
Wizards for the OMNeT++ IDE

András Varga

OMNeT++ Workshop

March 19, 2010
Malaga, Spain

Motivation

• New users often find the IDE and the INET /
INETMANET frameworks overwhelming

– Why not help them to make the first steps?

– They want to get a first simple simulation up and running
quickly, so that they can start tweaking it

– And: why not show off features? (IPv6, Ad-hoc, Mobility,
MPLS,…)

• Eclipse was built to be extended

– New tools, new editors, new views,…

– New wizards!

IDE Extensibility

1. Eclipse extensibility

– features and plug-ins installed in the normal way, Help |
Install New software…

2. OMNeT++ IDE loads plug-ins from projects

– When user opens e.g. the INET project, jars in its plugins/
folder get loaded automatically!

– Users of the project automatically get the UI extension, no
extra installation step required!

– But writing Eclipse plug-ins is hard

3. Wizards contributed to the File|New dialogs

– Easy to write (little/no programming required)

– Can be distributed with the project

– Also automatically activated when project gets opened

Wizards in the Menu

Example: Topology Generation

What is a Wizard?

• Technically:

– A templates/<wizardname> folder in the project

– With a bunch of text files in it:

• template.properties: declares wizard name, type, pages,
etc.

• .xswt files: XML files that describe the UI of wizard pages

• .ftl files: will be turned into content, after substituting
$variables and #if, #list, etc. constructs (ftl=FreeMarker
Template Language)

Wizard-Creation Wizards

Creating a Wizard

Let us create a simple “New Simulation” wizard!

• It should prompt for:

– network name

– number of hosts

– traffic type

• Files:

– In folder inet/templates/newwizard:

• template.properties

• wizardpage.xswt

• network.ned.ftl

• omnetpp.ini.ftl

Example: Properties File

• template.properties:

templateName = New Network Wizard

templateDescription = Wizard with a single input page

templateCategory = INET

supportedWizardTypes = simulation, project

custom wizard pages

page.1.file = wizardpage.xswt

page.1.title = New Network

page.1.description = Select options below

variables

networkName = Network

numNodes = 10

trafficType = none

Example: Wizard Page

Let us use the “Wizard page from variables” wizard:

The generated wizardpage.xswt (simplified)

<?xml version="1.0"?>

<xswt>

...

<x:children>

<label x:text="This is a generated wizard page.."/>

<label text="Network name:"/>

<text x:id="networkName"/>

<label text="Num nodes:"/>

<spinner x:id="numNodes" minimum="0" maximum="100"/>

<label text="Traffic:"/>

<combo x:id="trafficType">

<add x:p0="udp"/>

<add x:p0="tcp"/>

<add x:p0="none"/>

</combo>

</x:children>

</xswt>

Example: Templated Content

• omnetpp.ini.ftl:

[General]

network = ${networkName}

<#if trafficType==“tcp”>

…

<#elseif trafficType==“udp”>

…

</#if>

• network.ned.ftl

<@setoutput path=${networkName}+”.ned”/>

network ${networkName} {

submodules:

host[${numNodes}]: Host;

…

}

Extensibility

When the FreeMarker template language is not enough:

– Java: you can write the code in Java, copy the JAR file into
the templates/ folder, and invoke it from FreeMarker

– External programs: you can run external programs from
FreeMarker, and let them do the job and/or capture their
output

• Easy way to incorporate C/C++ code

When XSWT or provided widgets are not enough:

– Custom widgets: you can write custom widgets (also
compound widgets like table+buttons) in Java

– Custom pages: you can write whole custom pages in Java

• page.1.class = org.example.foo.MyWizardPage

Documentation

“IDE Customization Guide”

