentiate the QoS of each content. We

define two types of QoS differentiation based on the time
period of observation.

. Instantaneous QoS differentiation. In this case, the
scheduling strategy is based on the pending jobs.
These jobs (in the buffer) compete for priority in
scheduling based on the class-based stretch ratio.
The advantage of such a strategy is that a user has
higher flexibility in prioritizing his content down-
load by choosing a higher class and negating the
effect of overload. The disadvantage arises from the
fact that the user may not be aware of the current
buffer size or overload.

. Long-term QoS differentiation. Long-term QoS
differentiation tries to achieve the stretch ratio based
on the history up to the current point, i.e., the
content downloaded so far. Scheduling under this
strategy helps in differentiating the average effect on
the stretch ratio among classes. The advantages and
disadvantages of this strategy are just the reverse of
those of the instantaneous case.

An Illustrative Example. Fig. 3 shows the arrival of different
content. We consider a finite window of observation, W ,
and partition that into multiple nonoverlapping time
windows, as shown by W1;W2; � � �W11. Let us consider
the content buffer occupancy during time window W3
(bottom part of the figure). In that time window, content
C1, C2, C3, and C4 are considered for scheduling. It is to
be noted that the delivery of the bigger content C1 delays
the delivery of C2, C3, and C4. On the other hand, in the
long-term case, the instantaneous buffer occupancy is not
considered in the scheduling decision. Instead, long term
QoS differentiation meets the per class achieved QoS,
which is a long term average based on all content that
have been served so far.

We consider two cases of scheduling: nonpartitioned and
partitioned. In the nonpartitioned case, scheduling requires
content with earliest deadline to be pushed completely to the
packet scheduler before the next content can be pushed and is
similar to conventional nonpreemptive scheduling. In the
partitioned case, we consider that content is partitioned into
equal size chunks that are scheduled in a preemptive fashion
and, in some regard, is similar to conventional preemptive
scheduling. Scheduling for the partitioned case, although it
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involves higher complexity due to content partitioning,
increases throughput, as we discuss next.

3.2 Preliminary Observations

We first consider a simple offline scheduling where, in a given
instance of a time window, the size and arrival time of all the
content are known. Even with this knowledge, realization of
the target stretch ratio with exact precision may not be possible.
This is because of the different content sizes.

Let us consider an example where there three pieces of
content arrive simultaneously: C1 with download time 2, C2

with download time 4, and C3 with download time 3. Also
consider that all three content belong to the same QoS class. In
the nonpreemptive approach, we need to assign deadlines to
these contents and schedule them in earliest deadline first
(EDF) fashion. There are six possible schedules, as shown in
Table 2. We note that the stretch ratios are different under
different schedules. Certainly, it is not equal to �ðiÞ=�ðjÞ ¼ 1
for any schedule, which is our target. Thus, we need to define
a relaxed metric that captures how close the stretch ratios are
to their target values. For a given schedule, we define max-diff,
denoted by �, as

� ¼ max
i;j

max½T�ðjÞ�ðiÞ; T�ðiÞ�ðjÞ�
min½T�ðjÞ�ðiÞ; T�ðiÞ�ðjÞ�

� 1

� �
8i; j; i 6¼ j; ð1Þ

where i and j refer to two different contents. � is the ratio
of a maximum and a minimum value. Since finding the
maximum or minimum can be done in OðnÞ time, the
complexity of calculating � is linear in time.

This definition of � gives the maximum difference
between the achieved stretch ratio and target stretch ratio.
Class weights T are multiplied to the content stretch to
normalize the stretch ratios so that we can compare the
ratios with the target value 1. In this definition, we make
sure that the stretch ratio is always greater than 1 by
dividing max stretch by min stretch. Therefore, the value of �

provides the bound on how bad the achieved stretch ratio
is. The value of � also has implications on the fairness
among different content. A high value of � means that
certain content is unfairly treated compared to others.

Again referring to Table 2, we observe that the value of �
is minimum for schedule 2. Note that, for the same
schedule, the mean stretch and max stretch is minimized.
Based on this observation, one can think of a schedule that
minimizes the mean stretch or the max stretch for all
content. For minimizing mean stretch, the content with the
earliest arrival time, ai, can be scheduled first, which has
Oð1Þ competitive ratio [12]. A near optimal algorithm for
offline minimization of max stretch is provided in [14] for
the preemptive case. In general, minimizing the max stretch
is a better indication for minimizing �, which we show in
the context of multiple QoS classes.

In the case of multiple QoS classes, because of the class
weights Tk, scheduling based just on arrival times and sizes
will not work. In order to incorporate weights, we stretch
the content size such that the stretched content size, S0i ¼
T�ðiÞSi for content Ci. For example, in Fig. 4, we see how the
content belonging to two different classes are stretched.
Note that stretched content size is only used for finding the
schedule, whereas the actual stretch is defined on effective
content size S. Consider that content C1, C2, and C3 have the
same arriving time. C1 (size 2) and C2 (size 4) belong to
class 2 and C3 (size 6) belongs to class 1. Assume T1 ¼ 1 and
T2 ¼ 2. Minimizing mean stretch or max stretch with
schedule C1 ! C2 ! C3 based on just effective size gives
� ¼ 3. Based on stretched content size, minimizing mean
stretch with schedule C1 ! C3 ! C2 also gives � ¼ 3. On
the other hand, minimizing the max stretch with schedule
C3 ! C1 ! C2 gives � ¼ 1. From the above example, we
note that minimizing mean stretch may not work in all
cases. Instead, we make the following observation:
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Observation 1. Minimizing max stretch based on stretched
content size works better in minimizing �.

Unfortunately, minimizing max stretch in a nonpreemp-
tive case is a hard problem [7]. Therefore, we use the above
observation for our preemptive (with content partitioned)
case, as will be discussed in Section 3.3.2. For the
nonpartitioned case, we propose an algorithm that tries to
minimize � in a sequential manner.

3.3 Instantaneous QoS Differentiation

Based on the observation and metric introduced above, the
scheduling problem for instantaneous QoS differentiation
can be stated as follows:

Given the sizes, arrival times, and the target stretch ratios of a
set of content belonging to multiple classes, find a schedule that
minimizes �.

We present the algorithms corresponding to the two
cases: nonpartitioned and partitioned.

3.3.1 Nonpartitioned Case

Consider a situation where we already have a schedule for
which � is minimized. Let us now consider the arrival of a
new content C� at time a� with effective size S�. Based on
this new content, we have to create a new schedule. We do
not allow reordering of the data from the same content since
data is pushed to the mobile device using a single transport
session and not reassembled or reordered at the device.
Thus, the problem is to find the proper place of C� in the
existing schedule such that � is minimized.

Let the position of C� be i, 1 � i � n, in the new schedule
C1 . . .Cn. Then, the stretch ratios between content with an
index less than i will not change. Consider two contents
with index l and m such that their indices are greater than i
and �ðlÞ > �ðmÞ in the old schedule. In the new schedule,

with addition of C�, the real download time of Cl and Cm
will increase by S�=b, where b is the bandwidth. With this

increase, the relative stretch ratio between Cl and Cm can

only decrease since

ðRðlÞ þ S�=bÞIðmÞ
ðRðmÞ þ S�=bÞIðlÞ �

RðlÞIðmÞ
ðRðmÞIðlÞ : ð2Þ

However, if we consider the two content with indices l and

m such that m � i � l, then (2) does not hold true.

Therefore, the position of i needs to be chosen such that

the ratio of the maximum stretch and minimum stretch is

minimized. In other words, the index i of C� is given by

i� ¼ min
i

maxl½T�ðCmÞðRðlÞ þ S�=bÞ=IðlÞ�
minm½T�ðClÞRðmÞIðmÞ�

� �
8l;m; l 6¼ m: ð3Þ

In (3), we find the ratio of max stretch among all content

with l � i and min stretch among all content with m � i.
This ratio, rmax, is a function of i and the index of content

C�. We choose i� such that rmax is minimized. The detailed

algorithm for updating the schedule on arrival of a new

content C� is given in Fig. 5. Some notations used in the

algorithm are clarified next.
In this algorithm, the current schedule that needs to be

updated has content C1 . . .Cn in order. For a given

content Ci, let fi, ai, and Si denote the finishing time,

arrival time, and effective size, respectively. Due to the

work-conserving feature of the schedule fmax ¼
P

i Si=b,

where fmax denotes the maximum finishing time. The

algorithm finds the index i� where the content C� needs

to be inserted. In other words, the existing schedule

C1; . . . ; Cn becomes C1; . . . ; Ci� ; Ci�þ1; . . . ; Cnþ1.
Let maxL refer to the maximum of the weighted stretch

among the content that are before (L), C�, as shown in Fig. 6.

Similarly, minR is the minimum weighted stretch after (R),

C�. In order to find the index i�; the algorithm finds the

maximum � for the given index obtained from maxL and

minR , as shown in Fig. 5. Therefore, in each iteration for a

given value of i, the total computation complexity is

Oðn lognÞ, resulting in a total complexity of Oðn2 lognÞ for

the algorithm.

3.3.2 Partitioned Case

In this case, we consider the option that each content can be

partitioned into equal size chunks. Since the finishing time

of a content refers to the time when the last chunk of the

content is downloaded, the problem therefore is to assign

the correct finishing time to the last chunk of each content.

Based on Observation 1, finishing time f 0 of content Ci
assigned under stretched content size S0i should minimize

the maximum stretch, �max, with the goal toward minimiz-

ing �. Thus, the problem can be formally expressed as:
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Find f 01; f
0
2; � � � ; f 0n such that

�max ¼ max½�ðC1Þ; . . . ; �ðCnÞ� is minimized:

This formulation is based on stretched content size and,
so, the finishing time is also stretched. The actual finishing
time fi is derived as

fi ¼ ð1=T�ðCiÞÞf 0i : ð4Þ

Since the finishing time of the last chunk cannot be less than
fi, which is also true for the finishing times of other chunks
belonging to the same content, we have

f 0i � ai þ S0i=b: ð5Þ

We perform a binary search to find the optimal value of f 0i .
To test the feasibility of a given � , we express the finishing
time of each content as f 0i ¼ ai þ �S0i=b. We choose �low and �up
as the initial and final values respectively. We start with a
initial value of �low ¼ 1 and follow the algorithm given in
Fig. 7. Since the actual stretch for Ci can be less than � , the
corresponding finishing time is the least possible. The
feasibility of the solution requires fi > fj, implying that all
the chunks ofCi andCj are pushed before fi. The “threshold”
is just a stopping condition that determines the level of
coarseness needed for the solution. In order to check the
feasibility, we follow the procedure in Fig. 8.

The search for �max and the feasibility check are done in
polynomial time. Since the finishing time is calculated
based on the maximum stretch of each content, it might so
happen that the maximum finishing time is greater than
fmax. Therefore, the finishing time should merely be used
for ordering and not for pushing or dispatching the content.
Content pushing should happen in a work conservative
manner. At each instant when schedules are updated, there
might be some content which is partially delivered. In the
schedule computation, this content is also considered along
with its arrival in the same way as other content. Therefore,
it is possible that the finishing time of this content could be
delayed due to the arrival of new content.

3.4 Long-Term QoS Differentiation

In long-term scheduling, our objective is to minimize �
based on the content that has already arrived. Since the
nonpartitioned case is equivalent to the nonpreemptive

approach, it is hard to achieve this goal [7]. Therefore, we
consider the partitioned case, which is equivalent to the
preemptive approach. The algorithm that we provide is
motivated by related work presented in [7], [14]. It is an
online algorithm that tries to minimize the maximum
stretch on the stretched content size toward minimizing
�. In this algorithm, as in [7], [14], we maintain an estimate
of max-stretch-so-far, �est.

When new content arrives, the finishing time schedule of
each content in the buffer is updated as

f 0i  ai þ ��estS0i=b; ð6Þ

where S0i is the stretched content size as discussed before.
The value of � must be greater than 1 [7]. The content is
then scheduled based on the finishing times, as done in the
instantaneous case. Once the content is completely deliv-
ered, the �est is updated as

�est  ð1� �Þ�est þ ��current; ð7Þ

where �current is computed based on the stretched size of the
content. � controls how much to react to instantaneous
change in the max stretch. With time evolution, the algorithm
adapts the value of �est to get near to the minimum max
stretch. A detailed algorithm is given in Fig. 9.

Based on the finishing times obtained from the above
algorithm, parallel schedules using block formation are
used for pushing the content to the packet scheduler.

3.5 Scheduling for Guaranteed Stretch

Let �kðCÞ be the maximum stretch factor for class k. In order
to realize the per class stretch factor, we need a scheduler
that creates the deadline for the dispatch of each content in
the content buffer. Let C1 . . .Cn be the active content that is
in the buffer. For content Ci, the maximum stretch factor is
�kðCiÞ, which implies that the maximum allowable deadline
is fi ¼ ai þ �kðCiÞSi=b. Note that the parallel dispatch
schedule of the content does not change the total download
time as compared to a sequential dispatch schedule.
Therefore, we consider a sequential schedule where the
contents are sorted based on their maximum allowable
deadlines. Using this schedule, the contents are then
dispatched to the packet scheduler at the base station. The
schedule (order of content) is updated based on the arrival
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of new content or change in the long term SINR. When new
content arrives, its admission feasibility check is done in the
following way: We consider the existing content in the
buffer along with the newly arrived content. All existing
content in the buffer, including the new content with fj
such that fj � fi, can be served before fi while keeping
enough space to serve content Ci by fi or

X
j s:t:fj�fi

Sj=bþ Si=b � fi: ð8Þ

This feasibility condition is checked for the deadline of all
content including the new content. The same algorithm
presented in Fig. 8 can be used for this purpose.

4 PARALLELIZING SCHEDULE WITH PARTITIONS

In Fig. 2, we saw how the chunks can be pushed in parallel
to the packet scheduler based on the target finishing time of
the content. Though it is theoretically possible to emulate
the C/I scheduling at the content level, for all practical
systems, it is almost impossible to report the momentary
changes in user channel states to the content scheduler.
Therefore, our goal is to keep maximum number of users
queues nonempty at the packet scheduler so that the
C/I scheduler can always find a queue to serve correspond-
ing to the best user. In trying to achieve the above strategy,
we first group all the content on a per-user basis. Let Vu
denote an ordered set of content for user u with finishing
times in ascending order.

The parallel schedules are expressed in terms of blocks.
Each block consists of one or more chunks from the same or
different content. While pushing the content, it is required
that block Bi be pushed before Biþ1. For better performance,
it is necessary that Bi be completely served by the packet
scheduler before Biþ1 can be pushed by the content
scheduler. This can be achieved either by monitoring the
buffer at the packet scheduler or by estimating the finishing
time of Bi based on block size (number of chunks in it) and
the bandwidth available. We next show how to construct
the blocks.

Let F denote the order set of finishing time for all
content, where F ¼ ff1; . . . ; fi; . . . ; fng with fi � fiþ1 and

jF j ¼ n. Let !ðCÞ denote the number of chunks that has

been assigned to content C. For total content C1 . . .Cn
indexed by the order in F , we present the block formation

algorithm in Fig. 10.
We first find the block size for block B1. Basically, we

check the first deadline to be met given by f1 and find how

many chunks can be pushed by the deadline. We create a

separate block B2 for the last chunk of the content C1 with

finishing time f1. This is because the last chunk of C1 cannot

be reordered with any chunks, as was shown before in

Fig. 2. Given the block size, we compute the chunk

assignment. The chunk assignment provides for a given

chunk in a block, say, B1, which belongs to content C. In

order to do that, we go in round-robin fashion on each

user’s Vu. NextðVuÞ in Fig. 10 gives the next content Cp in the

ordered V which is not covered by any block and whose

finishing index fp > fi. We define �ðCpÞ as a pointer that

points to the next chunk in the content Cp that is yet to be

assigned to any block and S� is the size of that chunk. B1 is

defined in terms of the total number of chunks it contains

and is given by bðf1 � b=S�Þc � 1. Feasibility is checked on

the chunk �ðCpÞ where it is decided if, by inserting the

chunk, �ðCpÞ leads to not meeting any future finishing time.

If feasible, we add the chunk to the current block Bm and

increase L by one, where L denotes the total size of the

blocks created so far, i.e., L ¼
Pm

1 jBmj. Next, the chunk

with index fi is inserted into a separate block Bmþ1. The

process is repeated over set F , yielding a complexity of

OðjN�n
2jÞ, where N� is the total number of chunks. The

maximum total number of blocks formed can be 2n. The

overall scheduling architecture is shown in Fig. 11.
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Fig. 9. Algorithm for scheduling in long-term QoS differentiation.

Fig. 10. Algorithm to form blocks.



5 SIMULATION MODEL AND RESULTS

Implementation of the HSDPA system and content sche-
duler was done on a discrete event simulation platform
provided in OMNeT [22]. In realizing the HSDPA model,
we use a simplified analytical model based on the system
level and link level simulation suggested in [3]. The system
model assumption is a 3-sectored 19-hexagonal cell model
with the sector antenna beam pattern based on [3]. Eighty
percent of power and 15 codes of spreading factor 16 are
allocated for HSDPA service with frame length of one
transmission time interval (TTI = 2 msec). Also, we assume
hybrid ARQ with chase combining and AMC (automatic
modulation and coding), which control the MCS (modula-
tion and coding schemes) according to the average received
SINR over one TTI. Sixteen QAM modulation with rate
equal to 3/4 is used for peak rate up to 10.8 Mbps.
Meanwhile, the location of each user is randomly assigned
with a uniform distribution within each cell. The corre-
sponding SINR of each user is fixed in the control interval
of packet scheduling that is one TTI. SINR is mapped to
nominal user throughput samples using throughput hull
curve in analytical simulation. We assumed the pedestrian
mobility model. The peak rate of user throughput in the
simulation scenario is 10.8 Mbps. The mean rate that can be
obtained in one cell is around 5 Mbps, based on channel
conditions.

The traffic model is based on the modified ETSI WWW
browsing model [4]. We assume that the size of each packet
call is a bounded Pareto distribution with a minimum size of
4.5 Kbytes and maximum size of 2 Mbytes. Furthermore,
the reading time of the content is approximated as a
geometric distribution. The content scheduler assumes that
the content of a request arrives at the base station at a rate
much faster than the individual user’s data rate so that the
content for a request is available instantly at the base
station. This assumption fits with the proxy architecture
working with the store and forward mechanism. The
content is pushed onto the packet scheduler according to
the mechanisms discussed earlier. The packet scheduler
works in a work-conserving way—it schedules a frame with
a TTI length as long as the packet queue is nonempty. Three
types of packet scheduling disciplines are implemented in
the simulation platform: round-robin (RR, also called time
fair sharing), maximal C/I, and proportional fair sharing.

5.1 Performance Metrics

The three most important performance metrics are stretch,
stretch ratio between classes, and overall throughput. The
primary goal of the scheduling proposed in our service
framework is to achieve the stretch ratio based on content
class. The secondary goal is to maximize the overall
throughput by utilizing the C/I scheduling to the fullest
extent by parallelizing content pushing while meeting the
primary goal. In all our experiment scenarios (unless
otherwise stated), we consider three classes and a varying
number of users, reflecting the total system load. Class 0 is
the highest class with the lowest relative stretch and class 2
is the lowest class with the highest relative stretch. The
target stretch ratio between class 1 and class 0 is 2 and the
target ratio between class 2 and class 1 is also 2. The data
traffic for each user is independent of the others. The load is
controlled by scaling the load parameters for each user. The
SINR for each user is varied independently following the
model presented in [15]. We assume that the average frame
error rate for each channel is the same but time varying
based on changing SINR. The packet scheduler pulls a
packet from the packet queues based on backlogged
retransmission frames. We do not consider buffer overflow.
Instantaneous user SINR is not reported to the content
scheduler. Long-term SINR averaged over monitoring a
time window of 30 TTI is used in calculating the effective
size of the content.

For measuring the performance of the proposed schedul-
ing schemes, we monitor every content that arrives at the
content scheduler and the time durations the content stays
in the content and packet scheduler. Based on the waiting
time at these two scheduler buffers, we obtain the total
download time for each content. We organize our simula-
tion study in terms of the evaluation criteria.

5.2 QoS with Guaranteed Stretch

We study the performance of our proposed scheduling
framework for six metrics which are relevant for guaran-
teed stretch.

5.2.1 Transient Stretch for Classes

The evolution of stretch with time for each class is shown in
Fig. 12. The figure shows a time window of 10 seconds. We
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Fig. 11. Block scheduling architecture.

Fig. 12. Stretch for different classes with time.



observe that the stretch factor for each class varies very
abruptly with time. This is due to very transient buffer
occupancy based on the traffic model assumed. At a certain
point when the buffer is underloaded, we note that the
stretch factor for each class becomes close to 1. In the
transient underloaded scenario, the stretch bound of all
classes is naturally met. However, the important point to
note here is that, when the buffer becomes full, as
represented by points where the stretch value spikes, the
bound on stretch is usually met. For example, in the
window [13:14] secs, we observe that the max stretch value
is around 10, 20, and 43 for classes 0, 1, and 2, respectively.
This shows the effectiveness of the admission control and
scheduling decision in realizing the stretch bound, even at
the transient level.

5.2.2 Max Stretch with Load

Next, our target is to vary the traffic load and observe how
the maximum stretch of each class depends on load. For a
wide range of load conditions evaluated, we note from
Fig. 13 that stretch increases with load and, finally, saturates
at the target stretch bound values. This saturation is due to
the finite content buffer size; if the buffer is not available to
download the entire content, the content is not downloaded
at the content scheduler. At low load, stretch values are
close to 1, which indicates that the download time of
content is not delayed. This in turn implies that the buffer
occupancy in terms of the number of content is close to 1.

5.2.3 Blocking Ratio on Load

Since we employ admission control to guarantee the stretch
bound, we next evaluate the blocking ratio for each class.
We note from Fig. 14 that the blocking ratio increases with
load, which is expected. But, the most important point to
note is that there is hardly any difference in the blocking
ratio between classes. This implies that content is not
discriminated against for its class at the call admission part,
although, on a relative scale, we note that a higher class
(class 0) has a higher blocking ratio. We also note that, at
very high load, the blocking ratio almost approaches 0.9.
This means that, at a very high load (above 7Mbps), the
current stretch bound may not be appropriate. Therefore,
stretch bound selection should depend upon the operating

range of load. This is because all content can undergo a
certain degree of stretch. For example, if load in the system
is low, then the content gets more resources and, therefore,
not stretched. On the other hand, if the system load is high,
the download time will get delayed, i.e., the content will be
stretched.

5.2.4 Blocking Ratio on Size

In Fig. 15, we show the dependency of the blocking ratio of
each class on content size. We observe that the blocking
ratio decreases with the size. This is because the difference
in the real and ideal deadline is higher for larger content
size. By ideal deadline, we mean the deadline with stretch 1
and the real deadline corresponds to the target stretch
bound. This higher difference allows the bigger content to
pass the feasibility check with higher probability resulting
in a lower blocking rate.

5.2.5 Throughput Comparison

In order to evaluate the throughput, we compared the
four scheduling schemes as shown in Fig. 16. As expected,
the C/I scheduling provides the maximum throughput
since it adapts to instantaneous channel condition. Both
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Fig. 13. Maximum stretch for each class versus load. Fig. 14. Blocking ratio of each class versus load.

Fig. 15. Blocking ratio versus content size.



Round-Robin and stretch scheduling without partitioning
provide the worst throughput at high load. The figure also
shows that stretch scheduling with block-based partitioning
provides a significant improvement in throughput, proving
the efficiency of block scheduling.

5.2.6 Comparison with No Admission Control

Here, we try to experiment on the stretch if no admission
control is enforced. The results are shown in Fig. 17 for each
class under the two cases: with and without admission
control. The Y axis in the same figure is shown in log scale
and the x axis is the load in Mbps. The figure shows that,
without admission control, there is no guarantee on the
bound on stretch. However, we observe from the same
figure that, without admission control, the stretch for low
class saturates at a very high load. This is because of the
limited size of the content buffer.

5.3 QoS with Stretch Differentiation

We study the performance of our proposed scheduling
framework for four metrics which are relevant for differ-
entiated stretch.

5.3.1 Transient Stretch Differentiation

Our target is to find out how the stretch of content evolves
over time. Due to the bursty nature of data traffic, the
loading of the queue will vary abruptly. However, the
content stretch scheduling should still provide the neces-
sary differentiation under any instantaneous load condition.
Instead of showing for the entire duration, we choose a time
window as shown in Fig. 18. We do note that the stretch
varies significantly within the time window. However,
there is a clear separation between content from different
classes. For example, at time = 41.5 s, we note that stretch
for class 0 is around 40, for class 1 around 85, and around
175 for class 2. This result thus shows the effectiveness of
the scheduling algorithm in maintaining the instantaneous
stretch ratio of 1:2:4 among three classes.

One can note that, when the system transient load is low,
the stretch ratio is not maintained, as shown in time = 43.5
in Fig. 18. This is because, at that instant, the buffer is
underloaded. In the underloaded scenario, the stretch for
each class tends to one.

5.3.2 Max/Mean Stretch with Load

In Fig. 19, we show both the mean and maximum values for
all the content classes considered. The x-axis shows
different load values. In the low load scenario where the
queue is empty most of the time, there is no difference in
the stretch ratios as expected. When the load increases, the
change in the stretch ratios also increases. At overload
condition, there is no change in stretch ratio. Next, we
observe that the stretch ratios are best maintained between
class 1 and 0. On the other hand, for classes 2 and 1, the
ratios are lower than target value 4. One of the important
observations one can make from Fig. 19 is that there is
hardly any difference between max and mean ratios.

5.3.3 Comparison with Pure Packet Scheduling

One of the important reasons that motivates the use of
stretch scheduling at content level is the weakness in pure
packet scheduling mechanisms. To demonstrate this, we
implemented a weighted fair sharing with ratio 4:2:1 for
three classes f0; 1; 2g. These ratios were chosen to make a
fair comparison with content scheduling with target stretch
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Fig. 16. Throughput comparison for different scheduling schemes.

Fig. 17 Stretch comparison with and without admission control.

Fig. 18. Stretch for a different class with time.



ratios. The question is, if we just provide two times the

bandwidth to class 0 with respect to class 1, do we get a
stretch ratio of 2? To answer this, we show the long-term

results under different load scenarios. As Fig. 20 shows, we

do get a difference under different loads in the stretch
ratios, which also shows that a higher class gets lower

stretch. However, we note that the target stretch ratio is not

maintained. Further, these ratios are different at different
loads with no bound. From a user’s point of view, he might

get different relative fairness in download time under a

different load. These results also demonstrate the need for a
content scheduler.

5.3.4 Throughput Comparisons

Next, we show the throughput under different scheduling
options in Fig. 21. We observe that, at low load, there is no
difference in throughput between scheduling disciplines as
expected. At high load, we note that C/I provides the highest
throughput. We also note that the throughput of instanta-
neous nonpartition is the worst since there is no parallelism in
content pushing. Even round-robin (RR) performs better than
the nonpartition case. This is because, in RR, all the nonempty

queues are served, which results in a higher throughput. We
next observe the instantaneous QoS on partition provides
better throughput than long-term QoS.

6 CONCLUSIONS

The main intent of this research was to explore the service
architectures and concepts for non-real-time content deliv-
ery for future generation networks. We provided a general-
ized QoS framework based on the stretch factor that
captures the elasticity in the total download time for non-
real-time content. We propose a two-stage scheduling
architecture along with the scheduling algorithms. We
defined the notion of guaranteed and differential QoS and
tuned the scheduling algorithms toward providing guaran-
teed and differential QoS to content based on their QoS
class. Furthermore, we presented mechanisms for paralle-
lizing the schedule such that multiple content can be
transmitted simultaneously to multiple users. Paralleliza-
tion of content helps the C/I scheduler work effectively in
increasing the throughput. The simulation results indicate
that the proposed content scheduling algorithm achieves
the target QoS. The results also indicate that, in addition to
achieving the target QoS, the proposed scheduling frame-
work provides more throughput than opportunistic propor-
tional fair scheduling policy.

The significance of the proposed service architecture is
that it will allow for creation of new wireless services and
provide the end user with flexibility to adjust the service
quality based on the importance or urgency of the content
to be downloaded. As a part of our future work, we intend
to explore the pricing issues in such a service architecture
based on work done in [18]. A more challenging issue is to
address how to do content scheduling in a nonclairvoyant
manner where the content size is not known a priori.

REFERENCES

[1] http://www.3gpp.org, 2006.
[2] http://www.3gpp2.org, 2006.
[3] 3GPP TR25.848 V0.5.0, “Physical Layer Aspects of UTRA High

Speed Downlink Packet Access (HSDPA),” ANNEX B,
TSGR1#18(01)186, Jan. 2001.

904 IEEE TRANSACTIONS ON COMPUTERS, VOL. 55, NO. 7, JULY 2006

Fig. 19. Stretch ratio versus load for long-term QoS.

Fig. 20. Stretch ratio versus load with weighted proportional scheduling.

Fig. 21. Throughput comparisons.



[4] ETSI, UMTS TR101 112, “Selection Procedures for the Choice of
Radio Transmission Technologies of the UMTS,” 2004.

[5] L. Becchetti, S. Diggavi, S. Leonardi, A. Marchetti, S. Muthukrish-
nan, and T. Nandagopal, “Parallel Scheduling Problems in Next
Generation Wireless Networks,” Proc. ACM Symp. Parallel Algo-
rithms and Architectures, pp. 238-247, Aug. 2002.

[6] P. Bender, P. Black, M. Grob, R. Padovani, N. Sindhushayana, and
A. Viterbi, “CDMA/HDR: A Bandwidth-Efficient High-Speed
Wireless Data Service for Nomadic Users,” IEEE Comm. Magazine,
pp. 70-77, July 2000.

[7] M. Bender, S. Chakrabarti, and S. Muthukrishnan, “Flow and
Stretch Metrics for Scheduling Continuous Job Streams,” Proc.
ACM Symp. Discrete Algorithms, pp. 270-279, 1998.

[8] S. Borst, “User-Level Performance of Channel-Aware Scheduling
Algorithms in Wireless Data Networks,” Proc. IEEE Infocom, pp.
636-647, 2003.

[9] C. Dovrolis and P. Ramanathan, “A Case for Relative Differ-
entiated Services and the Proportional Differentiation Model,”
IEEE Network, vol. 13, no. 5, pp. 26-34, Sept. 1999.

[10] K. Enoki, “I-Mode: The Mobile Internet Service of the 21st
Century,” IEEE Int’l Solid-State Circuits Conf. (ISSCC), Digest of
Technical Papers, pp. 12-15, 2001.

[11] S. Ganguly, N. Tu, M. Chatterjee, and R. Izmailov, “Non-Real
Time Content Scheduling in Wireless Data Networks,” Proc. IEEE
Int’l Symp. Personal, Indoor, and Mobile Radio Comm. (PIMRC),
vol. 2, pp. 1375-1379, Sept. 2004.

[12] J. Gehrke, S. Muthukrishnan, R. Rajaraman, and A. Shaheen,
“Scheduling to Minimize Average Stretch,” Technical Report 99-2,
DIMACS, Rutgers Univ., 1999.

[13] H. Kushner and P. Whiting, “Asymptotic Properties of Propor-
tional-Fair Sharing Algorithms,” Proc. 40th Ann. Allerton Conf.
Comm., Control, and Computing, 2002.

[14] N. Joshi, S. Kadaba, S. Patel, and G. Sundaram, “Downlink
Scheduling in CDMA Data Networks,” Proc. ACM Mobicom,
pp. 179-190, 2000.

[15] A. Konrad, B. Zhao, A. Joseph, and R. Ludwig, “A Markov-Based
Channel Model Algorithm for Wireless Networks,” Wireless
Networks, vol. 9, no. 3, pp. 189-199, May 2003.

[16] Y. Liu and E. Knightly, “Opportunistic Fair Scheduling over
Multiple Wireless Channels,” Proc. Ann. Joint Conf. IEEE Computer
and Comm. Soc. (IEEE INFOCOM), vol. 2, pp. 1106-1115, 2003.

[17] X. Liu, E.P.K. Chong, and N.B. Shroff, “Opportunistic Transmis-
sion Scheduling with Resource-Sharing Constraints in Wireless
Networks,” IEEE J. Selected Areas in Comm. (JSAC), vol. 19, no. 10,
pp. 2053-2064, Oct. 2001.

[18] P. Marbach, “Pricing Differentiated Services Networks: Bursty
Traffic,” Proc. IEEE Infocom, pp. 650-658, 2001.

[19] H. Ming, Z. Junshan, and J. Sadowsky, “Traffic Aided Opportu-
nistic Scheduling for Downlink Transmissions: Algorithms and
Performance Bounds,” Proc. Ann. Joint Conf. IEEE Computer and
Comm. Soc. (IEEE INFOCOM), vol. 3, pp. 1652-1661, 2004.

[20] S. Parkvall, E. Dahlman, P. Frenger, P. Beming, and M. Persson,
“The Evolution of WCDMA towards Higher Speed Downlink
Packet Data Access,” Proc. IEEE Vehicular Technology Conf. (VTC),
vol. 3, pp. 2287-2291, 2001.

[21] S. Souissi and S.B. Wicker, “A Diversity Combining DS/CDMA
System with Convolutional Encoding and Viterbi Decoding,”
IEEE Trans. Vehicular Technology, vol. 44, no. 2, pp. 304-312, May
1995.

[22] A. Varga, “The OMNeT++ Discrete Event Simulation System,”
Proc. European Simulation Multiconf. (ESM 2001), 2001, http://
www.hit.bme.hu/phd/vargaa/omnetpp.htm.

[23] D. Verma, Content Distribution Networks: An Engineering Approach,
first ed. John Wiley & Sons, 2001.

[24] P. Viswanath, D. Tse, and R. Laroia, “Opportunistic Beamforming
Using Dumb Antennas,” IEEE Trans. Information Theory, vol. 48,
pp. 1277-1294, 2002.

[25] H. Zhu, H. Tang, and T. Yang, “Demand-Driven Service
Differentiation for Cluster-Based Network Servers,” Proc. IEEE
Infocom, pp. 679-688, 2001.

Samrat Ganguly received the BSc degree in
physics from the Indian Institute of Technology,
Kharagpur, India, in 1994, the ME degree in
computer science from the Indian Institute of
Science, Bangalore, India, in 1998, and the PhD
degree in computer science from Rutgers Uni-
versity, Piscataway, New Jersey, in 2003. Since
2001, he has been a research staff member at
NEC Laboratories America, Princeton, New
Jersey. His research interests include distributed

algorithm design and performance optimization in wireless, overlay, and
content delivery networks.

Mainak Chatterjee received the PhD degree
from the Department of Computer Science and
Engineering at The University of Texas at
Arlington in 2002. Prior to that, he completed
the BSc degree in physics (Hons) from the
University of Calcutta in 1994 and the ME
degree in electrical communication engineering
from the Indian Institute of Science, Bangalore,
in 1998. He is currently an assistant professor in
the School of Electrical Engineering and Com-

puter Science at the University of Central Florida. His research interests
include economic issues in wireless networks, applied game theory,
resource management and quality-of-service provisioning, ad hoc and
sensor networks, CDMA data networking, and link layer protocols. He
serves on the executive and technical program committee sof several
international conferences.

Rauf Izmailov received the MS degree in
mathematics from the Moscow State University,
Moscow, Russia, in 1984, and the PhD degree in
control science from the Institute of Control
Science, Moscow, Russia, in 1988. From 1991
to 1993, he was with AT&T Bell Laboratories,
Holmdel, New Jersey. Since 1994, he has been
with NEC Labs America, where he is currently a
department head of the IP Networks & Distrib-
uted Systems Department. His research inter-

ests include control problems in communication networks, optimization
algorithms, and performance evaluation. He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

GANGULY ET AL.: NON-REAL-TIME CONTENT SCHEDULING ALGORITHMS FOR WIRELESS DATA NETWORKS 905



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 36
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 2.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 36
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 36
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


