OMNeT++

User Manual

Version 4.6

Copyright © 2014 Andras Varga and OpenSim Ltd.

OMNeT++ Manual —

Chapters

Contents

1 Introduction

2 Overview

3 The NED Language

4 Simple Modules

5 Messages and Packets

6 Message Definitions

7 The Simulation Library

8 Network Graphics And Animation
9 Building Simulation Programs
10 Configuring Simulations

11 Running Simulations

12 Result Recording and Analysis
13 Eventlog

14 Documenting NED and Messages
15 Testing

16 Parallel Distributed Simulation

17 Plug-in Extensions

EESEEHEEOEBEER 80 aca e

e
—
=

18 Embedding the Simulation Kernel

A

B

C

NED Reference

NED Language Grammar

NED XML Binding

NED Functions

Message Definitions Grammar
Display String Tags
Configuration Options

Result File Formats

Eventlog File Format

References

Index

EEHEEHEEHEERE

OMNeT++ Manual —

Contents

Contents

1 Introduction
1.1 What Is OMNeT++?

1.2 Organization of ThisManual

2 Overview

2.1 Modeling Concepts

2.1.1 Hierarchical Modules,
2.1.2 Module Types o o i e e e e e e
2.1.3 Messages, Gates, Links 0oL

2.1.4 Modeling of Packet Transmissions

2.1.5 Parameters

2.1.6 Topology Description Method

2.2 Programming the Algorithms

2.3 Using OMNeT++ .

2.3.1 Building and Running Simulations
2.3.2 What Is in the Distribution

3 The NED Language
3.1 NED Overview . .
3.2 NED Quickstart .
3.2.1 The Network

3.2.2 Introducinga Channel

3.2.3 The App, Routing, and Queue Simple Modules
3.2.4 The Node Compound Module
3.2.5 Putting It Together

3.3 Simple Modules .

3.4 Compound Modules e

3.5 Channels

3.6 Parameters
3.7 Gates
3.8 Submodules
3.9 Connections

3.10Multiple Connections

3.10.1Connection Patterns e e

3.11Parametric Submodule and Connection Types

3.11.1Parametric Submodule Types

3.11.2Parametric Connection Types
3.12Metadata Annotations (Properties) L o oo,

3.13Inheritance
3.14Packages

Simple Modules
4.1 Simulation Concepts
4.1.1 Discrete Event

Simulation s

4.1.2 TheEventLoop o i i e
4.1.3 Events and Event Execution Order in OMNeT++
4.1.4 Simulation Time e
4.1.5 FESImplementation

4.2 Components, Simple

Modules, Channels

4.3 Defining Simple Module Types o

4.3.1 Overview. . .
4.3.2 Constructor .

4.3.3 Initialization and Finalization

4.4 Adding Functionality

to cSimpleModule 0L,

4.4.1 handleMessage()« v v v i e e

4.4.2 activity() . . .

4.4.3 How to Avoid Global Variables
4.4.4 Reusing Module Code via Subclassing

4.5 Accessing Module Parameters

4.5.1 Volatile and Non-Volatile Parameters

4.5.2 Changing a Parameter's Value
4.5.3 Further cPar Methods
4.5.4 Emulating Parameter Arrays 000 e e
4.5.5 handleParameterChange().

4.6 Accessing Gates and Connections L 0oL

4.6.1 Gate Objects

4.6.2 Connections .

4.6.3 The Connection’s Channel,

4.7 Sending and Receiving Messagesot e e e e e e
4.7.1 Self-MESSAZES . . . v v v i e e e e e e e e e e e e rdrd|
4.7.2 Sending MesSages it i e e e e (/8
4.7.3 Broadcasts and Retransmissions
4.7.4 Delayed Sending e 80
4.7.5 Direct Message Sending oo 8]
4.7.6 Packet TransmiSSions v v i vt [82]
4.7.7 Receiving Messages with activity() 84

4.8 Channels e e e e 86
4.8.1 OVEIVIEW o it e e e e e 86
4.8.2 The Channel API i 86
4.8.3 Channel Examples 88|

4.9 Stopping the Simulation L oL 89
4.9.1 Normal Termination, 89
4.9.2 Raising Errors L e 89

4.10Finite State Machines L L Q0]

4.11Navigating the Module Hierarchy 94

4.12Direct Method Calls Between Modules 96

4.13Dynamic Module Creation i
4.13.1When Do You Need Dynamic Module Creation
4.13.20VEIVIEW o Lo e e e e e e e e e e e e 97
4.13.3Creating Modules e 98
4.13.4Deleting Modules L o 99
4.13.5Module Deletion and finish() 99
4.13.6Creating Connections e [100!
4.13.7Removing Connections [101]

4.14SIgNAlS o e e e e e e e e e e 10Tl
4.14.1Design Considerations and Rationale
4.14.2The Signals Mechanism
4.14.3Listening to Model Changes

4.15Signal-Based Statistics Recording0 0oL [109
4.15.1Motivation 109
4.15.2Declaring Statistics
4.15.3Statistics Recording for Dynamically Registered Signals o14
4.15.4Adding Result Filters and Recorders Programmatically
4.15.5Emitting Signals 116

4.15.6Writing Result Filters and Recorders 117

5 Messages and Packets 119

5.1 OVEIVIEW o o i i i e e e e e e e e e e e e e e e e e e 119
5.2 The cMessage Class v v vt i vt it et e e e e e e e e 1120
5.2.1 BasicUsage o i i e e e e e e 120
5.2.2 Duplicating MeSSages v v v v v i e e e e 21l
5.2.3 Message IDS v v i i e
524 ControlInfo e 122
5.2.5 Information About the Last Arrival [122]
5.2.6 Display String e e e e 123
5.3 Self-MeSSages v v i it e e e 123
5.3.1 Using a Message as Self-Message 123
5.3.2 Context Pointer e 124
5.4 ThecPacketClass ittt it 124
5.4.1 BasicUsage o i i e e e e 124
5.4.2 Identifying the Protocol 124
5.4.3 Information About the Last Transmission [125]
5.4.4 Encapsulating Packets 0 . 125
5.4.5 Reference Counting
5.4.6 Encapsulating Several Packets 126}
5.5 Attaching Parameters and Objects 127
5.5.1 Attaching Objects e 127
5.5.2 Attaching Parameters L. oo 127
6 Message Definitions 129
6.1 Introduction e e e e e e e 129
6.1.1 The First Message Class ot i ittt it it ie i 129
6.2 Messagesand Packets L L e 1130
6.2.1 Defining Messages and Packets 130
6.2.2 Field Data TYPES . . . v v v v v e e e e e e e e e e e e 137l
6.2.3 Initial Values 132
6.2.4 Enumso e e e e e e e e 1132
6.2.5 Fixed-SiZ€ ATTaYS« v v vt e e e e e e e e 133
6.2.6 Variable-Size ATTays v i i i e e e e e 133
6.2.7 Classes and Structsas Fields 134
6.2.8 Pointer Fields 0 i i i e 134
6.2.9 Inheritance L e 1135]
6.2.10Assignment of Inherited Fields 135!
6.3 Classes e e e e 136}

6.4 Structs e e e e e e e e e 1136

6.5 Literal C++ BloCcKS e e
6.6 Using C+H+TYPEs o i i it et e e e e e e 138
6.6.1 Announcing Types to the Message Compiler 138
6.6.2 Making the C++ Declarations Available 139
6.6.3 Putting it Together e 139
6.7 Customizing the Generated Class, [140
6.7.1 Customizing Method Names
6.7.2 Customizing the Class via Inheritance 141
6.7.3 Abstract Fields e 142
6.8 Using Standard Container Classes for Fields
6.8.1 Typedefs e
6.8.2 AbstractFields 144
6.9 NAMESPACES . . . v v v v e e i e e e e e e e e e e e e e e e e
6.9.1 Declaring a Namespaceo i vt it 146
6.9.2 C++ Blocks and Namespace oot i v it 146
6.9.3 Type Announcements and Namespace 147
6.10Descriptor Classes« . o vt i e e e e e e e 148
6.11Summary e e 149
The Simulation Library [151]
7.1 Class Library Conventions,
7.1.1 Base Classottt e e e
7.1.2 Setting and Getting Attributes 0oL
7.1.3 getClassName() ot v ittt e e e
7.1.4 Object NAMES v v v v v i e e e e e e e e e e e
7.1.5 Object Full Name and FullPath
7.1.6 Copying and Duplicating Objects
7.1.7 TLETatOrS . . . v v v o o e e e e e e e e e e e e e
7.1.8 Error Handling
7.2 Logging from Modules L L 155}
7.3 Simulation Time Conversion e 155
7.4 Generating Random Numbers
7.4.1 Random Number Generators,
7.4.2 Random Number Streams, RNG Mapping
7.4.3 Accessing The RNGs 0 ittt ittt 158
7.4.4 Random Variates L e 158
7.4.5 Random Numbers from Histograms
7.5 Container Classes ittt

7.5.1 Queueclass: CQUEUE e e e

7.5.2 Expandable Array: CAITAY o v v v v vt

7.6 Routing Support: cTopology i e
7.6.1 OVEIVIEW . . . v v v v e e e e e e e e e e e e e e e e
7.6.2 BasiCUSAZGE . . . v v v v o e e e e e e e e e e e e e e e e e 163
7.6.3 ShortestPaths 165

7.7 Pattern Matching L 166
7.7.1 cPatternMatcher e 166!
7.7.2 cMatchExpression 168

7.8 Statistics and Distribution Estimation
7.8.1 cStatisticand Descendants 00000
7.8.2 Distribution Estimation Ival
7.8.3 The k-split Algorithm oz4
7.8.4 Transient Detection and Result Accuracy

7.9 Recording Simulation Results 077
7.9.1 Output Vectors: cOutVector 077
7.9.2 Output Scalars e e e 178

7.10Watches and Snapshots 179
7.10.1Basic Watches L e 179
7.10.2Read-write Watches L L oo 80
7.10.3Structured Watches L L L oo oo 80
7.10.4STL Watches e 181
7.10.6Snapshots 181
7.10.6Getting Coroutine Stack Usage 183

7.11Defining New NED Functions 183
7.11.1Define_ NED_Function() e 1184]
7.11.2Define_ NED_Math_Function() [188]

7.12Deriving New Classes o . i i it i e e e e [189
7.12.1cOwnedObject or Not? 189
7.12.2cOwnedObject Virtual Methods [190
7.12.3Class Registration
7.12.4Detailso e e e e e e e e e e e e e e e e

7.130bject Ownership Management
7.13.1The Ownership Tree i i i it e i e e e e e e e
7.13.2Managing Ownership 0 o o 195

8 Network Graphics And Animation

8.1 Display Strings e e e e e 1199

8.1.1 Display String Syntax e e e 199

8.1.2 Display String Placement 0. 199

8.1.3 Display String Inheritance 0. 200

8.1.4 Display String Tags Used in Submodule Context
8.1.5 Display String Tags Used in Module Background Context 205
8.1.6 Connection Display Strings
8.1.7 Message Display Strings
8.2 Parameter Substitution L oL oL oo 208}
8.3 Colors e 208
83.1 ColorNames 208
8.3.2 Icon Colorization L e 208]
8.4 ICOMNS e e 209
84.1 ThelmagePath 209
8.4.2 Categorized Icons e e 209
8.4.3 Icon Size L e e e e 210
8.5 Layouting e e e 210
8.6 Enhancing Animation 211l
8.6.1 Changing Display Strings at Runtime 211l
8.6.2 BUDDIES 212
9 Building Simulation Programs 213
0.1 OVEIVIEW o ittt et e e e e e e e e e e e e
9.2 USINZG GCC . .« + v v v e e e e e e e e e e e e e e e e e e e
9.2.1 The opp_makemake Tool
9.2.2 BasiCUSE . . . v v v it it
9.2.3 Debugand Release Builds
9.2.4 Debugging the Makefile
9.2.5 Using External C/C++ Libraries
9.2.6 Building Directory Tr€es o v v v v v ittt e e e 217
9.2.7 AutomaticInclude Dirs L oL o 217
9.2.8 Dependency Handling, 217
9.2.9 Out-of-DirectoryBuild 217
9.2.10Building Shared and Static Libraries 218
9.2.11Recursive Builds Lo 218
9.2.12Customizing the Makefile 219
9.2.13Projects with Multiple Source Trees 219
9.2.14A Multi-Directory Example 219
10 Configuring Simulations [221]
10.1The Configuration File e 221]

10.1.1An Example e e e e e e e e 221

10.1.2File Syntax e e e e e e e e 222

10.1.3File Inclusion i i it e e e e e e e 223
10.2Sections 223
10.2.1The [General] Section o o v i e e e 223
10.2.2Named Configurations o e 224
10.2.3Section Inheritance L L o 224
10.3Assigning Module Parameterso
10.3.1Using Wildcard Patterns it
10.3.2Using the Default Values 227
10.4Parameter Studieso 228
10.4.1TEerations . . . v v v v v i e e e e e e e e e e e e e e e
10.4.2Named Iteration Variables
10.4.3Parallel Iteration L e
10.4.4Predefined Variables, RunID 232]
10.4.5Constraint Expression L L L o Lo 233
10.4.6Repeating Runs with Different Seeds 233
10.4.7Experiment-Measurement-Replication
10.5Configuring the Random Number Generators 236!
10.5.1Number of RNGS oot e 236
10.5.2RNG ChOICE« v vttt e e e e e e e e e e e e e 236
10.5.3RNG Mapping« v v v v e e e e e e e e e e e e
10.5.4Automatic Seed Selection
10.5.5Manual Seed Configuration0, 238
11 Running Simulations
11.1Introduction
11.1.1Running a Simulation Executable
11.1.2Running a Shared Library, 242]
11.1.3Controllingthe Run 242
11.2Cmdenv: the Command-Line Interface
11.2.1Example Run e e e
11.2.2Command-Line Options v v v v v it e 244]
11.2.3Cmdenv Ini File Optionst 244]
11.2.4Interpreting Cmdenv Output 00, 244]
11.3Tkenv: the Graphical User Interface
11.3.1Command-Line and Configuration Options
11.4Batch EXeCUutiono it vttt it e e e 247
11.4.1U0sing CMAeny v v v vt e e e e e e e e e 247

11.4.2Using Shell Scripts i it e e e e 247

11.4.3Usingopp_runall L 248

11.5Akaroa Support: Multiple Replications in Parallel
11.5.1Introduction L
11.5.2WhatIs AKaroa o .o it 249
11.5.3Using Akaroa with OMNeT++ 250!
11.6Troubleshooting e 251
11.6.1Unrecognized Configuration Option
11.6.2Stack Problems
11.6.3Memory Leaks and Crashes
11.6.4Simulation Executes Slowly
12 Result Recording and Analysis [255]
12.1Result Recording i i e e e 255
12.1.1Using Signals and Declared Statistics 255
12.1.2Direct Result Recording i 256
12.2 Configuring Result Collection 256
12.2.1Configuring Signal-Based Statistics Recording 256
12.2.2Warm-up Period L e 257
12.2.83Result File Names 258
12.2.4Configuring Scalar Results 258
12.2.5Configuring Output Vectors 259
12.2.6Saving Parameters as Scalars 0oL 259
12.2.7Recording Precision L o 260!
12.30verview of the Result File Formats
12.3.10utput Vector Files e
12.3.2Scalar Result Files e
12.4The Analysis Tool in the Simulation IDE
12.5Scave Tool L e e e e 263
12.5.1The filter Command i it e e e e e 263
12.5.2The index Command it 264
12.5.3The summary Command ot e 264
12.6 Alternative Statistical Analysis and Plotting Tools 264
12.6.1GNUR L e e
12.6.2NumPy, SciPy and MatPlotLib 265
12.6.3MATLAB Or OCtave o ittt s e e e e e e e e e 265
12.6.4Gnuplot e e e e e 265
12.6.5RO0Tt e e e e e e 265
12.6.6GTaCe . . o v v o i e e e e e e e e e 266

12.6.7Spreadsheet Programs o0 v v it i 266

13 Eventlog 267!

13.1Introduction
13.2Configuration e e e e e
13.2.1File Name e e e e e 268
13.2.2Recording Intervals L L Lo e 268
13.2.3Recording Modules L L e e e 268
13.2.4Recording Message Data 268
13.3Eventlog Tool e e e e e e 269
13.3.1Filter e e 269
13.3.2Echo e 269
14 Documenting NED and Messages 271
T4.1OVEIVIEW . . . v i vt v e e e e e e e e e e e e e e 271
14.2Documentation Comments L0 L0 o e 271l
14.2.1Private Comments Lo e 272
14.2.2More on Comment Placement 272
14.3Referring to Other NED and Message Types 273
14.3.1Automatic Linking
14.32Tilde LInKing o v v v i e e e e e e e e e e e e e e e 274
14.4Text Layout and Formatting, 274
14.4.1Paragraphs and Lists 0 v it 274
14.4.28pecial TaGS . . . v v v v e i e e e e e e e e e e e 274
14.4.3Text Formatting Using HTML v v i
14.4.4Escaping HTML Ta@S . . .« v v v v v vt e e e e e e e e e e e e e
14.5Customizing and Adding Pages 277
14.5.1Adding a Custom Title Page 277
14.5.2Adding Extra Pages i i it e e 277
14.5.3Incorporating Externally Created Pages 278
14.6Fileinclusion L L 278
15 Testing 279
I5.10VEIVIEW o
15.1.1Verification, validation
15.1.2Unit testing, regression testing 0., 279
15.2The opp_test Tool e e 280
15.2.1Introduction L L e e e 280!
15.2.2Terminology e e e e e e e 283
15.2.3Testfilesyntax L e 283

15.2.4Test description 0t it e e e e e e e 283

15.2.5Test code generation v v v vt it e e e 283
15.2.6PASS criteria 285
15.2.7Extra processing stepso e 287
15.2.8Unresolved e
15.2.90pp_test Ssynopsys oL e e e e e
15.2.1Writing the control script 289
15.3Implementing various typesoftests oo oL 289
15.3.1Smoke tests 289
15.3.2Fingerprinttests L L 290
15.3.3Unit tests L e 290
15.3.4Module tests L L e e e 290
15.3.5Statistical tests L L L 291

16 Parallel Distributed Simulation 293
16.1Introduction to Parallel Discrete Event Simulation 293
16.2 Assessing Available Parallelism in a Simulation Model 294
16.3 Parallel Distributed Simulation Support in OMNeT++ 295
16.3.10verview Lo e e e e e e e e 295
16.3.2Parallel Simulation Example 0000, 296
16.3.3Placeholder Modules, Proxy Gates
16.3.4Configuration e e e 98
16.3.5Design of PDES Supportin OMNeT++ 300

17 Plug-in Extensions
17.10VEIVIEW o e [303]
17.2Plug-in Descriptions
17.2.1Defining a New Random Number Generator
17.2.2Defining a New Scheduler
17.2.3Defining a New Configuration Provider
17.2.4Defining a New Output Scalar Manager [306]
17.2.5Defining a New Output Vector Manager 3006
17.2.6Defining a New Snapshot Manager 306
17.3 Accessing the Configuration 306
17.3.1Defining New Configuration Options 306!
17.3.2Reading Values from the Configuration 307!
17.4Implementing a New User Interface 308}
18 Embedding the Simulation Kernel B11]

18.1Architecture e e e e e e

18.2Embedding the OMNeT++ Simulation Kernel

18.2.1The main() Function
18.2.2The simulate() Function e
18.2.3Providing an Environment Object (319
18.2.4Providing a Configuration Object 316
18.2.5Loading NED Files i vttt e e e e e 317
18.2.6How to Eliminate NED Files
18.2.7Assigning Module Parameters 0.
18.2.8Extracting Statistics from the Model 318}
18.2.9The Simulation Loop i i i e e e e
18.2.10Multiple, Coexisting Simulations
18.2.1Installing a Custom Scheduler
18.2.1Multi-Threaded Programs o v v v vt i e e

A NED Reference [321]
Al SYNEAX . o v v v e
A.1.1 NED File Name Extension
A.1.2 NEDFileEncoding e [B21]
A1.3 Reserved Words v v vttt i e e [B21]
A.1.4 Identifiers L 322
A.1.5 Case Sensitivity L e
A1.6 Literals. o L e
A1.7 Comments e e e e e e e e

A 1.8 Grammar Lo e e e e e e e e e e e e e e e e

A.2 Built-in Definitions
A3 Packages e
A.3.1 Package Declaration 0 oo
A.3.2 Directory Structure, packagened,

A4 Components e e e e e e e 325
A.4.1 Simple Modules 325
A.4.2 Compound Modules e 325
A4.3 Networks e e e 325
A4.4 Channels 326
A.4.5 Module Interfaces 326
A.4.6 ChannelInterfaces 326
A.4.7 Resolving the C++ ImplementationClass
A48 Properti€s i i it e e e e e e e e e e e e e
A4.9 Parameters oo e e e e e e e e e e 329

A.4.10Pattern AsSignments e e e e e e 330

A4.11Gates.
A.4.12Submodules . .
A.4.13Connections . .

A.4.14Conditional and Loop Connections, Connection Groups

A.4.15Inner Types . .

A.4.16Name Uniqueness o o v it i it i v it e e e

A.4.17Parameter Assignment Order

A.4.18Type Name Resolution

A.4.19Resolution of Parametric Types

A.4.20Implementing an Interface L oL o oL

A.4.21Inheritance . .

A.4.22Network Build Order e

A5 Expressions.
A.5.1 Operators . . .

A.5.2 Referencing Parameters and Loop Variables
A.5.3 The index Operatorttt
A.5.4 The sizeof () Operator i i i i v it vttt

A.5.5 Functions . . .

A.5.6 Units of Measurement e

NED Language Grammar
NED XML Binding

NED Functions

Message Definitions Grammar

Display String Tags

F.1 Module and Connection Display String Tags

F.2 Message Display String Tags o i it ittt

Configuration Options

G.1 Configuration Options e
G.2 Predefined Configuration Variables

Result File Formats

H.1 Version
H.2 Run Declaration . .
H.3 Attributes
H.4 Module Parameters

345

Ol

N

78 & 3 8 B BEEEB

S

R
S

B §EE

5
b

H.5 ScalarData e e e e

H.6 Vector Declaration i v i i i e i e e e e e
H.7 Vector Data e e e e 407
H.8 IndexHeader @ e e e e e
HO IndexData o o i i i ittt e e e e e
H.10Statistics Object e 408}
H.11Field e e e e e e e e e e e e
H.12Histogram Bin e 409
I Eventlog File Format 411]
I.1 Supported Entry Types and Their Attributes 412
References 417

Index

OMNeT++ Manual - Introduction

Chapter 1

Introduction

1.1 What Is OMNeT++?

OMNeT++ is an object-oriented modular discrete event network simulation framework. It has
a generic architecture, so it can be (and has been) used in various problem domains:

e modeling of wired and wireless communication networks

e protocol modeling

e modeling of queueing networks

e modeling of multiprocessors and other distributed hardware systems
e validating of hardware architectures

e evaluating performance aspects of complex software systems

¢ in general, modeling and simulation of any system where the discrete event approach
is suitable, and can be conveniently mapped into entities communicating by exchanging
messages.

OMNeT++ itself is not a simulator of anything concrete, but rather provides infrastructure
and tools for writing simulations. One of the fundamental ingredients of this infrastructure
is a component architecture for simulation models. Models are assembled from reusable
components termed modules. Well-written modules are truly reusable, and can be combined
in various ways like LEGO blocks.

Modules can be connected with each other via gates (other systems would call them ports), and
combined to form compound modules. The depth of module nesting is not limited. Modules
communicate through message passing, where messages may carry arbitrary data structures.
Modules can pass messages along predefined paths via gates and connections, or directly to
their destination; the latter is useful for wireless simulations, for example. Modules may
have parameters that can be used to customize module behavior and/or to parameterize
the model’s topology. Modules at the lowest level of the module hierarchy are called simple
modules, and they encapsulate model behavior. Simple modules are programmed in C++, and
make use of the simulation library.

OMNeT++ simulations can be run under various user interfaces. Graphical, animating user
interfaces are highly useful for demonstration and debugging purposes, and command-line
user interfaces are best for batch execution.

OMNeT++ Manual - Introduction

The simulator as well as user interfaces and tools are highly portable. They are tested on the
most common operating systems (Linux, Mac OS/X, Windows), and they can be compiled out
of the box or after trivial modifications on most Unix-like operating systems.

OMNeT++ also supports parallel distributed simulation. OMNeT++ can use several mecha-
nisms for communication between partitions of a parallel distributed simulation, for example
MPI or named pipes. The parallel simulation algorithm can easily be extended, or new ones
can be plugged in. Models do not need any special instrumentation to be run in parallel -
it is just a matter of configuration. OMNeT++ can even be used for classroom presentation
of parallel simulation algorithms, because simulations can be run in parallel even under the
GUI that provides detailed feedback on what is going on.

OMNEST is the commercially supported version of OMNeT++. OMNeT++ is free only for aca-
demic and non-profit use; for commercial purposes, one needs to obtain OMNEST licenses
from Simulcraft Inc.

1.2 Organization of This Manual

The manual is organized as follows:

e The Chapters[I]and [2] contain introductory material

e The second group of chapters, and (7| are the programming guide. They present the
NED language, describe the simulation concepts and their implementation in OMNeT++,
explain how to write simple modules, and describe the class library.

e The chapters [§|and explain how to customize the network graphics and how to write
NED source code comments from which documentation can be generated.

e Chapters[9] and [T2] deal with practical issues like building and running simula-
tions and analyzing results, and describe the tools OMNeT++ provides to support these
tasks.

e Chapter[16]is devoted to the support of distributed execution.

e Chapters[17]and [18|explain the architecture and internals of OMNeT++, as well as ways
to extend it and embed it into larger applications.

e The appendices provide a reference on the NED language, configuration options, file
formats, and other details.

OMNeT++ Manual — Overview

Chapter 2

Overview

2.1 Modeling Concepts

An OMNeT++ model consists of modules that communicate with message passing. The active
modules are termed simple modules; they are written in C++, using the simulation class
library. Simple modules can be grouped into compound modules and so forth; the number
of hierarchy levels is unlimited. The whole model, called network in OMNeT++, is itself a
compound module. Messages can be sent either via connections that span modules or directly
to other modules. The concept of simple and compound modules is similar to DEVS atomic
and coupled models.

In Fig. boxes represent simple modules (gray background) and compound modules.
Arrows connecting small boxes represent connections and gates.

Network
Simple modules

Compound module

I T o T

Figure 2.1: Simple and compound modules

Modules communicate with messages that may contain arbitrary data, in addition to usual
attributes such as a timestamp. Simple modules typically send messages via gates, but it
is also possible to send them directly to their destination modules. Gates are the input and
output interfaces of modules: messages are sent through output gates and arrive through
input gates. An input gate and output gate can be linked by a connection. Connections are
created within a single level of module hierarchy; within a compound module, corresponding
gates of two submodules, or a gate of one submodule and a gate of the compound module
can be connected. Connections spanning hierarchy levels are not permitted, as they would
hinder model reuse. Because of the hierarchical structure of the model, messages typically

3

OMNeT++ Manual — Overview

travel through a chain of connections, starting and arriving in simple modules. Compound
modules act like "cardboard boxes" in the model, transparently relaying messages between
their inner realm and the outside world. Parameters such as propagation delay, data rate
and bit error rate, can be assigned to connections. One can also define connection types
with specific properties (termed channels) and reuse them in several places. Modules can
have parameters. Parameters are used mainly to pass configuration data to simple modules,
and to help define model topology. Parameters can take string, numeric, or boolean values.
Because parameters are represented as objects in the program, parameters — in addition to
holding constants — may transparently act as sources of random numbers, with the actual
distributions provided with the model configuration. They may interactively prompt the user
for the value, and they might also hold expressions referencing other parameters. Compound
modules may pass parameters or expressions of parameters to their submodules.

OMNeT++ provides efficient tools for the user to describe the structure of the actual system.
Some of the main features are the following:

e hierarchically nested modules
e modules are instances of module types
e modules communicate with messages through channels

e flexible module parameters

topology description language

2.1.1 Hierarchical Modules

An OMNeT++ model consists of hierarchically nested modules that communicate by passing
messages to each other. OMNeT++ models are often referred to as networks. The top level
module is the system module. The system module contains submodules that can also contain
submodules themselves (Fig. [2.I). The depth of module nesting is unlimited, allowing the
user to reflect the logical structure of the actual system in the model structure.

Model structure is described in OMNeT++'s NED language.

Modules that contain submodules are termed compound modules, as opposed to simple mod-
ules at the lowest level of the module hierarchy. Simple modules contain the algorithms of
the model. The user implements the simple modules in C++, using the OMNeT++ simulation
class library.

2.1.2 Module Types

Both simple and compound modules are instances of module types. In describing the model,
the user defines module types; instances of these module types serve as components for
more complex module types. Finally, the user creates the system module as an instance of a
previously defined module type; all modules of the network are instantiated as submodules
and sub-submodules of the system module.

When a module type is used as a building block, it makes no difference whether it is a simple
or compound module. This allows the user to split a simple module into several simple
modules embedded into a compound module, or vice versa, to aggregate the functionality of a
compound module into a single simple module, without affecting existing users of the module

type.

OMNeT++ Manual — Overview

Module types can be stored in files separately from the place of their actual usage. This means
that the user can group existing module types and create component libraries. This feature
will be discussed later, in chapter

2.1.3 Messages, Gates, Links

Modules communicate by exchanging messages. In an actual simulation, messages can rep-
resent frames or packets in a computer network, jobs or customers in a queuing network
or other types of mobile entities. Messages can contain arbitrarily complex data structures.
Simple modules can send messages either directly to their destination or along a predefined
path, through gates and connections.

The “local simulation time” of a module advances when the module receives a message. The
message can arrive from another module or from the same module (self-messages are used to
implement timers).

Gates are the input and output interfaces of modules; messages are sent out through output
gates and arrive through input gates.

Each connection (also called link) is created within a single level of the module hierarchy:
within a compound module, one can connect the corresponding gates of two submodules, or
a gate of one submodule and a gate of the compound module (Fig. [2.1).

Because of the hierarchical structure of the model, messages typically travel through a series
of connections, starting and arriving in simple modules. Compound modules act like “card-
board boxes” in the model, transparently relaying messages between their inner realm and
the outside world.

2.1.4 Modeling of Packet Transmissions

To facilitate the modeling of communication networks, connections can be used to model
physical links. Connections support the following parameters: data rate, propagation delay,
bit error rate and packet error rate, and may be disabled. These parameters and the underlying
algorithms are encapsulated into channel objects. The user can parameterize the channel
types provided by OMNeT++, and also create new ones.

When data rates are in use, a packet object is by default delivered to the target module at the
simulation time that corresponds to the end of the packet reception. Since this behavior is
not suitable for the modeling of some protocols (e.g. half-duplex Ethernet), OMNeT++ provides
the possibility for the target module to specify that it wants the packet object to be delivered
to it when the packet reception starts.

2.1.5 Parameters

Modules can have parameters. Parameters can be assigned in either the NED files or the
configuration file omnetpp.ini.

Parameters can be used to customize simple module behavior, and to parameterize the model
topology.
Parameters can take string, numeric or boolean values, or can contain XML data trees. Nu-

meric values include expressions using other parameters and calling C functions, random
variables from different distributions, and values input interactively by the user.

OMNeT++ Manual — Overview

Numeric-valued parameters can be used to construct topologies in a flexible way. Within a
compound module, parameters can define the number of submodules, number of gates, and
the way the internal connections are made.

2.1.6 Topology Description Method

The user defines the structure of the model in NED language descriptions (Network Descrip-
tion). The NED language will be discussed in detail in chapter

2.2 Programming the Algorithms

The simple modules of a model contain algorithms as C++ functions. The full flexibility and
power of the programming language can be used, supported by the OMNeT++ simulation
class library. The simulation programmer can choose between event-driven and process-
style description, and freely use object-oriented concepts (inheritance, polymorphism etc) and
design patterns to extend the functionality of the simulator.

Simulation objects (messages, modules, queues etc.) are represented by C++ classes. They
have been designed to work together efficiently, creating a powerful simulation programming
framework. The following classes are part of the simulation class library:

module, gate, parameter, channel

e message, packet

e container classes (e.g. queue, array)
e data collection classes

e statistic and distribution estimation classes (histograms, P? algorithm for calculating
quantiles etc.)

e transient detection and result accuracy detection classes

The classes are also specially instrumented, allowing one to traverse objects of a running
simulation and display information about them such as name, class name, state variables or
contents. This feature makes it possible to create a simulation GUI where all internals of the
simulation are visible.

2.3 Using OMNeT++

2.3.1 Building and Running Simulations

This section provides insights into working with OMNeT++ in practice. Issues such as model
files and compiling and running simulations are discussed.

An OMNeT++ model consists of the following parts:

e NED language topology description(s) (. ned files) that describe the module structure with
parameters, gates, etc. NED files can be written using any text editor, but the OMNeT++
IDE provides excellent support for two-way graphical and text editing.

OMNeT++ Manual — Overview

e Message definitions (.msg files). You can define various message types and add data
fields to them. OMNeT++ will translate message definitions into full-fledged C++ classes.

e Simple module sources. They are C++ files, with .h/.cc suffix.
The simulation system provides the following components:

e Simulation kernel. This contains the code that manages the simulation and the simula-
tion class library. It is written in C++, compiled into a shared or static library.

e User interfaces. OMNeT++ user interfaces are used in simulation execution, to facilitate
debugging, demonstration, or batch execution of simulations. They are written in C++,
compiled into libraries.

Simulation programs are built from the above components. First, .msg files are translated into
C++ code using the opp_msgc. program. Then all C++ sources are compiled and linked with
the simulation kernel and a user interface library to form a simulation executable or shared
library. NED files are loaded dynamically in their original text forms when the simulation
program starts.

Running the Simulation and Analyzing the Results

The simulation may be compiled as a standalone program executable; thus it can be run on
other machines without OMNeT++ being present, or it can be created as a shared library. In
this case the OMNeT++ shared libraries must be present on that system. When the program
is started, it first reads all NED files containing your model topology, then it reads a con-
figuration file (usually called omnetpp.ini). This file contains settings that control how the
simulation is executed, values for model parameters, etc. The configuration file can also pre-
scribe several simulation runs; in the simplest case, they will be executed by the simulation
program one after another.

The output of the simulation is written into result files: output vector files, output scalar
files, and possibly the user’s own output files. OMNeT++ contains an Integrated Development
Environment (IDE) that provides rich environment for analyzing these files. Output files are
line-oriented text files which makes it possible to process them with a variety of tools and
programming languages as well, including Matlab, GNU R, Perl, Python, and spreadsheet
programs.

User Interfaces

The primary purpose of user interfaces is to make the internals of the model visible to the
user, to control simulation execution, and possibly allow the user to intervene by changing
variables/objects inside the model. This is very important in the development/debugging
phase of the simulation project. Equally important, a hands-on experience allows the user to
get a feel of the model’s behavior. The graphical user interface can also be used to demonstrate
a model’s operation.

The same simulation model can be executed with various user interfaces, with no change in
the model files themselves. The user would typically test and debug the simulation with a
powerful graphical user interface, and finally run it with a simple, fast user interface that
supports batch execution.

OMNeT++ Manual — Overview

Component Libraries

Module types can be stored in files separate from the place of their actual use, enabling the
user to group existing module types and create component libraries.

Universal Standalone Simulation Programs

A simulation executable can store several independent models that use the same set of simple
modules. The user can specify in the configuration file which model is to be run. This allows
one to build one large executable that contains several simulation models, and distribute it as
a standalone simulation tool. The flexibility of the topology description language also supports
this approach.

2.3.2 What Is in the Distribution

If you installed the source distribution, the OMNeT++ directory on your system should con-
tain the following subdirectories. (If you installed a precompiled distribution, some of the
directories may be missing, or there might be additional directories, e.g. containing software
bundled with OMNeT++.)

The simulation system itself:

omnetpp/ OMNeT++ root directory
bin/ OMNeT++ executables
include/ header files for simulation models
1lib/ library files
images/ icons and backgrounds for network graphics
doc/ manuals, readme files, license, APIs, etc.

ide-customization-guide/ how to write new wizards for the IDE
ide-developersguide/ writing extensions for the IDE

manual/ manual in HTML

migration/ how to migrate your models from 3.x to 4.0 version
ned2/ DTD definition of the XML syntax for NED files
tictoc-tutorial/ introduction into using OMNeT++

api/ API reference in HTML

nedxml-api/ API reference for the NEDXML library
parsim—-api/ API reference for the parallel simulation library

migrate/ tools to help model migration from 3.x to 4.0 version
src/ OMNeT++ sources
sim/ simulation kernel
parsim/ files for distributed execution
netbuilder/files for dynamically reading NED files
envir/ common code for user interfaces
cmdenv/ command-line user interface
tkenv/ Tcl/Tk-based user interface
nedxml/ NEDXML library, nedtool, opp_msgc
scave/ result analysis library
eventlog/ eventlog processing library
layout/ graph layouter for network graphics
common/ common library
utils/ opp_makemake, opp_test, etc.

OMNeT++ Manual — Overview

test/ regression test suite
core/ tests for the simulation library
anim/ tests for graphics and animation
dist/ tests for the built-in distributions
makemake/ tests for opp_makemake

The Eclipse-based Simulation IDE is in the ide directory.

ide/ Simulation IDE
features/ Eclipse feature definitions
plugins/ IDE plugins (extensions to the IDE can be dropped here)

The Windows version of OMNeT++ contains a redistribution of the MinGW gcc compiler, to-
gether with a copy of MSYS that provides Unix tools commonly used in Makefiles. The MSYS
directory also contains various 3rd party open-source libraries needed to compile and run
OMNeT++.

tools/ Platform specific tools and compilers (e.g. MinGW/MSYS on Windows)

Sample simulations are in the samples directory.

samples/ directories for sample simulations
aloha/ models the Aloha protocol
cqn/ Closed Queueing Network

The contrib directory contains material from the OMNeT++ community.

contrib/ directory for contributed material
akaroa/ Patch to compile akaroa on newer gcc systems
jsimplemodule/ Write simple modules in Java
topologyexport/ Export the topology of a model in runtime

OMNeT++ Manual — Overview

10

OMNeT++ Manual — The NED Language

Chapter 3

The NED Language

3.1 NED Overview

The user describes the structure of a simulation model in the NED language. NED stands for
Network Description. NED lets the user declare simple modules, and connect and assemble
them into compound modules. The user can label some compound modules as networks; that
is, self-contained simulation models. Channels are another component type, whose instances
can also be used in compound modules.

The NED language has several features which let it scale well to large projects:

Hierarchical. The traditional way to deal with complexity is by introducing hierarchies. In
OMNeT++, any module which would be too complex as a single entity can be broken
down into smaller modules, and used as a compound module.

Component-Based. Simple modules and compound modules are inherently reusable, which
not only reduces code copying, but more importantly, allows component libraries (like
the INET Framework, MiXiM, Castalia, etc.) to exist.

Interfaces. Module and channel interfaces can be used as a placeholder where normally
a module or channel type would be used, and the concrete module or channel type
is determined at network setup time by a parameter. Concrete module types have to
“implement” the interface they can substitute. For example, given a compound module
type named MobileHost contains a mobility submodule of the type IMobility (where
IMobility is a module interface), the actual type of mobility may be chosen from the
module types that implemented IMobility (RandomWalkMobility, TurtleMobility,
etc.)

Inheritance. Modules and channels can be subclassed. Derived modules and channels may
add new parameters, gates, and (in the case of compound modules) new submodules and
connections. They may set existing parameters to a specific value, and also set the gate
size of a gate vector. This makes it possible, for example, to take a GenericTCPClientApp
module and derive an FTPClientApp from it by setting certain parameters to a fixed
value; or to derive a WebClientHost compound module from a BaseHost compound
module by adding a WebClientApp submodule and connecting it to the inherited TCP
submodule.

Packages. The NED language features a Java-like package structure, to reduce the risk of

11

OMNeT++ Manual — The NED Language

name clashes between different models. NEDPATH (similar to Java’s CLASSPATH) has also
been introduced to make it easier to specify dependencies among simulation models.

Inner types. Channel types and module types used locally by a compound module can be
defined within the compound module, in order to reduce namespace pollution.

Metadata annotations. It is possible to annotate module or channel types, parameters, gates
and submodules by adding properties. Metadata are not used by the simulation kernel
directly, but they can carry extra information for various tools, the runtime environment,
or even for other modules in the model. For example, a module’s graphical representation
(icon, etc) or the prompt string and measurement unit (milliwatt, etc) of a parameter are
already specified as metadata annotations.

NOTE: The NED language has changed significantly in the 4.0 version. Inheritance,
interfaces, packages, inner types, metadata annotations, inout gates were all added in
the 4.0 release, together with many other features. Since the basic syntax has changed as
well, old NED files need to be converted to the new syntax. There are automated tools for
this purpose, so manual editing is only needed to take advantage of new NED features.

The NED language has an equivalent tree representation which can be serialized to XML; that
is, NED files can be converted to XML and back without loss of data, including comments.
This lowers the barrier for programmatic manipulation of NED files; for example extracting
information, refactoring and transforming NED, generating NED from information stored in
other systems like SQL databases, and so on.

NOTE: This chapter is going to explain the NED language gradually, via examples. If you
are looking for a more formal and concise treatment, see Appendix [B]

3.2 NED Quickstart

In this section we introduce the NED language via a complete and reasonably real-life example:
a communication network.

Our hypothetical network consists of nodes. On each node there is an application running
which generates packets at random intervals. The nodes are routers themselves as well. We
assume that the application uses datagram-based communication, so that we can leave out
the transport layer from the model.

3.2.1 The Network

First we’ll define the network, then in the next sections we’ll continue to define the network
nodes.

Let the network topology be as in Figure
The corresponding NED description would look like this:

//

// A network

//

network Network

{

12

OMNeT++ Manual — The NED Language

1te[8]

Figure 3.1: The network

submodules:
nodel: Node;
node2: Node;
node3: Node;

connections:
nodel.port++ <-—> {datarate=100Mbps;} <-—> node2.port++;
nodeZ2.port++ <-—> {datarate=100Mbps;} <-—> noded.port++;
node4.port++ <——> {datarate=100Mbps;} <-—> nodeb6.port++;

}

The above code defines a network type named Network. Note that the NED language uses the
familiar curly brace syntax, and “//” to denote comments.

NOTE: Comments in NED not only make the source code more readable, but in the
OMNeT++ IDE they also are displayed at various places (tooltips, content assist, etc), and
become part of the documentation extracted from the NED files. The NED documentation
system, not unlike JavaDoc or Doxygen, will be described in Chapter [14]

The network contains several nodes, named nodel, node2, etc. from the NED module type
Node. We'll define Node in the next sections.

The second half of the declaration defines how the nodes are to be connected. The double
arrow means bidirectional connection. The connection points of modules are called gates,
and the port++ notation adds a new gate to the port [] gate vector. Gates and connections
will be covered in more detail in sections and Nodes are connected with a channel
that has a data rate of 100Mbps.

NOTE: In many other systems, the equivalent of OMNeT++ gates are called ports. We
have retained the term gate to reduce collisions with other uses of the otherwise over-
loaded word port: router port, TCP port, I/O port, etc.

13

OMNeT++ Manual — The NED Language

The above code would be placed into a file named Net6.ned. It is a convention to put every
NED definition into its own file and to name the file accordingly, but it is not mandatory to do
S0.

One can define any number of networks in the NED files, and for every simulation the user
has to specify which network to set up. The usual way of specifying the network is to put the
network option into the configuration (by default the omnetpp.ini file):

[General]
network = Network

3.2.2 Introducing a Channel

It is cumbersome to have to repeat the data rate for every connection. Luckily, NED provides
a convenient solution: one can create a new channel type that encapsulates the data rate
setting, and this channel type can be defined inside the network so that it does not litter the
global namespace.

The improved network will look like this:

//
// A Network
//
network Network
{
types:
channel C extends ned.DatarateChannel {
datarate = 100Mbps;
}
submodules:
nodel: Node;
node2: Node;
node3: Node;

connections:
nodel.port++ <—=> C <—-=> node2.port++;
node2.port++ <-—=> C <-=> noded.port++;
noded.port++ <—-—> C <——> nodeb6.port++;

}

Later sections will cover the concepts used (inner types, channels, the DatarateChannel
built-in type, inheritance) in detail.

3.2.3 The App, Routing, and Queue Simple Modules

Simple modules are the basic building blocks for other (compound) modules, denoted by
the simple keyword. All active behavior in the model is encapsulated in simple modules.
Behavior is defined with a C++ class; NED files only declare the externally visible interface of
the module (gates, parameters).

In our example, we could define Node as a simple module. However, its functionality is quite
complex (traffic generation, routing, etc), so it is better to implement it with several smaller

14

OMNeT++ Manual — The NED Language

simple module types which we are going to assemble into a compound module. We’ll have one
simple module for traffic generation (App), one for routing (Routing), and one for queueing up
packets to be sent out (Queue). For brevity, we omit the bodies of the latter two in the code
below.

simple App
{
parameters:
int destAddress;

@display ("i=block/browser") ;
gates:
input in;
output out;
}

simple Routing

{
}

simple Queue

{

}

By convention, the above simple module declarations go into the App.ned, Routing.ned and
Queue.ned files.

NOTE: Note that module type names (App, Routing, Queue) begin with a capital letter,
and parameter and gate names begin with lowercase — this is the recommended naming
convention. Capitalization matters because the language is case sensitive.

Let us look at the first simple module type declaration. App has a parameter called destAd-
dress (others have been omitted for now), and two gates named out and in for sending and
receiving application packets.

The argument of @display () is called a display string, and it defines the rendering of the
module in graphical environments; "i=. .. " defines the default icon.

Generally, @-words like @display are called properties in NED, and they are used to annotate
various objects with metadata. Properties can be attached to files, modules, parameters,
gates, connections, and other objects, and parameter values have a very flexible syntax.

3.2.4 The Node Compound Module

Now we can assemble App, Rout ing and Queue into the compound module Node. A compound
module can be thought of as a “cardboard box” that groups other modules into a larger unit,
which can further be used as a building block for other modules; networks are also a kind of
compound module.

module Node

{

15

OMNeT++ Manual — The NED Language

Figure 3.2: The Node compound module

parameters:
int address;
@display ("i=misc/node_vs,gold");

gates:
inout port|[];
submodules:
app: App;
routing: Routing;
queue [sizeof (port)]: Queue;
connections:
routing.localOut --> app.in;
routing.localln <-- app.out;
for i=0..sizeof (port)-1 {
routing.out[i] —--> queue[i].in;
routing.in[i] <-- queue[i].out;
queue[i].line <——> port[i];

}

Compound modules, like simple modules, may have parameters and gates. Our Node module
contains an address parameter, plus a gate vector of unspecified size, named port. The ac-
tual gate vector size will be determined implicitly by the number of neighbours when we create
a network from nodes of this type. The type of port [] is inout, which allows bidirectional
connections.

The modules that make up the compound module are listed under submodules. Our Node
compound module type has an app and a routing submodule, plus a queue[] submodule
vector that contains one Queue module for each port, as specified by [sizeof (port)]. (It
is legal to refer to [sizeof (port)] because the network is built in top-down order, and the
node is already created and connected at network level when its submodule structure is built
out.)

In the connections section, the submodules are connected to each other and to the parent
module. Single arrows are used to connect input and output gates, and double arrows connect
inout gates, and a for loop is utilized to connect the rout ing module to each queue module,
and to connect the outgoing/incoming link (1ine gate) of each queue to the corresponding
port of the enclosing module.

16

OMNeT++ Manual — The NED Language

3.2.5 Putting It Together

We have created the NED definitions for this example, but how are they used by OMNeT++?
When the simulation program is started, it loads the NED files. The program should already
contain the C++ classes that implement the needed simple modules, App, Routing and Queue;
their C++ code is either part of the executable or is loaded from a shared library. The simu-
lation program also loads the configuration (omnetpp.ini), and determines from it that the
simulation model to be run is the Network network. Then the network is instantiated for
simulation.

The simulation model is built in a top-down preorder fashion. This means that starting from
an empty system module, all submodules are created, their parameters and gate vector sizes
are assigned, and they are fully connected before the submodule internals are built.

®* ok ok

In the following sections we’ll go through the elements of the NED language and look at them
in more detail.

3.3 Simple Modules

Simple modules are the active components in the model. Simple modules are defined with the
simple keyword.

An example simple module:

simple Queue
{
parameters:
int capacity;
@display ("i=block/queue") ;
gates:
input in;
output out;

}

Both the parameters and gates sections are optional, that is, they can be left out if there is
no parameter or gate. In addition, the parameters keyword itself is optional too; it can be left
out even if there are parameters or properties.

Note that the NED definition doesn’t contain any code to define the operation of the module:
that part is expressed in C++. By default, OMNeT++ looks for C++ classes of the same name
as the NED type (so here, Queue).

One can explicitly specify the C++ class with the @class property. Classes with namespace
qualifiers are also accepted, as shown in the following example that uses the mylib: :Queue
class:

simple Queue
{
parameters:
int capacity;

17

OMNeT++ Manual — The NED Language

@class (mylib: :Queue);
@display ("i=block/queue") ;
gates:
input inj;
output out;
}

If you have several modules that are all in a common namespace, then a better alterna-
tive to @class is the @namespace property. The C++ namespace given with @namespace will
be prepended to the normal class name. In the following example, the C++ classes will be
mylib: :App, mylib: :Router and mylib: :Queue:

@namespace (mylib) ;
simple App {

}

simple Router {

}

simple Queue {

}

As you've seen, @namespace can be specified at the file level. Moreover, when placed in a

file called package.ned, the namespace will apply to all files in the same directory and all
directories below.

The implementation C++ classes need to be subclassed from the cSimpleModule library class;
chapter 4] of this manual describes in detail how to write them.

Simple modules can be extended (or specialized) via subclassing. The motivation for subclass-
ing can be to set some open parameters or gate sizes to a fixed value (see and [3.7), or to
replace the C++ class with a different one. Now, by default, the derived NED module type will
inherit the C++ class from its base, so it is important to remember that you need to write out
@class if you want it to use the new class.

The following example shows how to specialize a module by setting a parameter to a fixed
value (and leaving the C++ class unchanged):

simple Queue
{

int capacity;
}

simple BoundedQueue extends Queue
{

capacity = 10;
}

In the next example, the author wrote a PriorityQueue C++ class, and wants to have a
corresponding NED type, derived from Queue. However, it does not work as expected:

18

OMNeT++ Manual — The NED Language

simple PriorityQueue extends Queue // wrong! still uses the Queue C++ class
{
}

The correct solution is to add a @class property to override the inherited C++ class:

simple PriorityQueue extends Queue

{

@class (PriorityQueue);

}

Inheritance in general will be discussed in section [3.13

3.4 Compound Modules

A compound module groups other modules into a larger unit. A compound module may have
gates and parameters like a simple module, but no active behavior is associated with it.

NOTE: When there is a temptation to add code to a compound module, then encapsulate
the code into a simple module, and add it as a submodule.

A compound module declaration may contain several sections, all of them optional:

module Host

{
types:

paraﬁééers:

gate;;

submé&ﬁles:

connéééions:
}

Modules contained in a compound module are called submodules, and they are listed in the
submodules section. One can create arrays of submodules (i.e. submodule vectors), and the
submodule type may come from a parameter.

Connections are listed under the connections section of the declaration. One can create
connections using simple programming constructs (loop, conditional). Connection behaviour
can be defined by associating a channel with the connection; the channel type may also come
from a parameter.

Module and channel types only used locally can be defined in the types section as inner
types, so that they do not pollute the namespace.

Compound modules may be extended via subclassing. Inheritance may add new submod-
ules and new connections as well, not only parameters and gates. Also, one may refer to

I Although the C++ class for a compound module can be overridden with the @class property, this is a feature that
should probably never be used. Encapsulate the code into a simple module, and add it as a submodule.

19

OMNeT++ Manual — The NED Language

inherited submodules, to inherited types etc. What is not possible is to "de-inherit" or modify
submodules or connections.

In the following example, we show how to assemble common protocols into a "stub" for wireless
hosts, and add user agents via subclassingE]

module WirelessHostBase
{
gates:
input radiolIn;
submodules:
tcp: TCP;
ip: IP;
wlan: Ieee80211;
connections:
tcp.ipOut —-> ip.tcpln;
tcp.ipIn <-- ip.tcpOut;

ip.nicOut++ —--> wlan.ipIn;
ip.nicIn++ <-- wlan.ipOut;
wlan.radioIn <-- radioln;

module WirelessHost extends WirelessHostBase
{
submodules:
webAgent: WebAgent;
connections:
webAgent.tcpOut —--> tcp.appln++;
webAgent.tcpIn <-- tcp.appOut++;
}

The WirelessHost compound module can further be extended, for example with an Ethernet
port:

module DesktopHost extends WirelessHost
{
gates:
inout ethg;
submodules:
eth: EthernetNic;
connections:
ip.nicOut++ —--> eth.iplIn;
ip.nicIn++ <-- eth.ipOut;
eth.phy <--> ethg;

3.5 Channels

Channels encapsulate parameters and behaviour associated with connections. Channels are
like simple modules, in the sense that there are C++ classes behind them. The rules for

2Module types, gate names, etc. used in the example are fictional, not based on an actual OMNeT++-based model
framework

20

OMNeT++ Manual — The NED Language

finding the C++ class for a NED channel type is the same as with simple modules: the default
class name is the NED type name unless there is a @class property (@namespace is also
recognized), and the C++ class is inherited when the channel is subclassed.

Thus, the following channel type would expect a CustomChannel C++ class to be present:

channel CustomChannel // requires a CustomChannel C++ class
{
}

The practical difference compared to modules is that you rarely need to write you own channel
C++ class because there are predefined channel types that you can subclass from, inherit-
ing their C++ code. The predefined types are: ned.IdealChannel, ned.DelayChannel and
ned.DatarateChannel. (“ned” is the package name; you can get rid of it if you import the
types with the import ned.x or similar directive. Packages and imports are described in

section)

IdealChannel has no parameters, and lets through all messages without delay or any side
effect. A connection without a channel object and a connection with an IdealChannel behave
in the same way. Still, IdealChannel has its uses, for example when a channel object is
required so that it can carry a new property or parameter that is going to be read by other
parts of the simulation model.

DelayChannel has two parameters:

e delay is a double parameter which represents the propagation delay of the message.
Values need to be specified together with a time unit (s, ms, us, etc.)

e disabled is a boolean parameter that defaults to false; when set to true, the channel
object will drop all messages.

DatarateChannel has a few additional parameters compared to DelayChannel:

e datarate is a double parameter that represents the data rate of the channel. Values
need to be specified in bits per second or its multiples as unit (bps, kbps, Mbps, Gbps,
etc.) Zero is treated specially and results in zero transmission duration, i.e. it stands
for infinite bandwidth. Zero is also the default. Data rate is used for calculating the
transmission duration of packets.

e ber and per stand for Bit Error Rate and Packet Error Rate, and allow basic error
modelling. They expect a double in the [0,1] range. When the channel decides (based
on random numbers) that an error occurred during transmission of a packet, it sets an
error flag in the packet object. The receiver module is expected to check the flag, and
discard the packet as corrupted if it is set. The default ber and per are zero.

NOTE: There is no channel parameter that specifies whether the channel delivers the
message object to the destination module at the end or at the start of the reception; that is
decided by the C++ code of the target simple module. See the setDeliverOnReception-
Start () method of cGate.

The following example shows how to create a new channel type by specializing Datarate-
Channel:

channel Ethernetl00 extends ned.DatarateChannel

{

21

OMNeT++ Manual — The NED Language

datarate = 100Mbps;
delay = 100us;
ber = 1e-10;

NOTE: The three built-in channel types are also used for connections where the channel
type is not explicitly specified.

You may add parameters and properties to channels via subclassing, and may modify existing
ones. In the following example, we introduce distance-based calculation of the propagation
delay:

channel DatarateChannel?2 extends ned.DatarateChannel
{

double distance @unit (m);

delay = this.distance / 200000km x 1s;
}

Parameters are primarily useful as input to the underlying C++ class, but even if you reuse
the underlying C++ class of built-in channel types, they may be read and used by other parts
of the model. For example, adding a cost parameter (or @cost property) may be observed by
the routing algorithm and used for routing decisions. The following example shows a cost
parameter, and annotation using a property (@backbone).

channel Backbone extends ned.DatarateChannel
{

@backbone;

double cost = default (1l);

3.6 Parameters

Parameters are variables that belong to a module. Parameters can be used in building the
topology (number of nodes, etc), and to supply input to C++ code that implements simple
modules and channels.

Parameters can be of type double, int, bool, string and xml; they can also be declared
volatile. For the numeric types, a unit of measurement can also be specified (Qunit prop-
erty), to increase type safety.

Parameters can get their value from NED files or from the configuration (omnetpp.ini). A
default value can also be given (default (...)), which is used if the parameter is not assigned
otherwise.

The following example shows a simple module that has five parameters, three of which have
default values:

simple App
{
parameters:
string protocol; // protocol to use: "UDP" / "IP" / "ICMP" / ...
int destAddress; // destination address
volatile double sendInterval @unit (s) = default (exponential(ls));

22

OMNeT++ Manual — The NED Language

// time between generating packets
volatile int packetLength @Qunit (byte) = default (100B);
// length of one packet
volatile int timeTolLive = default (32);
// maximum number of network hops to survive
gates:
input in;
output out;

Assigning a Value

Parameters may get their values in several ways: from NED code, from the configuration
(omnetpp.ini), or even, interactively from the user. NED lets you assign parameters at several
places: in subclasses via inheritance; in submodule and connection definitions where the
NED type is instantiated; and in networks and compound modules that directly or indirectly
contain the corresponding submodule or connection.

For instance, one could specialize the above 2pp module type via inheritance with the following
definition:

simple PingApp extends App
{
parameters:
protocol = "ICMP/ECHO"
sendInterval = default (ls);
packetLength = default (64byte);
}

This definition sets the protocol parameter to a fixed value ("ICMP/ECHO"), and changes
the default values of the sendInterval and packetLength parameters. protocol is now
locked down in PingApp, its value cannot be modified via further subclassing or other ways.
sendInterval and packetLength are still unassigned here, only their default values have
been overwritten.

Now, let us see the definition of a Host compound module that uses PingApp as submodule:

module Host
{
submodules:
ping : PingApp {
packetLength = 128B; // always ping with 128-byte packets
}

}

This definition sets the packetLength parameter to a fixed value. It is now hardcoded that
Hosts send 128-byte ping packets; this setting cannot be changed from NED or the configu-
ration.

It is not only possible to set a parameter from the compound module that contains the sub-
module, but also from modules higher up in the module tree. If you had a network that
employed several Host modules, it could be defined like this:

network Network

23

OMNeT++ Manual — The NED Language

submodules:
host[100]: Host {
ping.timeToLive = default (3);
ping.destAddress = default (0);

}

Parameter assignment can also be placed into the parameters block of the parent compound
module, which provides additional flexibility. The following definition sets up the hosts so
that half of them pings host #50, and the other half pings host #0:

network Network
{
parameters:
host[*] .ping.timeToLive = default (3);
host[0..49] .ping.destAddress = default (50);
host [50..] .ping.destAddress = default (0);

submodules:
host [100]: Host;

}

Note the use of asterisk to match any index, and ‘. .” to match index ranges.

If you had a number of individual hosts instead of a submodule vector, the network definition
could look like this:

network Network
{
parameters:
host*.ping.timeToLive = default (3);
host{0..49}.ping.destAddress = default (50);
host{50..}.ping.destAddress = default (0);

submodules:
host0: Host;
hostl: Host;
host2: Host;

host99: Host;
}

An asterisk matches any substring not containing a dot, and a ‘..’ within a pair of curly
braces matches a natural number embedded in a string.

In most assigments we have seen above, the left hand side of the equal sign contained a dot
and often a wildcard as well (asterisk or numeric range); we call these assignments pattern
assignments or deep assignments.

There is one more wildcard that can be used in pattern assignments, and this is the double
asterisk; it matches any sequence of characters including dots, so it can match multiple path
elements. An example:

24

OMNeT++ Manual — The NED Language

network Network
{
parameters:
*x.timeToLive = default (3);
**.destAddress = default (0);
submodules:
host0: Host;
hostl: Host;

}

Note that some assignments in the above examples changed default values, while others set
parameters to fixed values. Parameters that received no fixed value in the NED files can be
assigned from the configuration (omnetpp.ini).

IMPORTANT: A non-default value assigned from NED cannot be overwritten later in NED
or from ini files; it becomes “hardcoded” as far as ini files and NED usage are concerned.
In contrast, default values are possible to overwrite.

A parameter can be assigned in the configuration using a similar syntax as NED pattern
assignments (actually, it would be more historically accurate to say it the other way round,
that NED pattern assignments use a similar syntax to ini files):

Network.host[+] .ping.sendInterval = 500ms # for the host[100] example
Network.host*.ping.sendInterval = 500ms # for the host0,hostl,... example
*x .sendInterval = 500ms

One often uses the double asterisk to save typing. You can write
*%.ping.sendInterval = 500ms

Or if you are sure that you don’t accidentally assign some other sendInterval parameter,

you can just write

*x.sendInterval = 500ms

Parameter assignments in the configuration are described in section [10.3

One can also write expressions, including stochastic expressions, in NED files and in ini files
as well. For example, here’s how you can add jitter to the sending of ping packets:

*x.sendInterval = 1s + normal (0s, 0.001s) # or just: normal(ls, 0.001s)
If there is no assignment for a parameter in NED or in the ini file, the default value (given
with =default (...) in NED) will be applied implicitly. If there is no default value, the user
will be asked, provided the simulation program is allowed to do that; otherwise there will be

an error. (Interactive mode is typically disabled for batch executions where it would do more
harm than good.)

It is also possible to explicitly apply the default (this can sometimes be useful):

*%x.sendInterval = default

Finally, one can explicitly ask the simulator to prompt the user interactively for the value
(again, provided that interactivity is enabled; otherwise this will result in an error):

*%x.sendInterval = ask

25

OMNeT++ Manual — The NED Language

NOTE: How do you decide whether to assign a parameter from NED or from an ini
file? The advantage of ini files is that they allow a cleaner separation of the model and
experiments. NED files (together with C++ code) are considered to be part of the model,
and to be more or less constant. Ini files, on the other hand, are for experimenting with
the model by running it several times with different parameters. Thus, parameters that
are expected to change (or make sense to be changed) during experimentation should be
put into ini files.

Expressions

Parameter values may be given with expressions. NED language expressions have a C-like
syntax, with some variations on operator names: binary and logical XOR are # and ##, while
~ has been reassigned to power-of instead. The + operator does string concatenation as
well as numeric addition. Expressions can use various numeric, string, stochastic and other
functions (fabs (), toUpper (), uniform(), erlang_k (), etc.).

NOTE: The list of NED functions can be found in Appendix [D| The user can also extend
NED with new functions.

Expressions may refer to module parameters, gate vector and module vector sizes (using the
sizeof operator) and the index of the current module in a submodule vector (index).

Expressions may refer to parameters of the compound module being defined, of the current
module (with the this. prefix), and to parameters of already defined submodules, with the
syniaxsubmodule.parametername(orsubmodule[index].parameternameL

volatile

The volatile modifier causes the parameter’s value expression to be evaluated every time
the parameter is read. This has significance if the expression is not constant, for example it
involves numbers drawn from a random number generator. In contrast, non-volatile param-
eters are evaluated only once. (This practically means that they are evaluated and replaced
with the resulting constant at the start of the simulation.)

To better understand volatile, let’s suppose we have a Queue simple module that has a
volatile double parameter named serviceTime.

simple Queue
{
parameters:
volatile double serviceTime;

}

Because of the volatile modifier, the queue module’s C++ implementation is expected to re-
read the serviceTime parameter whenever a value is needed; that is, for every job serviced.
Thus, if serviceTime is assigned an expression like uniform(0.5s, 1.5s), every job will
have a different, random service time. To highlight this effect, here’s how you can have a
time-varying parameter by exploiting the simTime () NED function that returns the current
simulation time:

*%.serviceTime = simTime ()<1000s ? 1s : 2s # queue that slows down after

In practice, a volatile parameters are typically used as a configurable source of random num-
bers for modules.

26

1000s

OMNeT++ Manual — The NED Language

NOTE: This does not mean that a non-volatile parameter could not be assigned a random
value like uniform(0.5s, 1.5s). It can, but that would have a totally different effect:
the simulation would use a constant service time, say 1.2975367s, chosen randomly at
the beginning of the simulation.

Units

One can declare a parameter to have an associated unit of measurement, by adding the Qunit
property. An example:

simple App
{
parameters:
volatile double sendInterval @unit (s) = default (exponential (350ms));
volatile int packetLength @Qunit (byte) default (4KiB) ;

}

The Qunit (s) and Qunit (byte) declarations specify the measurement unit for the param-
eter. Values assigned to parameters must have the same or compatible unit, i.e. @unit (s)
accepts milliseconds, nanoseconds, minutes, hours, etc., and Qunit (byte) accepts kilobytes,
megabytes, etc. as well.

NOTE: The list of units accepted by OMNeT++ is listed in the Appendix, see
Unknown units (bogomips, etc.) can also be used, but there are no conversions for them,
i.e. decimal prefixes will not be recognized.

The OMNeT++ runtime does a full and rigorous unit check on parameters to ensure “unit
safety” of models. Constants should always include the measurement unit.

The Qunit property of a parameter cannot be added or overridden in subclasses or in sub-
module declarations.

XML Parameters

Sometimes modules need complex data structures as input, which is something that cannot
be done well with module parameters. One solution is to place the input data into a custom
configuration file, pass the file name to the module in a string parameter, and let the module
read and parse the file.

It is somewhat easier if the configuration uses XML syntax, because OMNeT++ contains built-
in support for XML files. Using an XML parser (LibXML2 or Expat), OMNeT++ reads and
DTD-validates the file (if the XML document contains a DOCTYPE), caches the file (so that
references to it from several modules will result in the file being loaded only once), allows
selection of parts of the document using an XPath-subset notation, and presents the contents
in a DOM-like object tree.

This capability can be accessed via the NED parameter type xml, and the xmldoc () function.
You can point xml-type module parameters to a specific XML file (or to an element inside an
XML file) via the xmldoc () function. You can assign xml parameters both from NED and from
omnetpp.ini.

The following example declares an xml parameter, and assigns an XML file to it. The file name
is understood as being relative to the working directory.

27

OMNeT++ Manual — The NED Language

simple TrafGen ({
parameters:
xml profile;
gates:
output out;

module Node ({

submodules:
trafGenl : TrafGen {
profile = xmldoc ("data.xml");

}

It is also possible to assign an XML element within a file to the parameter, which is useful
if you want to group the input of several modules into a single XML file. For example, the
following XML file contains two profiles with the IDs genl and gen2:

<?xml>
<root>
<profile id="genl">
<param>3</param>
<param>5</param>
</profile>
<profile id="gen2">
<param>9</param>
</profile>
</root>

And you can assign each profile to a corresponding submodule using an XPath-like expres-
sion:

module Node {

submodules:
trafGenl : TrafGen {
profile = xmldoc("all.xml", "/root/profile[@id='genl’]");

}
trafGen2 : TrafGen {

profile = xmldoc ("all.xml", "/root/profile[@id="gen2’]1");

}

It is also possible to create an XML document from a string constant, using the xml () func-
tion. This is especially useful for creating a default value for xml parameters. An example:

simple TrafGen {
parameters:

xml profile = xml ("<root/>"); // empty document as default

}

The xml () function, like xmldoc (), also supports an optional second XPath parameter for
selecting a subtree.

28

OMNeT++ Manual — The NED Language

3.7 Gates

Gates are the connection points of modules. OMNeT++ has three types of gates: input, output
and inout, the latter being essentially an input and an output gate glued together.

A gate, whether input or output, can only be connected to one other gate. (For compound
module gates, this means one connection “outside” and one “inside”.) It is possible, though
generally not recommended, to connect the input and output sides of an inout gate separately
(see section [3.9).

One can create single gates and gate vectors. The size of a gate vector can be given inside
square brackets in the declaration, but it is also possible to leave it open by just writing a pair
of empty brackets (“[17).

When the gate vector size is left open, one can still specify it later, when subclassing the
module, or when using the module for a submodule in a compound module. However, it does
not need to be specified because one can create connections with the gate++ operator that
automatically expands the gate vector.

The gate size can be queried from various NED expressions with the sizeof () operator.

NED normally requires that all gates be connected. To relax this requirement, you can anno-
tate selected gates with the @loose property, which turns off the connectivity check for that
gate. Also, input gates that solely exist so that the module can receive messages via send-
Direct () (see should be annotated with @directIn. It is also possible to turn off the
connectivity check for all gates within a compound module by specifying the allowuncon-
nected keyword in the module’s connections section.

Let us see some examples.

In the following example, the Classifier module has one input for receiving jobs, which it
will send to one of the outputs. The number of outputs is determined by a module parameter:

simple Classifier {
parameters:
int numCategories;
gates:
input in;
output out [numCategories];

}

The following Sink module also has its in[] gate defined as a vector, so that it can be con-
nected to several modules:

simple Sink {
gates:
input in[];

}

The following lines define a node for building a square grid. Gates around the edges of the
grid are expected to remain unconnected, hence the @loose annotation:

simple GridNode {
gates:
inout neighbour[4] @loose;

}

WirelessNode below is expected to receive messages (radio transmissions) via direct sending,
so its radioIn gate is marked with @directIn.

29

OMNeT++ Manual — The NED Language

simple WirelessNode {
gates:
input radioIn @directIn;

}

In the following example, we define TreeNode as having gates to connect any number of
children, then subclass it to get a BinaryTreeNode to set the gate size to two:

simple TreeNode {
gates:
inout parent;
inout children(];

}

simple BinaryTreeNode extends TreeNode {
gates:
children[2];
}

An example for setting the gate vector size in a submodule, using the same TreeNode module
type as above:

module BinaryTree {

submodules:
nodes[31]: TreeNode {
gates:
children[2];
}
connections:

3.8 Submodules

Modules that a compound module is composed of are called its submodules. A submodule
has a name, and it is an instance of a compound or simple module type. In the NED definition
of a submodule, this module type is usually given statically, but it is also possible to specify
the type with a string expression. (The latter feature, parametric submodule types, will be

discussed in section |3.11.1})

NED supports submodule arrays (vectors) and conditional submodules as well. Submodule
vector size, unlike gate vector size, must always be specified and cannot be left open as with
gates.

It is possible to add new submodules to an existing compound module via subclassing; this
has been described in the section

The basic syntax of submodules is shown below:

module Node
{

submodules:
routing: Routing; // a submodule
queue [sizeof (port)]: Queue; // submodule vector

30

OMNeT++ Manual — The NED Language

As already seen in previous code examples, a submodule may also have a curly brace block as
body, where one can assign parameters, set the size of gate vectors, and add/modify properties
like the display string (@display). It is not possible to add new parameters and gates.

Display strings specified here will be merged with the display string from the type to get the
effective display string. The merge algorithm is described in chapter[8]

module Node

{

gates:
inout port|[];
submodules:
routing: Routing {
parameters: // this keyword is optional
routingTable = "routingtable.txt"; // assign parameter
gates:
in[sizeof (port)]; // set gate vector size
out [sizeof (port)];
}
queue [sizeof (port)]: Queue {
@display ("t=queue id $id"); // modify display string
id = 1000+index; // use submodule index to generate different IDs
}
connections:

An empty body may be omitted, that is,

queue: Queue;

is the same as

queue: Queue {

}

A submodule or submodule vector can be conditional. The if keyword and the condition itself
goes after the submodule type, like in the example below:

module Host
{
parameters:
bool withTCP = default (true);
submodules:
tcp : TCP if withTCP;

The condition is less useful with submodule vectors, as one could also use a zero vector size.

31

OMNeT++ Manual — The NED Language

3.9 Connections

Connections are defined in the connections section of compound modules. Connections
cannot span across hierarchy levels; one can connect two submodule gates, a submodule
gate and the "inside" of the parent (compound) module’s gates, or two gates of the parent
module (though this is rarely useful), but it is not possible to connect to any gate outside the
parent module, or inside compound submodules.

Input and output gates are connected with a normal arrow, and inout gates with a double-
headed arrow “<-->". To connect the two gates with a channel, use two arrows and put
the channel specification in between. The same syntax is used to add properties such as
@display to the connection.

Some examples have already been shown in the NED Quickstart section (3.2); let's see some
more.

It has been mentioned that an inout gate is basically an input and an output gate glued
together. These sub-gates can also be addressed (and connected) individually if needed, as
port$i and port$o (or for vector gates, as port$i[k] and portSo[k]).

Gates are specified as modulespec.gatespec (to connect a submodule), or as gatespec (to con-
nect the compound module). modulespec is either a submodule name (for scalar submodules),
or a submodule name plus an index in square brackets (for submodule vectors). For scalar
gates, gatespec is the gate name; for gate vectors it is either the gate name plus an index in
square brackets, or gatename++.

The gatename++ notation causes the first unconnected gate index to be used. If all gates of
the given gate vector are connected, the behavior is different for submodules and for the en-
closing compound module. For submodules, the gate vector expands by one. For a compound
module, after the last gate is connected, ++ will stop with an error.

NOTE: Why is it not possible to expand a gate vector of the compound module? The
model structure is built in top-down order, so new gates would be left unconnected on
the outside, as there is no way in NED to "go back" and connect them afterwards.

When the ++ operator is used with $i or $o (e.g. g$i++ or g$o++, see later), it will actually
add a gate pair (input+toutput) to maintain equal gate sizes for the two directions.

Channel Specification

Channel specifications (-->channelspec--> inside a connection) are similar to submodules in
many respect. Let’s see some examples!

The following connections use two user-defined channel types, Ethernet100 and Backbone.
The code shows the syntax for assigning parameters (cost and length) and specifying a
display string (and NED properties in general):

a.gt+ <——> Ethernetl00 <--> b.g++;
a.gt++ <-—> Backbone {cost=100; length=52km; ber=le-8;} <-—-> b.gt+;
a.g+t+ <-—> Backbone {@display ("ls=green,2");} <--> b.g++;

When using built-in channel types, the type name can be omitted; it will be inferred from the
parameters you assign.

a.g++ <-=> {delay=10ms;} <--> b.g++;
a.g+t+ <——> {delay=10ms; ber=le-8;} <-——> b.g++;

32

OMNeT++ Manual — The NED Language

a.gt+ <-—> {@display ("ls=red");} <-—> b.g++;

If datarate, ber or per is assigned, ned.DatarateChannel will be chosen. Otherwise, if de—
lay or disabled is present, it will be ned.DelayChannel; otherwise it is ned.IdealChannel.
Naturally, if other parameter names are assigned in a connection without an explicit channel
type, it will be an error (with “ned.DelayChannel has no such parameter” or similar message).

Connection parameters, similarly to submodule parameters, can also be assigned using pat-
tern assignments, albeit the channel names to be matched with patterns are a little more
complicated and less convenient to use. A channel can be identified with the name of its
source gate plus the channel name; the channel name is currently always channel. It is
illustrated by the following example:

module Queueing

{

parameters:
source.out.channel.delay = 10ms;
queue.out.channel.delay = 20ms;
submodules:

source: Source;
queue: Queue;
sink: Sink;

connections:
source.out —--> ned.DelayChannel --> queue.in;
queue.out —--> ned.DelayChannel <--> sink.in;

Using bidirectional connections is a bit trickier, because both directions must be covered
separately:

network Network

{

parameters:
hostA.g$o[0] .channel.datarate = 100Mbps; // the A -> B connection
hostB.g$o[0] .channel.datarate = 100Mbps; // the B —-> A connection
hostA.g$o[1] .channel.datarate = 1Gbps; // the A —-> C connection
hostC.g$o[0] .channel.datarate = 1Gbps; // the C -> A connection
submodules:

hostA: Host;
hostB: Host;
hostC: Host;
connections:
hostA.g++ <——> ned.DatarateChannel <--> hostB.g++;
hostA.g++ <——> ned.DatarateChannel <--> hostC.g++;

Also, it is not always easy to figure out which gate indices map to the connections you want to
configure. If connection objects could be given names to override the default name “channel”,
that would make it easier to identify connections in patterns. This feature is planned for
future OMNeT++ releases.

Channel Names

The default name given to channel objects is "channel". Since OMNeT++ 4.3 it is possible
to specify the name explicitly, and also to override the default name per channel type. The

33

OMNeT++ Manual — The NED Language

purpose of custom channel names is to make addressing easier when channel parameters are
assigned from ini files.

The syntax for naming a channel in a connection is similar to submodule syntax: name: type.
Since both name and type are optional, the colon must be there after name even if type is
missing, in order to remove the ambiguity.

Examples:

rl.pppg+t+ <-=> ethl: EthernetChannel <--> r2.pppgt+t;
a.out --> foo: {delay=lms;} —--> b.in;
a.out —--> bar: —-—> b.in;

In the absence of an explicit name, the channel name comes from the @defaultname property
of the channel type if that exists.

channel Ethl0G extends ned.DatarateChannel like IEth {
Q@defaultname (ethl0G) ;
}

There’s a catch with @defaultname though: if the channel type is specified with a » » . channel-
name.liketype= line in an ini file, then the channel type’s @defaultname cannot be used as
channelname in that configuration line, because the channel type would only be known as
a result of using that very configuration line. To illustrate the problem, consider the above
Eth10G channel, and a compound module containing the following connection:

rl.pppgtt <-—> <> like IEth <--> r2.pppg++;

Then consider the following inifile:

*%.ethl0G.typename = "Ethl0G" # Won’t match! The ethl0G name would come from
the Ethl0G type - catch-22!
*x.channel.typename = "Ethl0G" # OK, as lookup assumes the name "channel"

*%x.ethl0G.datarate = 10.01Gbps # OK, channel already exists with name "ethl0G"

The anomaly can be avoided by using an explicit channel name in the connection, not using
@defaultname, or by specifying the type via a module parameter (e.g. writing <param> like
. instead of <> like ...).

3.10 Multiple Connections

Simple programming constructs (loop, conditional) allow creating multiple connections easily.

This will be shown in the following examples.

Chain

One can create a chain of modules like this:

module Chain
parameters:
int count;
submodules:
node[count] : Node {
gates:

34

OMNeT++ Manual — The NED Language

port[2];
}
connections allowunconnected:
for i = 0..count-2 {
node[i] .port[1l] <--> node[i+1].port[0];

Binary Tree

One can build a binary tree in the following way:

simple BinaryTreeNode ({
gates:
inout left;
inout right;
inout parent;

module BinaryTree {
parameters:
int height;
submodules:
node[2”height-1]: BinaryTreeNode;
connections allowunconnected:
for i=0..2" (height-1)-2 {
node[i].left <--> node[2xi+1] .parent;
node[i].right <--> node[2xi+2] .parent;

}

Note that not every gate of the modules will be connected. By default, an unconnected gate
produces a run-time error message when the simulation is started, but this error message is
turned off here with the allowunconnected modifier. Consequently, it is the simple modules’
responsibility not to send on an unconnected gate.

Random Graph

Conditional connections can be used to generate random topologies, for example. The follow-
ing code generates a random subgraph of a full graph:

module RandomGraph {
parameters:
int count;
double connectedness; // 0.0<x<1.0
submodules:
node [count]: Node {
gates:
in[count];
out [count];
}

connections allowunconnected:

35

OMNeT++ Manual — The NED Language

for i=0..count-1, for j=0..count-1 {
node[i].out[j] —-—> node[]J].in[1]
if i!=73 && uniform(0,1l)<connectedness;

}

Note the use of the allowunconnected modifier here too, to turn off error messages produced
by the network setup code for unconnected gates.

3.10.1 Connection Patterns

Several approaches can be used when you want to create complex topologies which have a
regular structure; three of them are described below.

“Subgraph of a Full Graph”

This pattern takes a subset of the connections of a full graph. A condition is used to “carve
out” the necessary interconnection from the full graph:

for i=0..N-1, for j=0..N-1 {
node[i].out[...] ——> node[j]l.in[...] if condition (i, Jj);

}

The RandomGraph compound module (presented earlier) is an example of this pattern, but
the pattern can generate any graph where an appropriate condition(i,j) can be formulated.
For example, when generating a tree structure, the condition would return whether node j is
a child of node i or vice versa.

Though this pattern is very general, its usage can be prohibitive if the number of nodes N
is high and the graph is sparse (it has much less than N? connections). The following two
patterns do not suffer from this drawback.

“Connections of Each Node”

The pattern loops through all nodes and creates the necessary connections for each one. It
can be generalized like this:

for i=0..Nnodes, for j=0..Nconns(i)-1 {
node[i].out[j] —-—> node[rightNodeIndex (i, 3)]1.in[7J];
}

The Hypercube compound module (to be presented later) is a clear example of this approach.
BinaryTree can also be regarded as an example of this pattern where the inner j loop is
unrolled.

The applicability of this pattern depends on how easily the right Nodelndex(i, j) function can
be formulated.

“Enumerate All Connections”

A third pattern is to list all connections within a loop:

36

OMNeT++ Manual — The NED Language

for i=0..Nconnections—-1 {
node[leftNodeIndex (i)].out[...] ——> node[rightNodeIndex (i)].in[...];
}

This pattern can be used if left NodelIndex(i) and right NodeIndex(i) mapping functions can be
sufficiently formulated.

The Chain module is an example of this approach where the mapping functions are extremely
simple: leftNodelndex(i) = i and right NodeIndex(i) = i + 1. The pattern can also be used to
create a random subset of a full graph with a fixed number of connections.

In the case of irregular structures where none of the above patterns can be employed, you can
resort to listing all connections, like you would do it in most existing simulators.

3.11 Parametric Submodule and Connection Types

3.11.1 Parametric Submodule Types
A submodule type may be specified with a module parameter of the type string, or in general,
with any string-typed expression. The syntax uses the 1like keyword.

Let us begin with an example:

network Neto6
{

parameters:
string nodeType;
submodules:
node[6]: <nodeType> like INode {
address = index;
}
connections:

}

It creates a submodule vector whose module type will come from the nodeType parameter. For
example, if nodeType is set to "SensorNode", then the module vector will consist of sensor
nodes, provided such module type exists and it qualifies. What this means is that the INode
must be an existing module interface, which the SensorNode module type must implement
(more about this later).

As already mentioned, one can write an expression between the angle brackets. The expres-
sion may use the parameters of the parent module and of previously defined submodules, and
has to yield a string value. For example, the following code is also valid:

network Net6
{
parameters:
string nodeTypePrefix;
int variant;
submodules:
node[6]: <nodeTypePrefix + "Node" + string(variant)> like INode {

37

OMNeT++ Manual — The NED Language

The corresponding NED declarations:

moduleinterface INode
{
parameters:
int address;
gates:
inout port|[];

}

module SensorNode like INode
{
parameters:
int address;

gates:
inout port|[];

}

The “<nodeType> like INode” syntax has an issue when used with submodule vectors: does
not allow you to specify different types for different indices. The following syntax is better
suited for submodule vectors:

The expression between the angle brackets may be left out altogether, leaving you with a pair
of empty angle brackets, <>:

module Node
{
submodules:
nic: <> like INic; // type name expression left unspecified

}

Now the submodule type name is expected to be defined via typename pattern assignments.
Typename pattern assignments look like pattern assignments for the submodule’s param-
eters, only the parameter name is replaced by the typename keyword. Typename pattern
assignments may also be written in the configuration file. In a network that uses the above
Node NED type, typename pattern assignments would look like this:

network Network
{
parameters:
node[*].nic.typename = "Ieee80211g";
submodules:
node: Node[100];
}

A default value may also be specified between the angle brackets; it will be used if there is no
typename assignment for the module:

module Node
{

submodules:
nic: <default ("Ieee80211b")> like INic;

38

OMNeT++ Manual — The NED Language

3.11.2 Parametric Connection Types
Parametric connection types work similarly to parametric submodule types, and the syntax is
similar as well. A basic example that uses a parameter of the parent module:

a.gt+ <—-—> <channelType> like IMyChannel <--> b.g++;

a.gt+ <——> <channelType> like IMyChannel {@display("ls=red");} <-——> b.gt+;
The expression may use loop variables, parameters of the parent module and also parameters
of submodules (e.g. host [2] .channelType).

The type expression may also be absent, and then the type is expected to be specified using
typename pattern assignments:

a.gt++ <-—> <> like IMyChannel <--> b.g++;
a.gt+ <-—> <> like IMyChannel {@display("ls=red");} <--> b.gt++;
A default value may also be given:

a.gt+ <-—> <default ("Ethernetl100")> like IMyChannel <--> b.g++;
a.gt++ <——> <default (channelType)> like IMyChannel <--> b.g++;

The corresponding type pattern assignments:

a.g$o[0] .channel.typename "Ethernet1000"; // A -> B channel
b.g$o[0] .channel.typename = "Ethernetl1000"; // B -> A channel

3.12 Metadata Annotations (Properties)

NED properties are metadata annotations that can be added to modules, parameters, gates,
connections, NED files, packages, and virtually anything in NED. @display, @class, @names—
pace, Qunit, @prompt, @loose, @directIn are all properties that have been mentioned in
previous sections, but those examples only scratch the surface of what properties are used
for.

Using properties, one can attach extra information to NED elements. Some properties are
interpreted by NED, by the simulation kernel; other properties may be read and used from
within the simulation model, or provide hints for NED editing tools.

Properties are attached to the type, so you cannot have different properties defined per-
instance. All instances of modules, connections, parameters, etc. created from any particular
location in the NED files have identical properties.

The following example shows the syntax for annotating various NED elements:

@namespace (foo); // file property

module Example
{
parameters:
@node; // module property

39

OMNeT++ Manual — The NED Language

@display ("i=device/pc"); // module property

int a Qunit(s) = default(l); // parameter property
gates:
output out @loose Qlabels(pk); // gate properties
submodules:
src: Source {
parameters:
@display ("p=150,100"); // submodule property
count @prompt ("Enter count:"); // adding a property to a parameter
gates:

out[] @loose; // adding a property to a gate

connections:

src.out++ —--> { @display("ls=green,2"); } ——> sinkl.in; // connection prop.
src.out++ —--> Channel { @display("ls=green,2"); } —-—> sink2.in;

Property Indices

Sometimes it is useful to have multiple properties with the same name, for example for declar-
ing multiple statistics produced by a simple module. Property indices make this possible.

A property index is an identifier or a number in square brackets after the property name, such
as eed and jitter in the following example:

simple App {
@statistic[eed] (title="end-to-end delay of received packets";unit=s);
@statistic[jitter] (title="jitter of received packets");

}

This example declares two statistics as @statistic properties, @statistic[eed] and @statis-
tic[jitter]. Property values within the parentheses are used to supply additional info, like

a more descriptive name (title="..." or a unit (unit=s). Property indices can be conve-
niently accessed from the C++ API as well; for example it is possible to ask what indices exist
for the "statistic" property, and it will return a list containing "eed" and "jitter").

In the @statistic example the index was textual and meaningful, but neither is actually
required. The following dummy example shows the use of numeric indices which may be
ignored altogether by the code that interprets the properties:

simple Dummy {
@foo[1l] (what="apples";amount=2);
@foo[2] (what="oranges"; amount=5) ;

}
Note that without the index, the lines would actually define the same @foo property, and
would overwrite each other’s values.
Indices also make it possible to override entries via inheritance:

simple DummyExt extends Dummy {

@foo[2] (what="grapefruits"); // 5 grapefruits instead of 5 oranges
}

40

OMNeT++ Manual — The NED Language

Data Model

Properties may contain data, given in parentheses; the data model is quite flexible. To begin
with, properties may contain no value or a single value:

@node;
@node (); // same as @node
@class (FtpApp2) ;

Properties may contain lists:

@foo (Sneezy, Sleepy, Dopey, Doc, Happy, Bashful, Grumpy) ;

They may contain key-value pairs, separated by semicolons:

@foo(x=10.31; y=30.2; unit=km);

In key-value pairs, each value can be a (comma-separated) list:

@Qfoo (coords=47.549,19.034; labels=vehicle, router,critical);

The above examples are special cases of the general data model. According to the data model,
properties contain key-valuelist pairs, separated by semicolons. Items in valuelist are sepa-
rated by commas. Wherever key is missing, values go on the valuelist of the default key, the
empty string.

Value items may contain words, numbers, string constants and some other characters, but
not arbitrary strings. Whenever the syntax does not permit some value, it should be enclosed
in quotes. This quoting does not affect the value because the parser automatically drops one
layer of quotes; thus, @class (TCP) and Qclass ("ICP") are exactly the same. If you want the
quotes to be part of the value, use escaped quotes: @foo ("\"some string\"").

There are also some conventions. One can use properties to tag NED elements; for example,
a @Qhost property could be used to mark all module types that represent various hosts. This
property could be recognized e.g. by editing tools, by topology discovery code inside the
simulation model, etc.

The convention for such a “marker” property is that any extra data in it (i.e. within parens)
is ignored, except a single word false, which has the special meaning of “turning off” the
property. Thus, any simulation model or tool that interprets properties should handle all
the following forms as equivalent to @host: @host (), @host (true), Qhost (anything-but-
false), @host (a=1;b=2); and @host (false) should be interpreted as the lack of the @host
tag.

Overriding and Extending Property Values

When you subclass a NED type, use a module type as submodule or use a channel type for a
connection, you may add new properties to the module or channel, or to its parameters and
gates, and you can also modify existing properties.

When modifying a property, the new property is merged with the old one, with a few simple
rules. New keys simply get added. If a key already exists in the old property, items in its
valuelist overwrite items on the same position in the old property. A single hyphen (—) as
valuelist item serves as “antivalue”, it removes the item at the corresponding position.

Some examples:

41

OMNeT++ Manual — The NED Language

base @prop
new @prop (a)

result Qprop (a)

base @prop(a, b, c)
new @prop (,)
result Qprop(a,,c)

base @prop (foo=a,b)
new @prop (foo=A,,c;bar=1,2)
result Qprop (foo=A,b,c;bar=1,2)

NOTE: The above merge rules are part of NED, but the code that interprets properties
may have special rules for certain properties. For example, the @unit property of pa-
rameters is not allowed to be overridden, and @display is merged with special although
similar rules (see Chapter[§).

3.13 Inheritance

Inheritance support in the NED language is only described briefly here, because several details
and examples have been already presented in previous sections.

In NED, a type may only extend (extends keyword) an element of the same component type:
a simple module may only extend a simple module, compound module may only extend a
compound module, and so on. Single inheritance is supported for modules and channels, and
multiple inheritance is supported for module interfaces and channel interfaces. A network is
a shorthand for a compound module with the @isNetwork property set, so the same rules
apply to it as to compound modules.

However, a simple or compound module type may implement (1ike keyword) several module
interfaces; likewise, a channel type may implement several channel interfaces.

IMPORTANT: When you extend a simple module type both in NED and in C++, you
must use the @class property to tell NED to use the new C++ class — otherwise your new
module type inherits the C++ class of the base!

Inheritance may:

e add new properties, parameters, gates, inner types, submodules, connections, as long
as names do not conflict with inherited names

e modify inherited properties, and properties of inherited parameters and gates

¢ it may not modify inherited submodules, connections and inner types

For details and examples, see the corresponding sections of this chapter (simple modules
compound modules channels [3.5 parameters [3.6] gates submodules [3.8, connec-
tions [3.9], module interfaces and channel interfaces|3.11.1).

3.14 Packages

Having all NED files in a single directory is fine for small simulation projects. When a project
grows, however, it sooner or later becomes necessary to introduce a directory structure, and

42

OMNeT++ Manual — The NED Language

sort the NED files into them. NED natively supports directory trees with NED files, and calls
directories packages. Packages are also useful for reducing name conflicts, because names
can be qualified with the package name.

NOTE: NED packages are based on the Java package concept, with minor enhance-
ments. If you are familiar with Java, you’ll find little surprise in this section.

Overview

When a simulation is run, you must tell the simulation kernel the directory which is the root
of your package tree; let’s call it NED source folder. The simulation kernel will traverse the
whole directory tree, and load all NED files from every directory. You can have several NED
directory trees, and their roots (the NED source folders) should be given to the simulation ker-
nel in the NEDPATH variable. NEDPATH can be specified in several ways: as an environment
variable (NEDPATH), as a configuration option (ned-path), or as a command-line option to the
simulation runtime (-n). NEDPATH is described in detail in chapter

Directories in a NED source tree correspond to packages. If you have NED files in a <root>/a/b/c
directory (where <root> gets listed in NEDPATH), then the package name is a.b.c. The pack-
age name has to be explicitly declared at the top of the NED files as well, like this:

package a.b.c;

The package name that follows from the directory name and the declared package must
match; it is an error if they don’t. (The only exception is the root package.ned file, as de-
scribed below.)

By convention, package names are all lowercase, and begin with either the project name
(myproject), or the reversed domain name plus the project name (org.example.myproject).
The latter convention would cause the directory tree to begin with a few levels of empty direc-
tories, but this can be eliminated with a toplevel package.ned.

NED files called package.ned have a special role, as they are meant to represent the whole
package. For example, comments in package.ned are treated as documentation of the pack-
age. Also, a @namespace property in a package.ned file affects all NED files in that directory
and all directories below.

The toplevel package.ned file can be used to designate the root package, which is useful
for eliminating a few levels of empty directories resulting from the package naming conven-
tion. For example, if you have a project where you want to have all NED types under the
org.example.myproject package but don’'t want to have the directories named org, exam-
ple and myproject in the source tree, then you can put a package.ned file in the source root
directory with the package declaration org.example.myproject. This will cause a directory
foo under the root to be interpreted as package org.example.myproject.foo, and NED files
in them must contain that as package declaration. Only the root package.ned can define the
package, package.ned files in subdirectories must follow it.

Let’s look at the INET Framework as example, which contains hundreds of NED files in several
dozen packages. The directory structure looks like this:

INET/
src/
base/
transport/
tcp/

43

OMNeT++ Manual — The NED Language

udp/

networklayer/

linklayer/
examples/

adhoc/

ethernet/

The src and examples subdirectories are denoted as NED source folders, so NEDPATH is the
following (provided INET was unpacked in /home/ joe):

/home/ joe/INET/src; /home/joe/INET/examples

Both src and examples contain package.ned files to define the root package:

// INET/src/package.ned:
package inet;

// INET/examples/package.ned:
package inet.examples;

And other NED files follow the package defined in package.ned:

// INET/src/transport/tcp/TCP.ned:
package inet.transport.tcp;

Name Resolution, Imports

We already mentioned that packages can be used to distinguish similarly named NED types.
The name that includes the package name (a.b.c.Queue for a Queue module in the a.b.c
package) is called fully qualified name; without the package name (Queue) it is called simple
name.

Simple names alone are not enough to unambiguously identify a type. Here is how you can
refer to an existing type:

1. By fully qualified name. This is often cumbersome though, as names tend to be too long;
2. Import the type, then the simple name will be enough:;

3. If the type is in the same package, then it doesn’t need to be imported; it can be referred
to by simple name

Types can be imported with the import keyword by either fully qualified name, or by a wild-
card pattern. In wildcard patterns, one asterisk ("+") stands for "any character sequence not
containing period", and two asterisks (" +") mean "any character sequence which may contain
period".

So, any of the following lines can be used to import a type called inet.protocols.net-
worklayer.ip.RoutingTable:

44

OMNeT++ Manual — The NED Language

import inet.protocols.networklayer.ip.RoutingTable;
import inet.protocols.networklayer.ip.x;

import inet.protocols.networklayer.ip.RoxTax;
import inet.protocols.x*.ip.x*;

import inet.xx.RoutingTable;

If an import explicitly names a type with its exact fully qualified name, then that type must
exist, otherwise it is an error. Imports containing wildcards are more permissive, it is allowed
for them not to match any existing NED type (although that might generate a warning.)

Inner types may not be referred to outside their enclosing types, so they cannot be imported
either.

Name Resolution With "like"

The situation is a little different for submodule and connection channel specifications using
the like keyword, when the type name comes from a string-valued expression (see section
about submodule and channel types as parameters). Imports are not much use here:
at the time of writing the NED file it is not yet known what NED types will be suitable for being
"plugged in" there, so they cannot be imported in advance.

There is no problem with fully qualified names, but simple names need to be resolved differ-
ently. What NED does is this: it determines which interface the module or channel type must
implement (i.e. ... 1like INode), and then collects the types that have the given simple
name AND implement the given interface. There must be exactly one such type, which is then
used. If there is none or there are more than one, it will be reported as an error.

Let us see the following example:

module MobileHost
{
parameters:
string mobilityType;
submodules:
mobility: <mobilityType> like IMobility;

}

and suppose that the following modules implement the IMobility module interface: inet .mo-
bility.RandomWalk, inet.adhoc.RandomWalk, inet.mobility.MassMobility. Also sup-
pose that there is a type called inet.examples.adhoc.MassMobility but it does not imple-
ment the interface.

So if mobilityType="MassMobility", then inet.mobility.MassMobility will be selected;
the other MassMobility doesn’t interfere. However, if mobilityType="RandomWalk", then it
is an error because there are two matching RandomWalk types. Both RandomWalk’s can still be
used, but one must explicitly choose one of them by providing a package name: mobility—
Type="inet.adhoc.RandomWalk".

The Default Package

It is not mandatory to make use of packages: if all NED files are in a single directory listed on
the NEDPATH, then package declarations (and imports) can be omitted. Those files are said
to be in the default package.

45

OMNeT++ Manual — The NED Language

46

OMNeT++ Manual — Simple Modules

Chapter 4

Simple Modules

Simple modules are the active components in the model. Simple modules are programmed in
C++, using the OMNeT++ class library. The following sections contain a short introduction to
discrete event simulation in general, explain how its concepts are implemented in OMNeT++,
and give an overview and practical advice on how to design and code simple modules.

4.1 Simulation Concepts

This section contains a very brief introduction into how discrete event simulation (DES) works,
in order to introduce terms we’ll use when explaining OMNeT++ concepts and implementation.

4.1.1 Discrete Event Simulation

A discrete event system is a system where state changes (events) happen at discrete instances
in time, and events take zero time to happen. It is assumed that nothing (i.e. nothing inter-
esting) happens between two consecutive events, that is, no state change takes place in the
system between the events. This is in contrast to continuous systems where state changes
are continuous. Systems that can be viewed as discrete event systems can be modeled using
discrete event simulation, DES.

For example, computer networks are usually viewed as discrete event systems. Some of the
events are:

e start of a packet transmission
e end of a packet transmission

e expiry of a retransmission timeout

This implies that between two events such as start of a packet transmission and end of a
packet transmission, nothing interesting happens. That is, the packet’s state remains being
transmitted. Note that the definition of “interesting” events and states always depends on the
intent and purposes of the modeler. If we were interested in the transmission of individual bits,
we would have included something like start of bit transmission and end of bit transmission
among our events.

47

OMNeT++ Manual — Simple Modules

The time when events occur is often called event timestamp; with OMNeT++ we use the term
arrival time (because in the class library, the word “timestamp” is reserved for a user-settable
attribute in the event class). Time within the model is often called simulation time, model time
or virtual time as opposed to real time or CPU time which refer to how long the simulation
program has been running and how much CPU time it has consumed.

4.1.2 The Event Loop

Discrete event simulation maintains the set of future events in a data structure often called
FES (Future Event Set) or FEL (Future Event List). Such simulators usually work according
to the following pseudocode:

initialize -- this includes building the model and
inserting initial events to FES

while (FES not empty and simulation not yet complete)
{

retrieve first event from FES

t:= timestamp of this event

process event

(processing may insert new events in FES or delete existing ones)
}

finish simulation (write statistical results, etc.)

The initialization step usually builds the data structures representing the simulation model,
calls any user-defined initialization code, and inserts initial events into the FES to ensure that
the simulation can start. Initialization strategies can differ considerably from one simulator
to another.

The subsequent loop consumes events from the FES and processes them. Events are pro-
cessed in strict timestamp order to maintain causality, that is, to ensure that no current
event may have an effect on earlier events.

Processing an event involves calls to user-supplied code. For example, using the computer
network simulation example, processing a “timeout expired” event may consist of re-sending
a copy of the network packet, updating the retry count, scheduling another “timeout” event,
and so on. The user code may also remove events from the FES, for example when canceling
timeouts.

The simulation stops when there are no events left (this rarely happens in practice), or when
it isn’t necessary for the simulation to run further because the model time or the CPU time
has reached a given limit, or because the statistics have reached the desired accuracy. At
this time, before the program exits, the user will typically want to record statistics into output
files.

4.1.3 Events and Event Execution Order in OMNeT++

OMNeT++ uses messages to represent events. Each event is represented by an instance of
the cMessage class or one its subclasses; there is no separate event class. Messages are sent
from one module to another - this means that the place where the “event will occur” is the
message’s destination module, and the model time when the event occurs is the arrival time of
the message. Events like “timeout expired” are implemented by the module sending a message
to itself.

48

OMNeT++ Manual — Simple Modules

Events are consumed from the FES in arrival time order, to maintain causality. More precisely,
given two messages, the following rules apply:

1. the message with the earlier arrival time is executed first. If arrival times are equal,

2. the one with the smaller scheduling priority value is executed first. If priorities are the
same,

3. the one scheduled or sent earlier is executed first.

Scheduling priority is a user-assigned integer attribute of messages.

4.1.4 Simulation Time

The current simulation time can be obtained with the simTime () function.

Simulation time in OMNeT++ is represented by the C++ type simtime_t, which is by default a
typedef to the SimTime class. SimTime class stores simulation time in a 64-bit integer, using
decimal fixed-point representation. The resolution is controlled by the scale exponent global
configuration variable; that is, SimTime instances have the same resolution. The exponent
can be between chosen between -18 (attosecond resolution) and O (seconds). Some exponents
with the ranges they provide are shown in the following table.

Exponent | Resolution | Approx. Range
-18 | 107 18s (1as) +9.22s
-15 | 10~ %s (1fs) | £153.72 minutes
-12 | 1072s (1ps) +106.75 days
-9 | 1079s (1ns) +292.27 years
-6 | 107 5s (1us) +292271 years
-3 | 1073s (1ms) | +£2.9227¢8 years
0 1s | £2.9227ell years

Note that although simulation time cannot be negative, it is still useful to be able to represent
negative numbers, because they often arise during the evaluation of arithmetic expressions.

The simTime class performs additions and subtractions as 64-bit integer operations. Integer
overflows are checked, and will cause the simulation to stop with an error message. Other
operations (multiplication, division, etc) are performed in double, then converted back to
integer.

There is no implicit conversion from SimTime to double, mostly because it would conflict with
overloaded arithmetic operations of SimTime; use the dbl () method of Simtime to convert.
To reduce the need for dbl (), several functions and methods have overloaded variants that
directly accept SimTime, for example fabs (), fmod (), ceil (), £loor (), uniform(), expo-
nential (), and normal ().

NOTE: Converting a SimTime to double may lose precision, because double only has a
52-bit mantissa.

Other useful methods of SimTime include str (), which returns the value as a string; parse (),
which converts a string to SimTime; raw (), which returns the underlying int 64 value; getScale-
Exp (), which returns the global scale exponent; and getMaxTime, which returns the maxi-
mum simulation time that can be represented at the current scale exponent.

49

OMNeT++ Manual — Simple Modules

Compatibility

Earlier versions of OMNeT++ used double for simulation time. To facilitate porting existing
models to OMNeT++ 4.0 or later, OMNeT++ can be compiled to use double for simtime_t.
To enable this mode, define the USE_DOUBLE_SIMTIME preprocessor macro during compiling
OMNeT++ and the simulation models.

There are several macros that can be used in simulation models to make them compile with
both double and SimTime simulation time: SIMTIME_STR () converts simulation time to a
const char x (can be used in printf argument lists); SIMTIME_DBL (t) converts simulation
time to double; SIMTIME_RAW (t) returns the underlying int64 or double; STR_SIMTIME (s)
converts string to simulation time; and SIMTIME_TTOA (buf,t) converts simulation time to
string, and places the result into the given buffer. MAXTIME is also defined correctly for both
simtime_t types.

NOTE: Why did OMNeT++ switch to int64-based simulation time? double’s mantissa
is only 52 bits long, and this caused problems in long simulations that relied on fine-
grained timing, for example MAC protocols. Other problems were the accumulation of
rounding errors, and non-associativity (often (z +y) + z # = + (y + 2), see [Gol91]) which
meant that two double simulation times could not be reliably compared for equality.

4.1.5 FES Implementation

The implementation of the FES is a crucial factor in the performance of a discrete event
simulator. In OMNeT++, the FES is implemented with binary heap, the most widely used data
structure for this purpose. Heap is generally considered the best algorithm, although exotic
data structures like skiplist may perform better than heap in some cases. In case you are
interested, the FES implementation is in the cMessageHeap class, but knowledge of the FES
implementation is not necessary for the typical simulation programmer.

4.2 Components, Simple Modules, Channels

OMNeT++ simulation models are composed of modules and connections. Modules may be
simple (atomic) modules or compound modules; simple modules are the active components
in a model, and their behaviour is defined by the user as C++ code. Connections may have
associated channel objects. Channel objects encapsulate channel behavior: propagation and
transmission time modeling, error modeling, and possibly others. Channels are also pro-
grammable in C++ by the user.

Modules and channels are represented with the cModule and cChannel classes, respectively.
cModule and cChannel are both derived from the cComponent class.

The user defines simple module types by subclassing cSimpleModule. Compound modules
are instantiated with cModule, although the user can override it with @class in the NED file,
and can even use a simple module C++ class (i.e. one derived from cSimpleModule) for a
compound module.

The cChannel’s subclasses include the three built-in channel types: cIdealChannel, cDe-
layChannel and cDatarateChannel. The user can create new channel types by subclassing
cChannel or any other channel class.

The following inheritance diagram illustrates the relationship of the classes mentioned above.

50

OMNeT++ Manual — Simple Modules

cObject

cComponent

cModule cChannel

/ i

cSimpleModule cIdealChannel cDelayChannel cDatarateChannel

Figure 4.1: Inheritance of component, module and channel classes

Simple modules and channels can be programmed by redefining certain member functions,
and providing your own code in them. Some of those member functions are declared on
cComponent, the common base class of channels and modules.

cComponent has the following member functions meant for redefining in subclasses:

e initialize (). This method is invoked after OMNeT++ has set up the network (i.e.
created modules and connected them according to the definitions), and provides a place
for initialization code;

e finish() is called when the simulation has terminated successfully, and its recom-
mended use is the recording of summary statistics.

initialize () and finish (), together with initialize ()’s variants for multi-stage initial-
ization, will be covered in detail in section

In OMNeT++, events occur inside simple modules. Simple modules encapsulate C++ code that
generates events and reacts to events, in other words, implements the behaviour of the model.

To define the dynamic behavior of a simple module, you need to redefine one of the following
member functions:

e handleMessage (cMessage xmsg). It is invoked with the message as parameter when-
ever the module receives a message. handleMessage () is expected to process the mes-
sage, and then return. Simulation time never elapses inside handleMessage () calls,
only between them.

e activity () is started as a coroutineE] at the beginning of the simulation, and it runs
until the end of simulation (or until the function returns or otherwise terminates). Mes-
sages are obtained with receive () calls. Simulation time elapses inside receive ()
calls.

LCooperatively scheduled thread, explained later.

51

OMNeT++ Manual — Simple Modules

Modules written with activity () and handleMessage () can be freely mixed within a simu-
lation model. Generally, handleMessage () should be preferred to activity (), due to scal-
ability and other practical reasons. The two functions will be described in detail in sections
[4.4.1)and [4.4.2] including their advantages and disadvantages.

The behavior of channels can also be modified by redefining member functions. However, the
channel API is slightly more complicated than that of simple modules, so we’ll describe it in a
later section (4.8).

4.3 Defining Simple Module Types

4.3.1 Overview

As mentioned before, a simple module is nothing more than a C++ class which has to be
subclassed from cSimpleModule, with one or more virtual member functions redefined to
define its behavior.

The class has to be registered with OMNeT++ via the Define_Module () macro. The De-
fine_Module () line should always be put into .cc or .cpp files and not header file (.h),
because the compiler generates code from it.

The following HelloModule is about the simplest simple module one could write. (We could
have left out the initialize () method as well to make it even smaller, but how would it say
Hello then?) Note cSimpleModule as base class, and the Define_Module () line.

// file: HelloModule.cc
#include <omnetpp.h>

class HelloModule : public cSimpleModule
{
protected:
virtual void initialize();
virtual void handleMessage (cMessage *msqg);
}i

// register module class with OMNeT++
Define_Module (HelloModule) ;

void HelloModule::initialize ()

{

ev << "Hello World!\n";

}

void HelloModule::handleMessage (cMessage »*msq)
{
delete msg; // just discard everything we receive

}

In order to be able to refer to this simple module type in NED files, we also need an associated
NED declaration which might look like this:

// file: HelloModule.ned
simple HelloModule
{

52

OMNeT++ Manual — Simple Modules

gates:
input in;

4.3.2 Constructor

Simple modules are never instantiated by the user directly, but rather by the simulation
kernel. This implies that one cannot write arbitrary constructors: the signature must be what
is expected by the simulation kernel. Luckily, this contract is very simple: the constructor
must be public, and must take no arguments:

public:
HelloModule(); // constructor takes no arguments

cSimpleModule itself has two constructors:

1. cSimpleModule () —one without arguments

2. cSimpleModule (size_t stacksize) — one that accepts the coroutine stack size

The first version should be used with handleMessage () simple modules, and the second one
with activity () modules. (With the latter, the activity () method of the module class runs
as a coroutine which needs a separate CPU stack, usually of 16..32K. This will be discussed in
detail later.) Passing zero stack size to the latter constructor also selects handleMessage ().

Thus, the following constructor definitions are all OK, and select handleMessage () to be used
with the module:

HelloModule: :HelloModule () {...}
HelloModule: :HelloModule () : cSimpleModule() {...}

It is also OK to omit the constructor altogether, because the compiler-generated one is suitable
too.

The following constructor definition selects activity () to be used with the module, with 16K
of coroutine stack:

HelloModule: :HelloModule () : cSimpleModule (16384) {...}

NOTE: The Module_ Class_Members () macro, already deprecated in OMNeT++ 3.2, has
been removed in the 4.0 version. When porting older simulation models, occurrences of
this macro can simply be removed from the source code.

4.3.3 Initialization and Finalization
Basic Usage

The initialize () and finish () methods are declared as part of cComponent, and provide
the user the opportunity of running code at the beginning and at successful termination of
the simulation.

The reason initialize () exists is that usually you cannot put simulation-related code into
the simple module constructor, because the simulation model is still being setup when the

53

OMNeT++ Manual — Simple Modules

constructor runs, and many required objects are not yet available. In contrast, initialize ()
is called just before the simulation starts executing, when everything else has been set up
already.

finish () is for recording statistics, and it only gets called when the simulation has termi-
nated normally. It does not get called when the simulations stops with an error message. The
destructor always gets called at the end, no matter how the simulation stopped, but at that
time it is fair to assume that the simulation model has been halfway demolished already.

Based on the above considerations, the following usage conventions exist for these four meth-
ods:

Constructor:

Set pointer members of the module class to NULL; postpone all other initialization tasks
to initialize ().

initialize():
Perform all initialization tasks: read module parameters, initialize class variables, allo-

cate dynamic data structures with new; also allocate and initialize self-messages (timers)
if needed.

finish():

Record statistics. Do not delete anything or cancel timers — all cleanup must be done
in the destructor.

Destructor:

Delete everything which was allocated by new and is still held by the module class.
With self-messages (timers), use the cancelAndDelete (msg) function! It is almost al-
ways wrong to just delete a self-message from the destructor, because it might be in the
scheduled events list. The cancelAndDelete (msg) function checks for that first, and
cancels the message before deletion if necessary.

OMNeT++ prints the list of unreleased objects at the end of the simulation. When a simulation
model dumps "undisposed object ...” messages, this indicates that the corresponding module
destructors should be fixed. As a temporary measure, these messages may be hidden by
setting print-undisposed=false in the configuration.

NOTE: The perform-gc configuration option has been removed in OMNeT++ 4.0. Au-
tomatic garbage collection cannot be implemented reliably, due to the limitations of the
C++ language.

Invocation Order

The initialize () functions of the modules are invoked before the first event is processed,
but after the initial events (starter messages) have been placed into the FES by the simulation
kernel.

Both simple and compound modules have initialize () functions. A compound module’s
initialize () function runs before that of its submodules.

The finish () functions are called when the event loop has terminated, and only if it termi-
nated normally.

54

OMNeT++ Manual — Simple Modules

NOTE: finish () is not called if the simulation has terminated with a runtime error.

The calling order for finish () is the reverse of the order of initialize (): first submodules,
then the encompassing compound module.

This is summarized in the following pseudocode:

perform simulation run:
build network
(i.e. the system module and its submodules recursively)

insert starter messages for all submodules using activity()
do callInitialize () on system module

enter event loop // (described earlier)
if (event loop terminated normally) // i.e. no errors

do callFinish () on system module
clean up

callInitialize()
{
call to user-defined initialize () function
if (module is compound)
for (each submodule)
do callInitialize () on submodule

callFinish ()
{
if (module is compound)
for (each submodule)
do callFinish () on submodule
call to user-defined finish () function

Keep in mind that finish() is not always called, so it isn’t a good place for cleanup code
which should run every time the module is deleted. finish () is only a good place for writing
statistics, result post-processing and other operations which are supposed to run only on
successful completion. Cleanup code should go into the destructor.

Multi-Stage Initialization

In simulation models where one-stage initialization provided by initialize () is not suf-
ficient, one can use multi-stage initialization. Modules have two functions which can be
redefined by the user:

void initialize (int stage);
int numInitStages () const;

At the beginning of the simulation, initialize (0) is called for all modules, then initial-
ize (1), initialize(2), etc. You can think of it like initialization takes place in several

2The way you can provide an initialize () function for a compound module is to subclass cModule, and tell
OMNeT++ to use the new class for the compound module. The latter is done by adding the @class (<classname>)
property into the NED declaration.

55

OMNeT++ Manual — Simple Modules

“waves”. For each module, numInitStages () must be redefined to return the number of init
stages required, e.g. for a two-stage init, numInitStages () should return 2, and initial-
ize (int stage) must be implemented to handle the stage=0 and stage=1 cases. E]

The callInitialize () function performs the full multi-stage initialization for that module
and all its submodules.

If you do not redefine the multi-stage initialization functions, the default behavior is single-
stage initialization: the default numInitStages () returns 1, and the default initialize (int
stage) simply calls initialize().

“End-of-Simulation” Event

The task of finish () is implemented in several other simulators by introducing a special
end-of-simulation event. This is not a very good practice because the simulation programmer
has to code the models (often represented as FSMs) so that they can always properly respond
to end-of-simulation events, in whichever state they are. This often makes program code
unnecessarily complicated. For this reason OMNeT++ does not use the end of simulation
event.

This can also be witnessed in the design of the PARSEC simulation language (UCLA). Its pre-
decessor Maisie used end-of-simulation events, but — as documented in the PARSEC manual -
this has led to awkward programming in many cases, so for PARSEC end-of-simulation events
were dropped in favour of finish () (called finalize () in PARSEC).

4.4 Adding Functionality to cSimpleModule

This section discusses cSimpleModule’s four previously mentioned member functions, in-
tended to be redefined by the user: initialize (), handleMessage (), activity () and fin-
ish (). Afifth, less frequently used method, handleParameterChange, is described in section
4.5.5

4.4.1 handleMessage()
Function Called for Each Event

The idea is that at each event (message arrival) we simply call a user-defined function. This
function, handleMessage (cMessage *msg) is a virtual member function of cSimpleModule
which does nothing by default — the user has to redefine it in subclasses and add the message
processing code.

The handleMessage () function will be called for every message that arrives at the module.
The function should process the message and return immediately after that. The simula-
tion time is potentially different in each call. No simulation time elapses within a call to
handleMessage ().

The event loop inside the simulator handles both activity () and handleMessage () simple
modules, and it corresponds to the following pseudocode:

3Note const in the numInitStages () declaration. If you forget it, by C++ rules you create a different function
instead of redefining the existing one in the base class, thus the existing one will remain in effect and return 1.

56

OMNeT++ Manual — Simple Modules

while (FES not empty and simulation not yet complete)
{
retrieve first event from FES
t:= timestamp of this event
m:= module containing this event
if (m works with handleMessage ())
m->handleMessage(event)
else // m works with activity ()
transferTo(m)

Modules with handleMessage () are NOT started automatically: the simulation kernel creates
starter messages only for modules with activity (). This means that you have to schedule
self-messages from the initialize () function if you want a handleMessage () simple mod-
ule to start working “by itself”, without first receiving a message from other modules.

Programming with handleMessage()

To use the handleMessage () mechanism in a simple module, you must specify zero stack
size for the module. This is important, because this tells OMNeT++ that you want to use
handleMessage () and not activity ().

Message/event related functions you can use in handleMessage ():

e send () family of functions — to send messages to other modules
e scheduleAt () — to schedule an event (the module “sends a message to itself”)

e cancelEvent () — to delete an event scheduled with scheduleAt ()

You cannot use the receive () and wait () functions in handleMessage (), because they are
coroutine-based by nature, as explained in the section about activity ().

You have to add data members to the module class for every piece of information you want to
preserve. This information cannot be stored in local variables of handleMessage () because
they are destroyed when the function returns. Also, they cannot be stored in static variables
in the function (or the class), because they would be shared between all instances of the class.

Data members to be added to the module class will typically include things like:

¢ state (e.g. IDLE/BUSY, CONN_DOWN/CONN_ALIVE/...)

e other variables which belong to the state of the module: retry counts, packet queues,
etc.

e values retrieved/computed once and then stored: values of module parameters, gate
indices, routing information, etc.

¢ pointers of message objects created once and then reused for timers, timeouts, etc.

e variables/objects for statistics collection

You can initialize these variables from the initialize () function. The constructor is not
a very good place for this purpose, because it is called in the network setup phase when

57

OMNeT++ Manual — Simple Modules

the model is still under construction, so a lot of information you may want to use is not yet
available.

Another task you have to do in initialize () is to schedule initial event(s) which trigger
the first call(s) to handleMessage (). After the first call, handleMessage () must take care to
schedule further events for itself so that the “chain” is not broken. Scheduling events is not
necessary if your module only has to react to messages coming from other modules.

finish () is normally used to record statistics information accumulated in data members of
the class at the end of the simulation.

Application Area

handleMessage () is in most cases a better choice than activity():

1. When you expect the module to be used in large simulations, involving several thou-
sand modules. In such cases, the module stacks required by activity () would simply
consume too much memory.

2. For modules which maintain little or no state information, such as packet sinks, han-
dleMessage () is more convenient to program.

3. Other good candidates are modules with a large state space and many arbitrary state
transition possibilities (i.e. where there are many possible subsequent states for any
state). Such algorithms are difficult to program with activity (), and better suited for
handleMessage () (see rule of thumb below). This is the case for most communication
protocols.

Example 1: Protocol Models

Models of protocol layers in a communication network tend to have a common structure on a
high level because fundamentally they all have to react to three types of events: to messages
arriving from higher layer protocols (or apps), to messages arriving from lower layer protocols
(from the network), and to various timers and timeouts (that is, self-messages).

This usually results in the following source code pattern:

class FooProtocol : public cSimpleModule

{
protected:
// state variables

/S
virtual void processMsgFromHigherLayer (cMessage xpacket);
virtual void processMsgFromLowerLayer (FooPacket =xpacket);

virtual void processTimer (cMessage *timer);

virtual void initialize();
virtual void handleMessage (cMessage *msqg);
}i

/S

void FooProtocol::handleMessage (cMessage »*msq)

58

OMNeT++ Manual — Simple Modules

if (msg->isSelfMessage())

processTimer (msqg) ;
else if (msg->arrivedOn ("fromNetw"))

processMsgFromLowerLayer (check_and_cast<FooPacket x> (msqg));
else

processMsgFromHigherLayer (msqg) ;

}

The functions processMsgFromHigherLayer (), processMsgFromLowerLayer () and pro-
cessTimer () are then usually split further: there are separate methods to process separate
packet types and separate timers.

Example 2: Simple Traffic Generators and Sinks

The code for simple packet generators and sinks programmed with handleMessage () might
be as simple as the following pseudocode:

PacketGenerator::handleMessage (msqg)
{
create and send out a new packet;
schedule msg again to trigger next call to handleMessage;

PacketSink::handleMessage (msqg)
{

delete msg;
}

Note that PacketGenerator will need to redefine initialize () to create m and schedule the
first event.

The following simple module generates packets with exponential inter-arrival time. (Some
details in the source haven't been discussed yet, but the code is probably understandable
nevertheless.)

class Generator : public cSimpleModule
{
public:
Generator () : cSimpleModule() {}
protected:
virtual void initialize();
virtual void handleMessage (cMessage *msqg);
}i

Define_Module (Generator) ;
void Generator::initialize ()
{

// schedule first sending
scheduleAt (simTime (), new cMessage);

void Generator::handleMessage (cMessage *msg)

59

OMNeT++ Manual — Simple Modules

// generate & send packet

cMessage *pkt = new cMessage;

send (pkt, "out");

// schedule next call
scheduleAt (simTime () +exponential (1.0), msqg);

Example 3: Bursty Traffic Generator

A bit more realistic example is to rewrite our Generator to create packet bursts, each consist-
ing of burstLength packets.

We add some data members to the class:

e burstLength will store the parameter that specifies how many packets a burst must

contain,

e burstCounter will count in how many packets are left to be sent in the current burst.

The code:

class BurstyGenerator : public cSimpleModule

{

}i

protected:

int burstLength;
int burstCounter;

virtual void initialize();
virtual void handleMessage (cMessage =*msq);

Define_Module (BurstyGenerator);

void BurstyGenerator::initialize ()

{

// init parameters and state variables
burstLength = par ("burstLength");
burstCounter = burstLength;

// schedule first packet of first burst
scheduleAt (simTime (), new cMessage);

void BurstyGenerator::handleMessage (cMessage *msqg)

{

// generate & send packet
cMessage *pkt = new cMessage;
send (pkt, "out");
// 1f this was the last packet of the burst
if (——-burstCounter == 0)
{
// schedule next burst
burstCounter = burstLength;

60

OMNeT++ Manual — Simple Modules

scheduleAt (simTime () +exponential (5.0), msqg);

}
else

{
// schedule next sending within burst
scheduleAt (simTime () +exponential (1.0), msqg);

Pros and Cons of Using handleMessage ()
Pros:

e consumes less memory: no separate stack needed for simple modules

e fast: function call is faster than switching between coroutines
Cons:

e local variables cannot be used to store state information

e need to redefine initialize ()

Usually, handleMessage () should be preferred over activity ().

Other Simulators

Many simulation packages use a similar approach, often topped with something like a state
machine (FSM) which hides the underlying function calls. Such systems are:

e OPNET”™ which uses FSM’s designed using a graphical editor;
e NetSim++ clones OPNET’s approach;

e SMURPH (University of Alberta) defines a (somewhat eclectic) language to describe FSMs,
and uses a precompiler to turn it into C++ code;

e Ptolemy (UC Berkeley) uses a similar method.

OMNeT++’s FSM support is described in the next section.

4.4.2 activity()
Process-Style Description

With activity (), you can code the simple module much like you would code an operating
system process or a thread. You can wait for an incoming message (event) at any point of the
code, you can suspend the execution for some time (model time!), etc. When the activity ()
function exits, the module is terminated. (The simulation can continue if there are other
modules which can run.)

The most important functions you can use in activity () are (they will be discussed in detail
later):

61

OMNeT++ Manual — Simple Modules

e receive () — to receive messages (events)
e wait () —to suspend execution for some time (model time)

e send () family of functions — to send messages to other modules

e scheduleAt () — to schedule an event (the module “sends a message to itself”)
e cancelEvent () — to delete an event scheduled with scheduleAt()
e end () — to finish execution of this module (same as exiting the activity () function)

The activity () function normally contains an infinite loop, with at least a wait () or re-
ceive () call in its body.

Application Area

Generally you should prefer handleMessage () to activity (). The main problem with ac-
tivity () is that it doesn’t scale because every module needs a separate coroutine stack. It
has also been observed that activity () does not encourage a good programming style.

There is one scenario where activity ()’s process-style description is convenient: when the
process has many states but transitions are very limited, ie. from any state the process can
only go to one or two other states. For example, this is the case when programming a network
application, which uses a single network connection. The pseudocode of the application which
talks to a transport layer protocol might look like this:

activity()
{
while (true)
{
open connection by sending OPEN command to transport layer
receive reply from transport layer
if (open not successful)
{
wait (some time)
continue // loop back to while ()

while (there is more to do)
{
send data on network connection
if (connection broken)
{
continue outer loop // loop back to outer while()
}
wait (some time)
receive data on network connection
if (connection broken)
{
continue outer loop // loop back to outer while()
}

wait (some time)

62

OMNeT++ Manual — Simple Modules

close connection by sending CLOSE command to transport layer
if (close not successful)
{

// handle error

}

wait (some time)
}

If you have to handle several connections simultaneously, you may dynamically create them
as instances of the simple module above. Dynamic module creation will be discussed later.

There are situations when you certainly do not want to use activity (). If your activity ()
function contains no wait () and it has only one receive () call at the top of an infinite loop,
there is no point in using activity () and the code should be written with handleMessage ().
The body of the infinite loop would then become the body to handleMessage (), state variables
inside activity () would become data members in the module class, and you'd initialize them
in initialize ().

Example:

void Sink::activity ()
{
while (true)
{
msg = receivel();
delete msg;

}

should rather be programmed as:

void Sink::handleMessage (cMessage *msq)
{

delete msg;
}

Activity() Is Run as a Coroutine

activity () is run in a coroutine. Coroutines are similar to threads, but are scheduled
non-preemptively (this is also called cooperative multitasking). From one coroutine you can
switch to another coroutine by a transferTo (otherCoroutine) call. Then this corou-
tine is suspended and otherCoroutine will run. Later, when otherCoroutine does a trans-
ferTo (firstCoroutine) call, execution of the first coroutine will resume from the point of
the transferTo (otherCoroutine) call. The full state of the coroutine, including local vari-
ables are preserved while the thread of execution is in other coroutines. This implies that
each coroutine must have its own processor stack, and transferTo () involves a switch from
one processor stack to another.

Coroutines are at the heart of OMNeT++, and the simulation programmer doesn’t ever need to
call transferTo () or other functions in the coroutine library, nor does he need to care about
the coroutine library implementation. It is important to understand, however, how the event
loop found in discrete event simulators works with coroutines.

When using coroutines, the event loop looks like this (simplified):

63

OMNeT++ Manual — Simple Modules

while (FES not empty and simulation not yet complete)
{

retrieve first event from FES

t:= timestamp of this event

transferTo (module containing the event)

That is, when a module has an event, the simulation kernel transfers the control to the mod-
ule’s coroutine. It is expected that when the module “decides it has finished the processing of
the event”, it will transfer the control back to the simulation kernel by a transferTo (main)
call. Initially, simple modules using activity () are “booted” by events ("starter messages”)
inserted into the FES by the simulation kernel before the start of the simulation.

How does the coroutine know it has “finished processing the event”? The answer: when
it requests another event. The functions which request events from the simulation kernel
are the receive () and wait (), so their implementations contain a transferTo (main) call
somewhere.

Their pseudocode, as implemented in OMNeT++:

receive ()
{
transferTo (main)
retrieve current event
return the event // remember: events = messages

}

wait ()
{
create event e
schedule it at (current sim. time + wait interval)
transferTo (main)
retrieve current event
if (current event is not e) {
error
}
delete e // note: actual impl. reuses events
return

Thus, the receive () and wait () calls are special points in the activity () function, because
they are where

e simulation time elapses in the module, and

e other modules get a chance to execute.

Starter Messages

Modules written with activity () need starter messages to “boot”. These starter messages
are inserted into the FES automatically by OMNeT++ at the beginning of the simulation, even
before the initialize () functions are called.

64

OMNeT++ Manual — Simple Modules

Coroutine Stack Size

The simulation programmer needs to define the processor stack size for coroutines. This
cannot be automated.

16 or 32 kbytes is usually a good choice, but you may need more if the module uses recursive
functions or has local variables, which occupy a lot of stack space. OMNeT++ has a built-in
mechanism that will usually detect if the module stack is too small and overflows. OMNeT++
can also tell you how much stack space a module actually uses, so you can find out if you
overestimated the stack needs.

initialize() and finish() with activity()

Because local variables of activity () are preserved across events, you can store everything
(state information, packet buffers, etc.) in them. Local variables can be initialized at the top
of the activity () function, so there isn’t much need to use initialize ().

You do need finish (), however, if you want to write statistics at the end of the simulation.
Because finish () cannot access the local variables of activity (), you have to put the
variables and objects containing the statistics into the module class. You still don’'t need
initialize () because class members can also be initialized at the top of activity ().

Thus, a typical setup looks like this in pseudocode:

class MySimpleModule. ..
{

variables for statistics collection
activity();
finish();

}i

MySimpleModule: :activity ()

{
declare local vars and initialize them
initialize statistics collection variables

while (true)

{

}
}

MySimpleModule::finish ()

{

record statistics into file

}

Pros and Cons of Using activity ()
Pros:

e initialize () not needed, state can be stored in local variables of activity ()

65

OMNeT++ Manual — Simple Modules

e process-style description is a natural programming model in some cases
Cons:

¢ limited scalability: coroutine stacks can unacceptably increase the memory require-
ments of the simulation program if you have several thousands or ten thousands of
simple modules;

e run-time overhead: switching between coroutines is somewhat slower than a simple
function call

e does not enforce a good programming style: using activity () tends to lead to unreli-
able, spaghetti code

In most cases, cons outweigh pros and it is a better idea to use handleMessage () instead.

Other Simulators
Coroutines are used by a number of other simulation packages:

e All simulation software which inherits from SIMULA (e.g. C++SIM) is based on corou-
tines, although all in all the programming model is quite different.

e The simulation/parallel programming language Maisie and its successor PARSEC (from
UCLA) also use coroutines (although implemented with “normal” preemptive threads).
The philosophy is quite similar to OMNeT++. PARSEC, being “just” a programming lan-
guage, it has a more elegant syntax but far fewer features than OMNeT++.

e Many Java-based simulation libraries are based on Java threads.

4.4.3 How to Avoid Global Variables

If possible, avoid using global variables, including static class members. They are prone
to cause several problems. First, they are not reset to their initial values (to zero) when
you rebuild the simulation in Tkenv, or start another run in Cmdenv. This may produce
surprising results. Second, they prevent you from running your simulation in parallel. When
using parallel simulation, each partition of your model (may) run in a separate process, having
its own copy of the global variables. This is usually not what you want.

The solution is to encapsulate the variables into simple modules as private or protected data
members, and expose them via public methods. Other modules can then call these public
methods to get or set the values. Calling methods of other modules will be discussed in
section Examples of such modules are the Blackboard in the Mobility Framework, and
InterfaceTable and RoutingTable in the INET Framework.

4.4.4 Reusing Module Code via Subclassing
The code of simple modules can be reused via subclassing, and redefining virtual member
functions. An example:

class TransportProtocolExt : public TransportProtocol

{

66

OMNeT++ Manual — Simple Modules

protected:
virtual void recalculateTimeout () ;

}i
Define_Module (TransportProtocolExt) ;

void TransportProtocolExt::recalculateTimeout ()
{

/S
}

The corresponding NED declaration:

simple TransportProtocolExt extends TransportProtocol
{

@class (TransportProtocolExt) ; // Important!
}

NOTE: Note the @class () property, which tells OMNeT++ to use the TransportPro-
tocolExt C++ class for the module type! It is needed because NED inheritance is NED
inheritance only, so without @class () the TransportProtocolExt NED type would in-
herit the C++ class from its base NED type.

4.5 Accessing Module Parameters

Module parameters declared in NED files are represented with the cPar class at runtime, and
be accessed by calling the par () member function of cComponent:

cPar& delayPar = par("delay");

cPar’s value can be read with methods that correspond to the parameter’s NED type: boolvalue (),
longValue (), doubleValue (), stringValue (), stdstringValue (), xmlValue (). There are
also overloaded type cast operators for the corresponding types (bool; integer types including
int, long, etc; double; const char x; cXMLElement «).

long numJobs = par ("numJobs") .longValue () ;
double processingDelay = par ("processingDelay"); // using operator double ()

Note that cPar has two methods for returning a string value: stringvalue (), which returns
const char x, and stdstringValue (), which returns std: :string. For volatile parame-
ters, only stdstringValue () may be used, but otherwise the two are interchangeable.

If you use the par ("foo") parameter in expressions (such as 4xpar ("foo")+2), the C++
compiler may be unable to decide between overloaded operators and report ambiguity. In
that case you have to clarify by adding either an explicit cast ((double)par ("foo") or
(long) par ("foo")) or use the doubleValue () or longValue () methods.

4.5.1 Volatile and Non-Volatile Parameters

A parameter can be declared volatile in the NED file. The volatile modifier indicates that
a parameter is re-read every time a value is needed during simulation. Volatile parameters

67

OMNeT++ Manual — Simple Modules

typically are used for things like random packet generation interval, and are assigned values
like exponential (1.0) (numbers drawn from the exponential distribution with mean 1.0).

In contrast, non-volatile NED parameters are constants, and reading their values multiple
times is guaranteed to yield the same value. When a non-volatile parameter is assigned a
random value like exponential (1.0), it is evaluated once at the beginning of the simulation
and replaced with the result, so all reads will get same (randomly generated) value.

The typical usage for non-volatile parameters is to read them in the initialize () method of
the module class, and store the values in class variables for easy access later:

class Source : public cSimpleModule

{
protected:
long numJobs;
virtual void initialize();

bi

void Source::initialize()

{

numJobs = par ("numJdobs") ;

}

volatile parameters need to be re-read every time the value is needed. For example, a
parameter that represents a random packet generation interval may be used like this:

void Source::handleMessage (cMessage *msg)

{

scheduleAt (simTime () + par("interval") .doubleValue(), timerMsqg);

}

This code looks up the the parameter by name every time. This lookup can be avoided by
storing the parameter object’s pointer in a class variable, resulting in the following code:

class Source : public cSimpleModule

{
protected:
cPar xintervalp;
virtual void initialize();
virtual void handleMessage (cMessage *msqg);

}i
void Source::initialize ()

{

intervalp = &par ("interval");

void Source::handleMessage (cMessage *msg)

{

68

OMNeT++ Manual — Simple Modules

scheduleAt (simTime () + intervalp->doubleValue (), timerMsq);

4.5.2 Changing a Parameter’s Value

Parameter values can be changed from the program, during execution. This is rarely needed,
but may be useful for some scenarios.

NOTE: The parameter’s type cannot be changed at runtime - it must remain the type
declared in the NED file. It is also not possible to add or remove module parameters at
runtime.

The methods to set the parameter value are setBoolValue (), setLongValue (), setString-
Value (), setDoubleValue (), setXMLValue (). There are also overloaded assignment opera-
tors for various types including bool, int, long, double, const char *, and cXMLElement

*.

To allow a module to be notified about parameter changes, override its handleParameter—

Change () method, see[4.5.5

4.5.3 Further cPar Methods

The parameter’s name and type are returned by the getName () and getType () methods. The
latter returns a value from an enum, which can be converted to a readable string with the
getTypeName () static method. The enum values are BOOL, DOUBLE, LONG, STRING and XML;
and since the enum is an inner type, they usually have to be qualified with cpPar: :.

isVolatile () returns whether the parameter was declared volatile in the NED file. isNu-
meric () returns true if the parameter type is double or long.

The str () method returns the parameter’s value in a string form. If the parameter contains
an expression, then the string representation of the expression is returned.

An example usage of the above methods:
int n = getNumParams () ;
for (int i=0; i<n; i++)

{

cPar& p = par(i);

ev << "parameter: " << p.getName () << "\n";

ev << " type:" << cPar::getTypeName (p.getType()) << "\n";
ev << " contains:" << p.str() << "\n";

}

The NED properties of a parameter can be accessed with the getProperties () method
that returns a pointer to the cProperties object that stores the properties of this param-
eter. Specifically, getUnit () returns the unit of measurement associated with the parameter
(Runit property in NED).

Further cPar methods and related classes like cExpression and cDynamicExpression are
used by the NED infrastructure to set up and assign parameters. They are documented in the
API Reference, but they are normally of little interest to users.

69

OMNeT++ Manual — Simple Modules

4.5.4 Emulating Parameter Arrays

As of version 4.2, OMNeT++ does not support parameter arrays, but in practice they can be
emulated using string parameters. One can assign the parameter a string which contains all
values in a textual form (for example, "0 1.234 3.95 5.467"), then parse this string in the
simple module.

The csStringTokenizer class can be quite useful for this purpose. The constructor accepts
a string, which it regards as a sequence of tokens (words) separated by delimiter characters
(by default, spaces). Then you can either enumerate the tokens and process them one by
one (hasMoreTokens (), nextToken ()), or use one of the cStringTokenizer convenience
methods to convert them into a vector of strings (asvector ()), integers (asIntVector ()), or
doubles (asDoubleVector ()).

The latter methods can be used like this:

const char *vstr = par("v").stringValue(); // e.g. "aa bb cc";
std::vector<std::string> v = cStringTokenizer (vstr) .asVector();

and
const char *str = "34 42 13 46 72 41";
std::vector<int> v = cStringTokenizer () .asIntVector();
const char *str = "0.4311 0.7402 0.7134";

std: :vector<double> v = cStringTokenizer () .asDoubleVector();

The following example processes the string by enumerating the tokens:

const char *str = "3.25 1.83 34 X 19.8"; // input

std: :vector<double> result;
cStringTokenizer tokenizer (str);
while (tokenizer.hasMoreTokens ())
{
const char *token = tokenizer.nextToken();
if (strcmp (token, "X")==0)
result.push_back (DEFAULT_VALUE) ;
else
result .push_back (atof (token));

4.5.5 handleParameterChange()

It is possible for modules to be notified when the value of a parameter changes at runtime,
possibly due to another module dynamically changing it. A typical use is to re-read the
changed parameter, and update the module’s state if needed.

To enable notification, redefine the handleParameterChange () method of the module class.
This method will be called back by the simulation kernel when a module parameter changes,
except during initialization of the given module.

70

OMNeT++ Manual — Simple Modules

NOTE: Notifications are disabled during the initialization of the component, because
they would make it very difficult to write components that work reliably under all condi-
tions. handleParameterChange () is usually triggered from another module (it does not
make much sense for a module to change its own parameters), so the relative order of
initialize () and handleParameterChange () would be effectively determined by the
initialization order of modules, which generally cannot be relied upon. After the last stage
of the initialization of the component is finished, handleParameterChange () is called by
the simulation kernel with NULL as a parameter name. This allows the component to
react to parameter changes that occurred during the initialization phase.

The method signature is the following:

void handleParameterChange (const char xparameterName) ;

The following example shows a module that re-reads its serviceTime parameter when its
value changes:

void Queue::handleParameterChange (const char xparname)
{
0)

if (strcmp(parname, "serviceTime")==
"); // refresh data member

serviceTime = par ("serviceTime

}

If your code heavily depends on notifications and you would like to receive notifications during
initialization or finalization as well, one workaround is to explicitly call handleParameter-
Change () from the initialize () or finish () function:

for (int i=0; i<getNumParams (); 1i++)
handleParameterChange (par (i) .getName ()) ;

NOTE: Be extremely careful when changing parameters from inside handleParameter-
Change (), because it is easy to accidentally create an infinite notification loop.

4.6 Accessing Gates and Connections

4.6.1 Gate Objects

Module gates are represented by cGate objects. Gate objects know to which other gates they
are connected, and what are the channel objects associated with the links.

Accessing Gates by Name

The cModule class has a number of member functions that deal with gates. You can look up
a gate by name using the gate () method:

cGate *outGate = gate("out");

This works for input and output gates. However, when a gate was declared inout in NED, it
is actually represented by the simulation kernel with two gates, so the above call would result
in a gate not found error. The gate () method needs to be told whether the input or the output
half of the gate you need. This can be done by appending the "$i" or "$o" to the gate name.
The following example retrieves the two gates for the inout gate "g":

71

OMNeT++ Manual — Simple Modules

cGate *gIn = gate("g$i");
cGate xgOut = gate("g$o");

Another way is to use the gateHalf () function, which takes the inout gate’s name plus either
cGate: :INPUT or cGate: :OUTPUT:

cGate *gIn = gateHalf ("g", cGate::INPUT);
cGate *gOut = gateHalf ("g", cGate::0UTPUT);

These methods throw an error if the gate does not exist, so they cannot be used to determine
whether the module has a particular gate. For that purpose there is a hasGate () method. An
example:

if (hasGate ("optOut"))
send (new cMessage (), "optOut");

A gate can also be identified and looked up by a numeric gate ID. You can get the ID from the
gate itself (getId () method), or from the module by gate name (findGate () method). The
gate () method also has an overloaded variant which returns the gate from the gate ID.

int gateId = gate("in")->getId(); // or:
int gateId = findGate ("in");

As gate IDs are more useful with gate vectors, we’ll cover them in detail in a later section.

Gate Vectors

Gate vectors possess one cGate object per element. To access individual gates in the vector,
you need to call the gate () function with an additional index parameter. The index should be
between zero and size-1. The size of the gate vector can be read with the gatesSize () method.
The following example iterates through all elements in the gate vector:

for (int i=0; i<gateSize("out"); i++) {
cGate xgate = gate("out", 1i);
YO

}

A gate vector cannot have “holes” in it; that is, gate () never returns NULL or throws an error
if the gate vector exists and the index is within bounds.

For inout gates, gateSize () may be called with or without the "$i"/"$o" suffix, and returns
the same number.

The hasGate () method may be used both with and without an index, and they mean two
different things: without an index it tells the existence of a gate vector with the given name,
regardless of its size (it returns true for an existing vector even if its size is currently zero!);
with an index it also examines whether the index is within the bounds.

Gate IDs

A gate can also be accessed by its ID. A very important property of gate IDs is that they are
contiguous within a gate vector, that is, the ID of a gate g[k] can be calculated as the ID of
g[01] plus k. This allows you to efficiently access any gate in a gate vector, because retrieving a
gate by ID is more efficient than by name and index. The index of the first gate can be obtained

72

OMNeT++ Manual — Simple Modules

with gate ("out", 0) ->getId(), but it is better to use a dedicated method, gateBaseId(),
because it also works when the gate vector size is zero.

Two further important properties of gate IDs: they are stable and unique (within the module).
By stable we mean that the ID of a gate never changes; and by unique we not only mean that
at any given time no two gates have the same IDs, but also that IDs of deleted gates do not
get reused later, so gate IDs are unique in the lifetime of a simulation run.

NOTE: OMNeT++ version earlier than 4.0 did not have these guarantees — resizing a gate
vector could cause its ID range to be relocated, if it would have overlapped with the ID
range of other gate vectors. OMNeT++ 4.x solves the same problem by interpreting the
gate ID as a bitfield, basically containing bits that identify the gate name, and other bits
that hold the index. This also means that the theoretical upper limit for a gate size is now
smaller, albeit it is still big enough so that it can be safely ignored for practical purposes.

The following example iterates through a gate vector, using IDs:

int baselId = gateBaseId("out");

int size = gateSize("out");

for (int i=0; i<size; 1i++) {
cGate *gate = gate(baseld + 1i);
VI

Enumerating All Gates

If you need to go through all gates of a module, there are two possibilities. One is invoking
the getGateNames () method that returns the names of all gates and gate vectors the module
has; then you can call isGateVector (name) to determine whether individual names iden-
tify a scalar gate or a gate vector; then gate vectors can be enumerated by index. Also, for
inout gates getGateNames () returns the base name without the "$i"/"$o" suffix, so the
two directions need to be handled separately. The gateType (name) method can be used to
test whether a gate is inout, input or output (it returns cGate: : INOUT, cGate: : INPUT, Or
cGate: :OUTPUT).

Clearly, the above solution can be quite difficult. An alternative is to use the GateIterator
class provided by cModule. It goes like this:

for (cModule::Gatelterator i(this); !di.end(); i++) {
cGate *gate = 1();

}

Where this denotes the module whose gates are being enumerated (it can be replaced by any
cModule x variable).

NOTE: In earlier OMNeT++ versions, gate IDs used to be small integers, so it made sense
to iterate over all gates of a module by enumerating all IDs from zero to a maximum,
skipping the holes (NULLs). This is no longer the case with OMNeT++ 4.0 and later ver-
sions. Moreover, the gate () method now throws an error when called with an invalid ID,
and not just returns NULL.

73

OMNeT++ Manual — Simple Modules

Adding and Deleting Gates

Although rarely needed, it is possible to add and remove gates during simulation. You can
add scalar gates and gate vectors, change the size of gate vectors, and remove scalar gates and
whole gate vectors. It is not possible to remove individual random gates from a gate vector, to
remove one half of an inout gate (e.g. "gate$o"), or to set different gate vector sizes on the
two halves of an inout gate vector.

The cModule methods for adding and removing gates are addGate (name, type, isvector=false)
and deleteGate (name) . Gate vector size can be changed by using setGateSize (name, size).
None of these methods accept "$i" / "so" suffix in gate names.

NOTE: When memory efficiency is of concern, it is useful to know that in OMNeT++ 4.0
and later, a gate vector will consume significantly less memory than the same number of
individual scalar gates.

cGate Methods

The getName () method of cGate returns the name of the gate or gate vector without the index.
If you need a string that contains the gate index as well, getFullName () is what you want. If
you also want to include the hierarchical name of the owner module, call getFullPath ().

The getType () method of cGate returns the gate type, either cGate: : INPUT or cGate: : OUTPUT.
(It cannot return cGate: : INOUT, because an inout gate is represented by a pair of cGates.)

If you have a gate that represents half of an inout gate (that is, getName () returns something
like "gsi" or "g$o"), you can split the name with the getBaseName () and getNameSuffix ()
methods. getBaseName () method returns the name without the $i/$o suffix; and getName-
Suffix () returns just the suffix (including the dollar sign). For normal gates, getBaseName ()
is the same as getName (), and getNameSuffix () returns the empty string.

The isVector (), getIndex (), getVectorSize () speak for themselves; size () is an alias
to getVectorSize (). For non-vector gates, getIndex () returns O and getVectorSize ()
returns 1.

The get1d () method returns the gate ID (not to be confused with the gate index).
The getOwnerModule () method returns the module the gate object belongs to.

To illustrate these methods, we expand the gate iterator example to print some information
about each gate:

for (cModule::Gatelterator i(this); !i.end(); i++) {
cGate *gate = 1i();
ev << gate->getFullName () << ": ";
ev << "id=" << gate->getId() << ", ";
if (!gate->isVector())
ev << "scalar gate, ";

else
ev << "gate " << gate->getIndex()
<< " in vector " << gate->getName ()
<< " of size " << gate->getVectorSize() << ", ";

ev << "type:" << cGate::getTypeName (gate->getType());
ev << "\n";

74

OMNeT++ Manual — Simple Modules

There are further cGate methods to access and manipulate the connection(s) attached to the
gate; they will be covered in the following sections.

4.6.2 Connections

Simple module gates have normally one connection attached. Compound module gates, how-
ever, need to be connected both inside and outside of the module to be useful. A series of
connections (joined with compound module gates) is called a connection path or just path. A
path is directed, and it normally starts at an output gate of a simple module, ends at an input
gate of a simple module, and passes through several compound module gates.

Every cGate object contains pointers to the previous gate and the next gate in the path (re-
turned by the getPreviousGate () and getNextGate () methods), so a path can be thought
of as a double-linked list.

The use of the previous gate and next gate pointers with various gate types is illustrated on

figure

Ilnextll Ilprevll Ilnextll

(a) (b)

||prev|| llnextll Ilprevll

(c) (d)

Figure 4.2: (a) simple module output gate, (b) compound module output gate, (c) simple
module input gate, (d) compound module input gate

The start and end gates of the path can be found with the getPathStartGate () and getPa-
thEndGate () methods, which simply follow the previous gate and next gate pointers, respec-
tively, until they are NULL.

The isConnectedOutside () and isConnectedInside () methods return whether a gate is
connected on the outside or on the inside. They examine either the previous or the next
pointer, depending on the gate type (input or output). For example, an output gate is connected
outside if the next pointer is non-NULL; the same function for an input gate checks the previous
pointer. Again, see figure for an illustration.

The isConnected () method is a bit different: it returns true if the gate is fully connected,
that is, for a compound module gate both inside and outside, and for a simple module gate,
outside.

The following code prints the name of the gate a simple module gate is connected to:

cGate *gate = gate("somegate");
cGate *otherGate gate->getType () ==cGate::0UTPUT ? gate->getNextGate ()
gate->getPreviousGate () ;

if (otherGate)

ev << "gate is connected to: " << otherGate->getFullPath() << endl;
else

ev << "gate not connected" << endl;

75

OMNeT++ Manual — Simple Modules

4.6.3 The Connection’s Channel

The channel object associated with a connection is accessible by a pointer stored at the source
gate of the connection. The pointer is returned by the getChannel () method of the gate:

cChannel xchannel = gate—->getChannel();

The result may be NULL, that is, a connection may not have an associated channel object.

If you have a channel pointer, you can get back its source gate with the getSourceGate ()
method:

cGate xgate = channel->getSourceGate();

cChannel is just an abstract base class for channels, so to access details of the channel you
might need to cast the resulting pointer into a specific channel class, for example cDelay-
Channel or cDatarateChannel.

Another specific channel type is cIdealChannel, which basically does nothing: it acts as if
there was no channel object assigned to the connection. OMNeT++ sometimes transparently
inserts a cIdealChannel into a channel-less connection, for example to hold the display
string associated with the connection.

Often you are not really interested in a specific connection’s channel, but rather in the trans-
mission channel (see of the connection path that starts at a specific output gate. The
transmission channel can be found by following the connection path until you find a chan-
nel whose isTransmissionChannel () method returns true, but cGate has a convenience
method for this, named getTransmissionChannel (). An example usage:

cChannel *txChan = gate ("ppp$o")->getTransmissionChannel () ;

A complementer method to get TransmissionChannel () is getIncomingTransmissionChan—

nel (); it is usually invoked on input gates, and searches the connection path in reverse
direction.
cChannel *incomingTxChan = gate ("ppp$i")->getIncomingTransmissionChannel () ;

Both methods throw an error if no transmission channel is found. If this is not suitable,
use the similar findTransmissionChannel () and findIncomingTransmissionChannel ()
methods that simply return NULL in that case.

Channels are covered in more detail in section

4.7 Sending and Receiving Messages

On an abstract level, an OMNeT++ simulation model is a set of simple modules that communi-
cate with each other via message passing. The essence of simple modules is that they create,
send, receive, store, modify, schedule and destroy messages — the rest of OMNeT++ exists to
facilitate this task, and collect statistics about what was going on.

Messages in OMNeT++ are instances of the cMessage class or one of its subclasses. Network
packets are represented with cPacket, which is also subclassed from cMessage. Message
objects are created using the C++ new operator, and destroyed using the delete operator
when they are no longer needed.

Messages are described in detail in chapter [5| At this point, all we need to know about them
is that they are referred to as cMessage * pointers. In the examples below, messages will

76

OMNeT++ Manual — Simple Modules

be created with new cMessage ("foo") where "foo" is a descriptive message name, used for
visualization and debugging purposes.

4.7.1 Self-Messages

Nearly all simulation models need to schedule future events in order to implement timers,
timeouts, delays, etc. Some typical examples:

e A source module that periodically creates and sends messages needs to schedule the
next send after every send operation;

e A server which processes jobs from a queue needs to start a timer every time it begins
processing a job. When the timer expires, the finished job can be sent out, and a new
job may start processing;

e When a packet is sent by a communications protocol that employs retransmission, it
needs to schedule a timeout so that the packet can be retransmitted if no acknowledge
arrives within a certain amount of time.

In OMNeT++, you solve such tasks by letting the simple module send a message to itself; the
message would be delivered to the simple module at a later point of time. Messages used this
way are called self-messages, and the module class has special methods for them that allow
for implementing self-messages without gates and connections.

Scheduling an Event

The module can send a message to itself using the scheduleat () function. scheduleAt ()
accepts an absolute simulation time, usually calculated as simTime () +delta:

scheduleAt (absoluteTime, msqg);
scheduleAt (simTime () +delta, msqg);

Self-messages are delivered to the module in the same way as other messages (via the usual
receive calls or handleMessage ()); the module may call the isSelfMessage () member of
any received message to determine if it is a self-message.

You can determine whether a message is currently in the FES by calling its i sScheduled ()
member function.

Cancelling an Event

Scheduled self-messages can be cancelled (i.e. removed from the FES). This feature facilitates
implementing timeouts.

cancelEvent (msqg) ;

The cancelEvent () function takes a pointer to the message to be cancelled, and also returns
the same pointer. After having it cancelled, you may delete the message or reuse it in subse-
quent scheduleAt () calls. cancelEvent () has no effect if the message is not scheduled at
that time.

There is also a convenience method called cancelAndDelete () implemented as if (msg!=NULL)
delete cancelEvent (msg); this method is primarily useful for writing destructors.

77

OMNeT++ Manual — Simple Modules

The following example shows how to implement a timeout in a simple imaginary stop-and-wait
protocol. The code utilizes a timeoutEvent module class data member that stores the pointer
of the cMessage used as self-message, and compares it to the pointer of the received message
to identify whether a timeout has occurred.

void Protocol::handleMessage (cMessage *msqg)

{

if (msg == timeoutEvent) {
// timeout expired, re-send packet and restart timer
send (currentPacket->dup (), "out");
scheduleAt (simTime () + timeout, timeoutEvent);

}

else if (...) { // if acknowledgement received

// cancel timeout, prepare to send next packet, etc.
cancelEvent (timeoutEvent) ;

}

else {

}

Re-scheduling an Event

If you want to reschedule an event which is currently scheduled to a different simulation time,
first you have to cancel it using cancelEvent (). This is shown in the following example code:

if (msg->isScheduled())
cancelEvent (msqg) ;
scheduleAt (simTime () + delay, msqg);

4.7.2 Sending Messages

Once created, a message object can be sent through an output gate using one of the following
functions:

send (cMessage *msg, const char xgateName, int index=0);
send (cMessage *msg, int gateld);
send (cMessage *msg, cGate xgate);

In the first function, the argument gateName is the name of the gate the message has to be
sent through. If this gate is a vector gate, index determines though which particular output
gate this has to be done; otherwise, the index argument is not needed.

The second and third functions use the gate ID and the pointer to the gate object. They are
faster than the first one because they don’t have to search for the gate by name.

Examples:

send (msg, "out");
send (msg, "outv", 1); // send via a gate in a gate vector

78

OMNeT++ Manual — Simple Modules

To send via an inout gate, remember that an inout gate is an input and an output gate glued
together, and the two halves can be identified with the $i and $o name suffixes. Thus, for
sending you need to specify the gate name with the $o suffix:

send (msg, "g$o");
send (msg, "gS$o", 1i); // if "g[]" is a gate vector

4.7.3 Broadcasts and Retransmissions

When you implement broadcasts or retransmissions, two frequently occurring tasks in pro-
tocol simulation, you might feel tempted to use the same message in multiple send () oper-
ations. Do not do it — you cannot send the same message object multiple times. Instead,
duplicate the message object.

Why? A message is like any real world object - it cannot be at two places at the same time.
Once you've sent it, the message object no longer belongs to the module: it is taken over
by the simulation kernel, and will eventually be delivered to the destination module. The
sender module should not even refer to its pointer any more. Once the message arrived in the
destination module, that module will have full authority over it - it can send it on, destroy it
immediately, or store it for further handling. The same applies to messages that have been
scheduled - they belong to the simulation kernel until they are delivered back to the module.

To enforce the rules above, all message sending functions check that you actually own the
message you are about to send. If the message is in another module, currently scheduled or
in a queue, etc., you’'ll get a runtime error: not owner of message.

Broadcasting Messages

In your model, you may need to broadcast a message to several destinations. Broadcast can
be implemented in a simple module by sending out copies of the same message, for example
on every gate of a gate vector. As described above, you cannot use the same message pointer
forin all send () calls — what you have to do instead is create copies (duplicates) of the message
object and send them.

Example:

for (int i=0; i<n; i++)

{
cMessage *copy = msg—->dup () ;
send (copy, "out", 1i);

}

delete msg;

You might have noticed that copying the message for the last gate is redundant: we can just
send out the original message there. Also, we can utilize gate IDs to avoid looking up the gate
by name for each send operation. We can exploit the fact that the ID of gate k in a gate vector
can be produced as baselD + k. The optimized version of the code looks like this:

int outGateBaseld = gateBaseId("out");
for (int i=0; i<n; i++)
send (i==n-1 ? msg : msg->dup (), outGateBaseId+i);

4The feature does not increase runtime overhead significantly, because it uses the object ownership management
(described in Section ; it merely checks that the owner of the message is the module that wants to send it.

79

OMNeT++ Manual — Simple Modules

Retransmissions

Many communication protocols involve retransmissions of packets (frames). When imple-
menting retransmissions, you cannot just hold a pointer to the same message object and
send it again and again — you’d get the not owner of message error on the first resend.

Instead, for (re)Jtransmission, you should create and send copies of the message, and retain
the original. When you are sure there will not be any more retransmission, you can delete the
original message.

Creating and sending a copy:

// (re)transmit packet:
cMessage =*copy = packet—->dup();
send (copy, "out");

and finally (when no more retransmissions will occur):

delete packet;

4.7.4 Delayed Sending

Sometimes it is necessary for module to hold a message for some time interval, and then
send it. This can be achieved with self-messages, but there is a more straightforward method:
delayed sending. The following methods are provided for delayed sending:

sendDelayed (cMessage *msg, double delay, const char xgateName, int index);
sendDelayed (cMessage »*msg, double delay, int gateld);
sendDelayed (cMessage xmsg, double delay, cGate =xgate);

The arguments are the same as for send (), except for the extra delay parameter. The delay
value must be non-negative. The effect of the function is similar to as if the module had kept
the message for the delay interval and sent it afterwards; even the sending time timestamp of
the message will be set to the current simulation time plus delay.

A example call:

sendDelayed (msg, 0.005, "out");

The sendDelayed() function does not internally perform a scheduleAt () followed by a
send (), but rather it computes everything about the message sending up front, including
the arrival time and the target module. This has two consequences. First, sendDelayed()
is more efficient than a scheduleat () followed by a send () because it eliminates one event.
The second, less pleasant consequence is that changes in the connection path during the
delay will not be taken into account (because everything is calculated in advance, before the
changes take place).

NOTE: The fact that sendDelayed () computes the message arrival information up front
does not make a difference if the model is static, but may lead to surprising results if the
model changes in time. For example, if a connection in the path gets deleted, disabled, or
reconnected to another module during the delay period, the message will still be delivered
to the original module as if nothing happened.

Therefore, despite its performance advantage, you should think twice before using send-
Delayed () in a simulation model. It may have its place in a one-shot simulation model
that you know is static, but it certainly should be avoided in reusable modules that need
to work correctly in a wide variety of simulation models.

80

OMNeT++ Manual — Simple Modules

4.7.5 Direct Message Sending

At times it is covenient to be able to send a message directly to an input gate of another
module. The sendDirect () function is provided for this purpose.

This function has several flavors. The first set of sendDirect () functions accept a message
and a target gate; the latter can be specified in various forms:

sendDirect (cMessage xmsg, cModule »*mod, int gateld)
sendDirect (cMessage *msg, cModule *mod, const char xgateName, int index=-1)
sendDirect (cMessage #*msg, cGate =xgate)

An example for direct sending:

cModule *targetModule = getParentModule () ->getSubmodule ("node2") ;
sendDirect (new cMessage ("msg"), targetModule, "in");

At the target module, there is no difference between messages received directly and those
received over connections.

The target gate must be an unconnected gate; in other words, modules must have dedicated
gates to be able to receive messages sent via sendDirect (). You cannot have a gate which
receives messages via both connections and sendDirect ().

It is recommended to tag gates dedicated for receiving messages via sendDirect () with the
@directIn property in the module’s NED declaration. This will cause OMNeT++ not to com-
plain that the gate is not connected in the network or compound module where the module is
used.

An example:

simple Radio {
gates:
input radioIn QdirectIn; // for receiving air frames

}

The target module is usually a simple module, but it can also be a compound module. The
message will follow the connections that start at the target gate, and will be delivered to the
module at the end of the path - just as with normal connections. The path must end in a
simple module.

It is even permitted to send to an output gate, which will also cause the message to follow the
connections starting at that gate. This can be useful, for example, when several submodules
are sending to a single output gate of their parent module.

A second set of sendDirect () methods accept a propagation delay and a transmission dura-
tion as parameters as well:

sendDirect (cMessage *msg, simtime_t propagationDelay, simtime_t duration,
cModule »*mod, int gateld)

sendDirect (cMessage *msg, simtime_t propagationDelay, simtime_t duration,
cModule »*mod, const char *gateName, int index=-1)

sendDirect (cMessage *msg, simtime_t propagationDelay, simtime_t duration,
cGate =*gate)

The transmission duration parameter is important when the message is also a packet (in-
stance of cPacket). For messages that are not packets (not subclassed from cPacket), the
duration parameter is ignored.

81

OMNeT++ Manual — Simple Modules

If the message is a packet, the duration will be written into the packet, and can be read by
the receiver with the getDuration () method of the packet.

The receiver module can choose whether it wants the simulation kernel to deliver the packet
object to it at the start or at the end of the reception. The default is the latter; the module
can change it by calling setDeliverOnReceptionStart () on the final input gate, that is, on
targetGate->getPathEndGate().

4.7.6 Packet Transmissions

When a message is sent out on a gate, it usually travels through a series of connections until
it arrives at the destination module. We call this series of connections a connection path.

Several connections in the path may have an associated channel, but there can be only one
channel per path that models nonzero transmission duration. This restriction is enforced by
the simulation kernel. This channel is called the transmission channel. [

NOTE: In practice, this means that there can be only one ned.DatarateChannel
in the path. Note that unnamed channels with a datarate parameter also map to
ned.DatarateChannel

Transmitting a Packet

Packets may only be sent when the transmission channel is idle. This means that after each
transmission, the sender module needs to wait until the channel has finished transmitting
before it can send another packet.

You can get a pointer to the transmission channel by calling the getTransmissionChannel ()
method on the output gate. The channel’s isBusy () and getTransmissionFinishTime ()
methods can tell you whether a channel is currently transmitting, and when the transmission
is going to finish. (When the latter is less or equal the current simulation time, the channel
is free.) If the channel is currently busy, sending needs to be postponed: the packet can be
stored in a queue, and a timer (self-message) can be scheduled for the time when the channel
becomes empty.

A code example to illustrate the above process:

cPacket #*pkt = ...; // packet to be transmitted
cChannel *txChannel = gate ("out")->getTransmissionChannel () ;
simtime_t txFinishTime = txChannel->getTransmissionFinishTime () ;

if (txFinishTime <= simTime ())

{
// channel free; send out packet immediately
send (pkt, "out");

}

else

{
// store packet and schedule timer; when the timer expires,
// the packet should be removed from the queue and sent out
txQueue.insert (pkt);
scheduleAt (txFinishTime, endTxMsq);

5Moreover, if sendDirect () with a nonzero duration was used to send the packet to the start gate of the path,
then the path cannot have a transmission channel at all. The point is that the a transission duration must be
unambiguous.

82

OMNeT++ Manual — Simple Modules

NOTE: If there is a channel with a propagation delay in the path before the trans-
mission channel, the delay should be manually substracted from the value returned by
getTransmissionFinishTime ()! The same applies to isBusy (): it tells whether the
channel is currently busy, and not whether it will be busy when a packet that you send
gets there. It is therefore advisable that you never use propagation delays in front of a
transmission channel in a path.

The getTransmissionChannel () method searches the connection path each time it is called.
If performance is important, it is recommended that you obtain the transmission channel
pointer once, and cache it. When the network topology changes, the cached channel pointer
needs to be updated; section describes the mechanism that can be used to get notifi-
cations about topology changes.

Receiving a Packet

As a result of error modeling in the channel, the packet may arrive with the bit error flag set
(hasBitError () method. It is the receiver module’s responsibility to examine this flag and
take appropriate action (i.e. discard the packet).

Normally the packet object gets delivered to the destination module at the simulation time
that corresponds to finishing the reception of the message (ie. the arrival of its last bit).
However, the receiver module may change this by “reprogramming” the receiver gate with the
setDeliverOnReceptionStart () method:

gate ("in")->setDeliverOnReceptionStart (true);

This method may only be called on simple module input gates, and it instructs the simulation
kernel to deliver packets arriving through that gate at the simulation time that corresponds
to the beginning of the reception process. getDeliverOnReceptionStart () only needs to be
called once, so it is usually done in the initialize () method of the module.

B C

A T D

delay=1ms
datarate=1Gbp

%)

ta tg tc tp

send()

7777777777 with deliverOnReceptionStart=

default

Figure 4.3: Packet transmission

When a packet is delivered to the module, the packet’s isReceptionStart () method can
be called to determine whether it corresponds to the start or end of the reception process

83

OMNeT++ Manual — Simple Modules

(it should be the same as the getDeliverOnReceptionStart () flag of the input gate), and
getDuration () returns the transmission duration.

The following example code prints the start and end times of a packet reception:

simtime_t startTime, endTime;

if (pkt->isReceptionStart())

{
// gate was reprogrammed with setDeliverOnReceptionStart (true)
startTime = pkt->getArrivalTime(); // or: simTime();
endTime = startTime + pkt->getDuration();

}

else

{
// default case
endTime = pkt->getArrivalTime(); // or: simTime();
startTime = endTime - pkt->getDuration();

}

ev << "interval: " << startTime << ".." << endTime << "\n";

Note that this works with wireless connections (sendDirect ()) as well; there, the duration is
an argument to the sendDirect () call.

Aborting Transmissions

Sometimes you want the sender to abort transmission. The support OMNeT++ provides for
this task is the forceTransmissionFinishTime () method of channels. This method forcibly
overwrites the transmissionFinishTime member of the channel with the given value, allowing
the sender to transmit another packet without raising the “channel is currently busy” error.
The receiving party needs to be notified about the aborted transmission by some user-defined
means, for example by sending another packet or an out-of-band message.

Implementation of Message Sending

Message sending is implemented like this: the arrival time and the bit error flag of a message
are calculated right inside the send () call, then the message is inserted into the FES with the
calculated arrival time. The message does not get scheduled individually for each link. This
implementation was chosen because of its run-time efficiency.

NOTE: The consequence of this implementation is that any change in the channel’s
parameters (delay, data rate, bit error rate, etc.) will only affect messages sent after the
change. Messages already underway will not be influenced by the change.

This is not a huge problem in practice, but if it is important to model channels with
changing parameters, the solution is to insert simple modules into the path to ensure
strict scheduling.

4.7.7 Receiving Messages with activity()
Receiving Messages

activity ()-based modules receive messages with the receive () method of cSimpleModule.
receive () cannot be used with handleMessage () -based modules.

84

OMNeT++ Manual — Simple Modules

cMessage *msg = receive();

The receive () function accepts an optional timeout parameter. (This is a delta, not an
absolute simulation time.) If no message arrives within the timeout period, the function
returns a NULL pointer. E]

simtime_t timeout = 3.0;
cMessage xmsg = receive (timeout) ;

if (msg==NULL)

// handle timeout

// process message

The wait() Function

The wait () function suspends the execution of the module for a given amount of simulation
time (a delta). wait () cannot be used with handleMessage () -based modules.

wait (delay);

In other simulation software, wait () is often called hold. Internally, the wait () function
is implemented by a scheduleat () followed by a receive (). The wait () function is very
convenient in modules that do not need to be prepared for arriving messages, for example
message generators. An example:

for (;;)

{
// wait for some, potentially random, amount of time, specified
// 1in the interarrivalTime volatile module parameter
wait (par ("interarrivalTime") .doubleValue());

// generate and send message

}

It is a runtime error if a message arrives during the wait interval. If you expect messages to
arrive during the wait period, you can use the waitAndEnqueue () function. It takes a pointer
to a queue object (of class cQueue, described in chapter [7) in addition to the wait interval.
Messages that arrive during the wait interval will be accumulated in the queue, so you can
process them after the waitAndEnqueue () call returned.

cQueue queue ("queue");
waitAndEnqueue (waitTime, &queue);

if (!queue.empty())
{

6Putaside—queue and the functions receiveOn (), receiveNew (), and receiveNewOn () were deprecated in OM-
NeT++ 2.3 and removed in OMNeT++ 3.0.

85

OMNeT++ Manual — Simple Modules

// process messages arrived during wait interval

4.8 Channels

4.8.1 Overview

Channels encapsulate parameters and behavior associated with connections. Channel types
are like simple modules, in the sense that they are declared in NED, and there are C++ imple-
mentation classes behind them. Section describes NED language support for channels,
and explains how to associate C++ classes with channel types declared in NED.

C++ channel classes must subclass from the abstract base class cChannel. However, when
creating a new channel class, it may be more practical to extend one of the existing C++
channel classes behind the three predefined NED channel types:

e cIdealChannel implements the functionality of ned.IdealChannel
e cDelayChannel implements the functionality of ned.DelayChannel

e cDatarateChannel implements the functionality of ned.DatarateChannel

Channel classes need to be registered with the Define_Channel () macro, just like simple
module classes need Define_Module ().

The channel base class cChannel inherits from cComponent, so channels participate in the
initialization and finalization protocol (initialize () and finish ()) described in

The parent module of a channel (as returned by the getParentModule ()) is the module that
contains the connection. If a connection connects two modules that are children of the same
compound module, the channel’s parent is the compound module. If the connection connects
a compound module to one of its submodules, the channel’s parent is also the compound
module.

4.8.2 The Channel API

When subclassing Channel, you have to redefine and provide implementations for the follow-
ing pure virtual member functions:

e bool isTransmissionChannel() const
e simtime_t getTransmissionFinishTime () const

e void processMessage (cMessage *msg, simtime_t t, result_té& result)

The first two functions are usually one-liners; the channel behavior is encapsulated in the
third function, processMessage ().

86

OMNeT++ Manual — Simple Modules

Transmission Channels

The first function, isTransmissionChannel (), determines whether the channel is a trans-
mission channel, i.e. one that models transmission duration. A transmission channel sets the
duration field of packets sent through it (see the setDuration () field of cPacket).

The getTransmissionFinishTime () function is only used with transmission channels, and
it should return the simulation time the sender will finish (or has finished) transmitting. This
method is called by modules that send on a transmission channel to find out when the chan-
nel becomes available. The channel’s isBusy () method is implemented simply as return
getTransmissionFinishTime () < simTime (). For non-transmission channels, the get-
TransmissionFinishTime () return value may be any simulation time which is less than or
equal to the current simulation time.

The processMessage() Function

The third function, processMessage () encapsulates the channel’s functionality. However,
before going into the details of this function we need to understand how OMNeT++ handles
message sending on connections.

Inside the send () call, OMNeT++ follows the connection path denoted by the getNextGate ()
functions of gates, until it reaches the target module. At each “hop”, the corresponding con-
nection’s channel (if the connection has one) gets a chance to add to the message’s arrival
time (propagation time modeling), calculate a transmission duration, and to modify the mes-
sage object in various ways, such as set the bit error flag in it (bit error modeling). After
processing all hops that way, OMNeT++ inserts the message object into the Future Events Set
(FES, see section [4.1.2), and the send () call returns. Then OMNeT++ continues to process
events in increasing timestamp order. The message will be delivered to the target module’s
handleMessage () (or receive ()) function when it gets to the front of the FES.

A few more details: a channel may instruct OMNeT++ to delete the message instead of in-
serting it into the FES; this can be useful to model disabled channels, or to model that the
message has been lost altogether. The getDeliverOnReceptionStart () flag of the final gate
in the path will determine whether the transmission duration will be added to the arrival time
or not. Packet transmissions have been described in section

Now, back to the processMessage () method.

The method gets called as part of the above process, when the message is processed at the
given hop. The method’s arguments are the message object, the simulation time the beginning
of the message will reach the channel (i.e. the sum of all previous propagation delays), and a
struct in which the method can return the results.

The result_t struct is an inner type of cChannel, and looks like this:

struct result_t {

simtime_t delay; // propagation delay
simtime_t duration; // transmission duration
bool discard; // whether the channel has lost the message

bi

It also has a constructor that initializes all fields to zero; it is left out for brevity.

The method should model the transmission of the given message starting at the given t time,
and store the results (propagation delay, transmission duration, deletion flag) in the result
object. Only the relevant fields in the result object need to be changed, others can be left
untouched.

87

OMNeT++ Manual — Simple Modules

Transmission duration and bit error modeling only applies to packets (i.e. to instances of
cPacket, where cMessage’s isPacket () returns true); it should be skipped for non-packet
messages. processMessage () does not need to call the setDuration() method on the
packet; this is done by the simulation kernel. However, it should call setBitError (true) on
the packet if error modeling results in bit errors.

If the method sets the discard flag in the result object, that means that the message object
will be deleted by OMNeT++; this facility can be used to model that the message gets lost in
the channel.

The processMessage () method does not need to throw error on overlapping transmissions,
or if the packet’s duration field is already set; these checks are done by the simulation kernel
before processMessage () is called.

4.8.3 Channel Examples

To illustrate coding channel behavior, we look at how the built-in channel types are imple-
mented.

cIdealChannel lets through messages and packets without any delay or change. Its is-
TransmissionChannel () method returns false, getTransmissionFinishTime () returns
0s, and the body of its processMessage () method is empty:

void cIdealChannel: :processMessage (cMessage *msg, simtime_t t, result_té& result)

{
}

cDelayChannel implements propagation delay, and it can be disabled; in its disabled state,
messages sent though it will be discarded. This class still models zero transmission duration,
S0 its isTransmissionChannel () and getTransmissionFinishTime () methods still return
false and 0s. The processMessage () method sets the appropriate fields in the result_t
struct:

void cDelayChannel: :processMessage (cMessage *msg, simtime_t t, result_t& result)

{
// 1f channel is disabled, signal that message should be deleted
result.discard = isDisabled;

// propagation delay modeling
result.delay = delay;
}

The handleParameterChange () method is also redefined, so that the channel can update
its internal delay and isDisabled data members if the corresponding channel parameters
change during simulation.

cDatarateChannel is different. It performs model packet duration (duration is calculated
from the data rate and the length of the packet), so isTransmissionChannel () returns true.
getTransmissionFinishTime () returns the value of a txfinishtime data member, which
gets updated after every packet.

simtime_t cDatarateChannel::getTransmissionFinishTime () const

{

return txfinishtime;

}

“This code is a little simplified; the actual code uses a bit in a bitfield to store the value of isDisabled.

88

OMNeT++ Manual — Simple Modules

cDatarateChannel’s processMessage () method makes use of the isDisabled, datarate,
ber and per data members, which are also kept up to date with the help of handleParame-

terChange ().

void cDatarateChannel: :processMessage (cMessage =*msg,

{

simtime_t t, result_té& result)

// 1f channel is disabled, signal that message should be deleted

if (isDisabled) {
result.discard = true;
return;

// datarate modeling
if (datarate!=0 && msg->isPacket ()) {

simtime_t duration = ((cPacket *)msg)->getBitLength() / datarate;

result.duration = duration;
txfinishtime = t + duration;
}
else {
txfinishtime = t;

// propagation delay modeling
result.delay = delay;

// bit error modeling
if ((ber!=0 || per!=0) && msg->isPacket())
{
cPacket xpkt = (cPacket =*)msg;
if (ber!=0 && dblrand() < 1.0 - pow(l.0-ber,
pkt—->setBitError (true) ;
if (per!=0 && dblrand() < per)
pkt->setBitError (true);

4.9 Stopping the Simulation

4.9.1 Normal Termination

You can finish the simulation with the endSimulation () function:

endSimulation () ;

(double) pkt->getBitLength())

endSimulation () is rarely needed in practice because you can specify simulation time and

CPU time limits in the ini file (see later).

4.9.2 Raising Errors

If your simulation encounters an error condition, you can throw a cRuntimeError excep-
tion to terminate the simulation with an error message (and in case of Cmdenv, a nonzero

89

OMNeT++ Manual — Simple Modules

exit code). The cRuntimeError class has a constructor whose argument list is similar to
printf ():

if (windowSize <= 0)
throw cRuntimeError ("Invalid window size %d; must be >=1", windowSize);

Do not include newline (\n), period or exclamation mark in the error text; it will be added by
OMNeT++.

You can achieve the same effect by calling the error () method of cModule

if (windowSize <= 0)
error ("Invalid window size %d; must be >=1", windowSize);

Of course, the error () method can only be used when a module pointer is available.

4.10 Finite State Machines

Overview

Finite State Machines (FSMs) can make life with handleMessage () easier. OMNeT++ provides
a class and a set of macros to build FSMs.

The key points are:

e There are two kinds of states: transient and steady. On each event (that is, at each call
to handleMessage ()), the FSM transitions out of the current (steady) state, undergoes
a series of state changes (runs through a number of transient states), and finally arrives
at another steady state. Thus between two events, the system is always in one of the
steady states. Transient states are therefore not really a must — they exist only to group
actions to be taken during a transition in a convenient way.

¢ You can assign program code to handle entering and leaving a state (known as entry/exit
code). Staying in the same state is handled as leaving and re-entering the state.

e Entry code should not modify the state (this is verified by OMNeT++). State changes
(transitions) must be put into the exit code.

OMNeT++'s FSMs can be nested. This means that any state (or rather, its entry or exit code)
may contain a further full-fledged FSM_Switch () (see below). This allows you to introduce
sub-states and thereby bring some structure into the state space if it becomes too large.

The FSM API

FSM state is stored in an object of type cFsSM. The possible states are defined by an enum; the
enum is also a place to define which state is transient and which is steady. In the following
example, SLEEP and ACTIVE are steady states and SEND is transient (the numbers in paren-
theses must be unique within the state type and they are used for constructing the numeric
IDs for the states):

enum {
INIT = O,
SLEEP = FSM_Steady (1),
ACTIVE = FSM_Steady (2),

90

OMNeT++ Manual — Simple Modules

SEND = FSM_Transient (1),
}i

The actual FSM is embedded in a switch-like statement, FSM_Switch (), where you have cases
for entering and leaving each state:

FSM_Switch (fsm)
{
case FSM_Exit (statel):
VI
break;
case FSM_Enter (statel):
VI
break;
case FSM_Exit (state2):
Yo
break;
case FSM_Enter (state?):
VI
break;
S/
}i

State transitions are done via calls to FSM_Goto (), which simply stores the new state in the
cFSM object:

FSM_Goto (fsm, newState);

The FSM starts from the state with the numeric code O; this state is conventionally named
INIT.

Debugging FSMs

FSMs can log their state transitions ev, with the output looking like this:

FSM GenState: leaving state SLEEP
FSM GenState: entering state ACTIVE

FSM GenState: leaving state ACTIVE
FSM GenState: entering state SEND
FSM GenState: leaving state SEND
FSM GenState: entering state ACTIVE

FSM GenState: leaving state ACTIVE
FSM GenState: entering state SLEEP

To enable the above output, you have to #define FSM_DEBUG before including omnetpp.h.

#define FSM_DEBUG // enables debug output from FSMs
#include <omnetpp.h>

91

OMNeT++ Manual — Simple Modules

The actual logging is done via the FSM_Print () macro. It is currently defined as follows, but
you can change the output format by undefining FSM_Print () after including omnetpp.ini
and providing a new definition instead.

#define FSM_Print (fsm,exiting)
(ev << "FSM " << (fsm) .getName ()

<< ((exiting) ? ": leaving state " : ": entering state ")
<< (fsm) .getStateName () << endl)
Implementation

The FSM_Switch () is a macro. It expands to a switch () statement embedded in a for ()
loop which repeats until the FSM reaches a steady state. (The actual code is rather scary, but
if you are dying to see it, it is in cfsm.h.)

Infinite loops are avoided by counting state transitions: if an FSM goes through 64 transitions
without reaching a steady state, the simulation will terminate with an error message.

An Example

Let us write another bursty packet generator. It will have two states, SLEEP and ACTIVE. In
the SLEEP state, the module does nothing. In the ACTIVE state, it sends messages with a
given inter-arrival time. The code was taken from the Fifo2 sample simulation.

#define FSM_DEBUG
#include <omnetpp.h>

class BurstyGenerator : public cSimpleModule
{
protected:
// parameters
double sleepTimeMean;
double burstTimeMean;
double sendIATime;
cPar smsgLength;

// FSM and its states
cFSM fsm;
enum {
INIT = O,
SLEEP = FSM_Steady (1),
ACTIVE = FSM_Steady(2),
SEND = FSM_Transient (1),
}i

// variables used

int i;

cMessage xstartStopBurst;
cMessage *sendMessage;

// the virtual functions
virtual void initialize();

92

OMNeT++ Manual — Simple Modules

virtual void handleMessage (cMessage *msq);

}i
Define_Module (BurstyGenerator);

void BurstyGenerator::initialize()
{
fsm.setName ("fsm") ;
sleepTimeMean = par ("sleepTimeMean");

burstTimeMean = par ("burstTimeMean") ;
sendIATime = par ("sendIATime");
msgLength = &par ("msgLength");

i = 0;

WATCH(1); // always put watches in initialize()
startStopBurst = new cMessage ("startStopBurst");
sendMessage = new cMessage ("sendMessage");
scheduleAt (0.0, startStopBurst) ;

void BurstyGenerator::handleMessage (cMessage *msg)
{
FSM_Switch (fsm)
{
case FSM_Exit (INIT):
// transition to SLEEP state
FSM_Goto (fsm, SLEEP) ;
break;
case FSM_Enter (SLEEP) :

// schedule end of sleep period (start of next burst)
scheduleAt (simTime () +exponential (sleepTimeMean),

startStopBurst) ;
break;
case FSM_Exit (SLEEP) :
// schedule end of this burst

scheduleAt (simTime () +exponential (burstTimeMean),

startStopBurst) ;
// transition to ACTIVE state:
if (msg!=startStopBurst) {
error ("invalid event in state ACTIVE");
}
FSM_Goto (fsm,ACTIVE) ;
break;
case FSM_Enter (ACTIVE) :
// schedule next sending
scheduleAt (simTime () +texponential (sendIATime),
break;
case FSM_Exit (ACTIVE) :
// transition to either SEND or SLEEP
if (msg==sendMessage) {
FSM_Goto (fsm, SEND) ;
} else if (msg==startStopBurst) {
cancelEvent (sendMessage) ;

sendMessage) ;

93

OMNeT++ Manual — Simple Modules

FSM_Goto (fsm, SLEEP) ;
} else {
error ("invalid event in state ACTIVE");
}
break;
case FSM_Exit (SEND) :
{
// generate and send out job
char msgname[32];
sprintf (msgname, "job-%d", ++i);
ev << "Generating " << msgname << endl;
cMessage xjob = new cMessage (msgname) ;
job—->setBitLength((long) =*msgLength);
job—->setTimestamp () ;
send(job, "out");
// return to ACTIVE
FSM_Goto (fsm,ACTIVE) ;
break;

4.11 Navigating the Module Hierarchy

Module Vectors

If a module is part of a module vector, the getIndex () and getVectorSize () member func-
tions can be used to query its index and the vector size:

ev << "This is module [" << module->getIndex () <<
"] in a vector of size [" << module->size() << "]1.\n";

Module IDs

Each module in the network has a unique ID that is returned by the getId () member func-
tion. The module ID is used internally by the simulation kernel to identify modules.

int myModuleId = getId();

If you know the module ID, you can ask the simulation object (a global variable) to get back
the module pointer:

int id = 100;
cModule *mod = simulation.getModule(id);

Module IDs are guaranteed to be unique for the duration of the whole simulation, even when
modules are created and destroyed dynamically; that is, IDs of deleted modules are not reused
for newly created modules.

94

OMNeT++ Manual — Simple Modules

Walking Up and Down the Module Hierarchy

The surrounding compound module can be accessed by the getParentModule () member
function:

cModule xparent = getParentModule();

For example, the parameters of the parent module are accessed like this:

double timeout = getParentModule ()->par("timeout");
cModule’s findSubmodule () and getSubmodule () member functions make it possible to
look up the module’s submodules by name (or name+index if the submodule is in a module

vector). The first one returns the numeric module ID of the submodule, and the latter returns
the module pointer. If the submodule is not found, they return -1 or NULL, respectively.

int submodID = compoundmod->findSubmodule ("child", 5);

cModule xsubmod = compoundmod->getSubmodule ("child",5);
The getModuleByRelativePath () member function can be used to find a submodule nested
deeper than one level below. For example,

compoundmod->getModuleByRelativePath ("child[5] .grandchild") ;

would give the same result as
compoundmod->getSubmodule ("child", 5) ->getSubmodule ("grandchild") ;

(Provided that child[5] does exist, because otherwise the second version would crash with

an access violation because of the NULL pointer dereference.)

The cSimulation::getModuleByPath () function is similar to cModule’s moduleByRelative-
Path () function, and it starts the search at the top-level module.

Iterating over Submodules

To access all modules within a compound module, use cSubModIterator.
For example:

for (cSubModIterator iter (xgetParentModule()); !iter.end(); iter++)

{
ev << iter()->getFullName () ;

}

(iter () is pointer to the current module the iterator is at.)

The above method can also be used to iterate along a module vector, since the getName ()
function returns the same for all modules:

for (cSubModIterator iter (xgetParentModule()); !iter.end(); iter++)
{
if (iter()->isName (getName())) // if iter() is in the same
// vector as this module

int itsIndex = iter()->getIndex();
// do something to it

95

OMNeT++ Manual — Simple Modules

Walking Along Links

To determine the module at the other end of a connection, use cGate’s getPreviousGate (),
getNextGate () and getOwnerModule () functions. For example:

cModule *neighbour = gate("out")->getNextGate () ->getOwnerModule () ;

For input gates, you would use getPreviousGate () instead of getNextGate ().

4.12 Direct Method Calls Between Modules

In some simulation models, there might be modules which are too tightly coupled for message-
based communication to be efficient. In such cases, the solution might be calling one simple
module’s public C++ methods from another module.

Simple modules are C++ classes, so normal C++ method calls will work. Two issues need to
be mentioned, however:

e how to get a pointer to the object representing the module;

e how to let the simulation kernel know that a method call across modules is taking place.

Typically, the called module is in the same compound module as the caller, so the getParent—
Module () and getSubmodule () methods of cModule can be used to get a cModulex* pointer
to the called module. (Further ways to obtain the pointer are described in the section [4.11])
The cModulex pointer then has to be cast to the actual C++ class of the module, so that its
methods become visible.

This makes the following code:

cModule xcalleeModule = getParentModule () ->getSubmodule ("callee");
Callee *callee = check_and_cast<Callee x> (calleeModule);
callee->doSomething () ;

The check_and_cast<> () template function on the second line is part of OMNeT++. It per-
forms a standard C++ dynamic_cast, and checks the result: if it is NULL, check_and_cast
raises an OMNeT++ error. Using check_and_cast saves you from writing error checking
code: if calleeModule from the first line is NULL because the submodule named "callee"
was not found, or if that module is actually not of type Callee, an error is thrown from
check_and_cast.

The second issue is how to let the simulation kernel know that a method call across modules
is taking place. Why is this necessary in the first place? First, the simulation kernel always
has to know which module’s code is currently executing, in order for ownership handling and
other internal mechanisms to work correctly. Second, the Tkenv simulation GUI can animate
method calls, but to be able to do that, it has to know about them. Third, method calls are
also recorded in the event log.

The solution is to add the Enter_Method () or Enter_Method_Silent () macro at the top of
the methods that may be invoked from other modules. These calls perform context switching,
and, in case of Enter_Method (), notify the simulation GUI so that animation of the method
call can take place. Enter_Method_Silent () does not animate the method call, but otherwise
it is equivalent Enter_ Method (). Both macros accept a printf ()-like argument list (it is
optional for Enter_Method_Silent ()), which should produce a string with the method name
and the actual arguments as much as practical. The string is displayed in the animation
(Enter_Method () only) and recorded into the event log.

96

OMNeT++ Manual — Simple Modules

void Callee::doSomething ()
{
Enter_Method ("doSomething () ") ;

4.13 Dynamic Module Creation

4.13.1 When Do You Need Dynamic Module Creation

In some situations you need to dynamically create and maybe destroy modules. For example,
when simulating a mobile network, you may create a new module whenever a new user enters
the simulated area, and dispose of them when they leave the area.

As another example, when implementing a server or a transport protocol, it might be conve-
nient to dynamically create modules to serve new connections, and dispose of them when the
connection is closed. (You would write a manager module that receives connection requests
and creates a module for each connection. The Dyna example simulation does something like
this.)

Both simple and compound modules can be created dynamically. If you create a compound
module, all its submodules will be created recursively.

It is often convenient to use direct message sending with dynamically created modules.

Once created and started, dynamic modules aren’t any different from “static” modules; for
example, one could also delete static modules during simulation (though it is rarely useful.)

4.13.2 Overview

To understand how dynamic module creation works, you have to know a bit about how OM-
NeT++ normally instantiates modules. Each module type (class) has a corresponding fac-
tory object of the class cModuleType. This object is created under the hood by the De-
fine_Module () macro, and it has a factory method which can instantiate the module class
(this function basically only consists of a return new <moduleclass>(...) statement).

The cModuleType object can be looked up by its name string (which is the same as the module
class name). Once you have its pointer, it is possible to call its factory method and create an
instance of the corresponding module class — without having to include the C++ header file
containing module’s class declaration into your source file.

The cModuleType object also knows what gates and parameters the given module type has to
have. (This info comes from NED files.)

Simple modules can be created in one step. For a compound module, the situation is more
complicated, because its internal structure (submodules, connections) may depend on pa-
rameter values and gate vector sizes. Thus, for compound modules it is generally required
to first create the module itself, second, set parameter values and gate vector sizes, and then
call the method that creates its submodules and internal connections.

As you know already, simple modules with activity () need a starter message. For statically
created modules, this message is created automatically by OMNeT++, but for dynamically
created modules, you have to do this explicitly by calling the appropriate functions.

Calling initialize () has to take place after insertion of the starter messages, because the

97

OMNeT++ Manual — Simple Modules

initializing code may insert new messages into the FES, and these messages should be pro-
cessed after the starter message.

4.13.3 Creating Modules

The first step is to find the factory object. The cModuleType: :get () function expects a fully
qualified NED type name, and returns the factory object:

cModuleType xmoduleType = cModuleType::get ("foo.nodes.WirelessNode");

The return value does not need to be checked for NULL, because the function raises an error
if the requested NED type was not found. (If this behavior is not what you need, you can use
the similar cModuleType: :find () function, which returns NULL if the type was not found.)

The All-in-One Method

cModuleType has a createSchedulelInit (const char xname, cModule *parentmod) con-
venience function to get a module up and running in one step.

cModule *mod = moduleType->createSchedulelInit ("node", this);

createScheduleInit () performs the following steps: create (), finalizeParameters(),
buildInside (), scheduleStart (now) and callInitialize().

This method can be used for both simple and compound modules. Its applicability is some-
what limited, however: because it does everything in one step, you do not have the chance
to set parameters or gate sizes, and to connect gates before initialize () is called. (ini-
tialize () expects all parameters and gates to be in place and the network fully built when
it is called.) Because of the above limitation, this function is mainly useful for creating basic
simple modules.

The Detailed Procedure

If the createSchedulelInit () all-in-one method is not applicable, one needs to use the full
procedure. It consists of five steps:

—

Find the factory object;
Create the module;

Set up its parameters and gate sizes as needed;

A

Tell the (possibly compound) module to recursively create its internal submodules and
connections;

5. Schedule activation message(s) for the new simple module(s).

Each step (except for Step 3.) can be done with one line of code.

See the following example, where Step 3 is omitted:

// find factory object
cModuleType xmoduleType = cModuleType::get ("foo.nodes.WirelessNode");

98

OMNeT++ Manual — Simple Modules

// create (possibly compound) module and build its submodules (if any)
cModule *module = moduleType->create ("node", this);
module->finalizeParameters () ;

module->buildInside () ;

// create activation message
module—->scheduleStart (simTime ()) ;

If you want to set up parameter values or gate vector sizes (Step 3.), the code goes between
the create () and buildInside () calls

// create
cModuleType xmoduleType = cModuleType::get ("foo.nodes.WirelessNode");
cModule *module = moduleType->create ("node", this);

// set up parameters and gate sizes before we set up its submodules
module—>par ("address") = ++lastAddress;
module—->finalizeParameters() ;

module—->setGateSize ("in", 3);
module—->setGateSize ("out", 3);

// create internals, and schedule it
module->buildInside () ;
module—>scheduleStart (simTime ()) ;

4.13.4 Deleting Modules

To delete a module dynamically, use cModule’s deleteModule () member function:

module->deleteModule () ;

If the module was a compound module, this involves recursively deleting all its submodules.
A simple module can also delete itself; in this case, the deleteModule () call does not return
to the caller.

Currently, you cannot safely delete a compound module from a simple module in it; you must
delegate the job to a module outside the compound module.

4.13.5 Module Deletion and finish()

finish () is called for all modules at the end of the simulation, no matter how the modules
were created. If a module is dynamically deleted before that, finish () will not be invoked
(deleteModule () does not do it). However, you can still manually invoke it before delete-
Module ().

You can use the callFinish () function to invoke finish () (It is not a good idea to invoke
finish () directly). If you are deleting a compound module, callFinish () will recursively
invoke finish () for all submodules, and if you are deleting a simple module from another
module, callFinish () will do the context switch for the duration of the call. Fﬂ

Example:

8The finish () function has even been made protected in cSimpleModule, in order to discourage its invocation
from other modules.

99

OMNeT++ Manual — Simple Modules

mod—->callFinish();
mod->deleteModule () ;

4.13.6 Creating Connections

Connections can be created using cGate’s connectTo () method. E] connectTo () should be
invoked on the source gate of the connection, and expects the destination gate pointer as an
argument:

srcGate—->connectTo (destGate) ;

The source and destination words correspond to the direction of the arrow in NED files.
As an example, we create two modules and connect them in both directions:
cModuleType xmoduleType = cModuleType::get ("TicToc");

cModule *a = modtype->createScheduleInit ("a", this);
cModule *b = modtype->createScheduleInit ("b", this);

a->gate ("out") ->connectTo (b->gate ("in"));
b->gate ("out")->connectTo (a->gate ("in"));

connectTo () also accepts a channel object (cChannel«) as an additional, optional argument.
Similarly to modules, channels can be created using their factory object of the type cChan-
nelType:

cGate xoutg=..., *ing=...;

// find factory object and create a channel
cChannelType #*channelType = cChannelType::get ("foo.util.Channel");
cChannel xchannel = channelType->create ("channel");

// create connecting
outg->connectTo (ing, channel);

The channel object will be owned by the source gate of the connection, and you cannot reuse
the same channel object with several connections.

If you need one of the built-in channel types (cIdealChannel, cDelayChannel or cDatarat—
eChannel), the step to find the factory object can be spared, as those classes have static
create () functions to create a channel instance.

cDatarateChannel also has member functions to set up its parameters: setDelay (), set—
BitErrorRate (), setPacketErrorRate () and setDatarate ()

An example that sets up a channel with a delay:

cDatarateChannel xchannel = cDatarateChannel::create ("channel");
channel->setDelay (0.001);

a->gate ("out")->connectTo (b->gate ("in"), channel); // a, b are modules

9The earlier connect () global functions that accepted two gates have been deprecated, and may be removed from
further OMNeT++ releases.

100

OMNeT++ Manual — Simple Modules

4.13.7 Removing Connections

The disconnect () method of cGate can be used to remove connections. This method has to
be invoked on the source side of the connection. It also destroys the channel object associated
with the connection, if one has been set.

srcGate—>disconnect () ;

4.14 Signals

This section describes simulation signals, or signals for short. Signals are a versatile concept
that first appeared in OMNeT++ 4.1.

Simulation signals can be used for:

e exposing statistical properties of the model, without specifying whether and how to
record them

e receiving notifications about simulation model changes at runtime, and acting upon
them

¢ implementing a publish-subscribe style communication among modules; this is advan-
tageous when the producer and consumer of the information do not know about each
other, and possibly there is many-to-one or many-to-many relationship among them

e emitting information for other purposes, for example as input for custom animation
effects

Signals are emitted by components (modules and channels). Signals propagate on the module
hierarchy up to the root. At any level, one can register listeners (callback objects); these
listeners will be notified (called back) whenever a signal value is emitted. The result of upwards
propagation is that listeners registered at a compound module can receive signals from all
components in that submodule tree. A listener registered at the system module can receive
signals from the whole simulation.

NOTE: A channel’s parent is the (compound) module that contains the connection, not
the owner of either gate the channel is connected to.

Signals are identified by signal names (i.e. strings), but for efficiency reasons at runtime
we use dynamically assigned numeric identifiers (signal IDs, typedefd as simsignal_t). The
mapping of signal names to signal IDs is global, so all modules and channels asking to resolve
a particular signal name will get back the same numeric signal ID.

Listeners can subscribe to signal names or IDs, regardless of their source. For example, if
two different and unrelated module types, say Queue and Buffer, both emit a signal named
"length™", then a listener that subscribes to "length" at some higher compound module will
get notifications from both Queue and Buffer module instances. The listener can still look at
the source of the signal if it wants to distinguish the two (it is available as a parameter to the
callback function), but the signals framework itself does not have such a feature.

101

OMNeT++ Manual — Simple Modules

NOTE: Because the component type that emits the signal is not part of the signal’s
identity, it is advised to choose signal names carefully. A good naming scheme facilitates
"merging" of signals that arrive from different sources but mean the same thing, and
reduces the chance of collisions between signals that accidentally have the same name
but represent different things.

When a signal is emitted, it can carry a value with it. This is realized via overloaded emit ()
methods in components, and overloaded receiveSignal () methods in listeners. The signal
value can be of selected primitive types, or an object pointer; anything that is not feasible to
emit as a primitive type may be wrapped into an object, and emitted as such.

4.14.1 Design Considerations and Rationale

The implementation of signals is based on the following assumptions:

e subscribe/unsubscribe operations are rare compared to emit () calls, so it is emit ()
that needs to be efficient

e the signals mechanism is present in every module, so per-module memory overhead
must be kept as low as possible

e it is expected that modules and channels will be heavily instrumented with signals,
and only a subset of signals will actually be used (will have listeners) in any particular
simulation; therefore, the CPU and memory overhead of momentarily unused signals
must be as low as possible

These goals have been achieved in the 4.1 version with the following implementation. First,
the data structure that used to store listeners in components is dynamically allocated, so if
there are no listeners, the per-component overhead is only the size of the pointer (which will
be NULL then).

Second, additionally there are two bitfields in every component that store which one of the
first 64 signals (IDs 0..63) have local listeners and listeners in ancestor modules Using
these bitfields, it is possible to determine in constant time for the first 64 signals whether the
signal has listeners, so emit () can return immediately if there are none. For other signals,
emit () needs to examine the listener lists up to the root every time. Even if a simulation
uses more than 64 signals, in performance-critical situations it is possible to arrange that
frequently emitted signals (e.g. "txBegin") get the “fast” signal IDs, while infrequent signals
(like e.g. "routerDown") get the rest.

4.14.2 The Signals Mechanism

Signal-related methods are declared on cComponent, so they are available for both cModule
and cChannel.

Signal IDs

Signals are identified by names, but internally numeric signal IDs are used for efficiency. The
registerSignal () method takes a signal name as parameter, and returns the corresponding

101t is assumed that there will be typically less than 64 frequently used signals used at a time in a simulation.

102

OMNeT++ Manual — Simple Modules

simsignal_t value. The method is static, illustrating the fact that signal names are global.
An example:

simsignal_t lengthSignalld = registerSignal ("length");

The getsSignalName () method (also static) does the reverse: it accepts a simsignal_t, and
returns the name of the signal as const char * (or NULL for invalid signal handles):

const char xsignalName = getSignalName (lengthSignalld); // —--> "length"

NOTE: Since OMNeT++ 4.3, the lifetime of signal IDs is the entire program, and it is
possible to call registerSignal () from initializers of global variables, e.g. static class
members. In earlier versions, signal IDs were usually allocated in initialize (), and
were only valid for that simulation run.

Emitting Signals

The emit () family of functions emit a signal from the module or channel. They take two
parameters, the signal ID (simsignal_t) and the value:

emit (lengthSignalId, queue.length());

The value can be of type bool, long, double, simtime_t, const char =, Or (const) cOb-
ject . Other types can be cast into one of these types, or wrapped into an object subclassed
from cObject.

When there are no listeners, the runtime cost of emit () is usually minimal. However, if
producing a value has a significant runtime cost, then the mayHaveListeners () or hasLis—
teners () method can be used to check beforehand whether the given signal has any listeners
at all - if not, emitting the signal can be skipped. For some signals (in OMNeT++ 4.3, the first
64 signals used), the information whether it has listeners is cached per component, and can
be produced in constant time.

Example usage:

if (mayHavelisteners (distanceToTargetSignal))

{
double d = sqgrt ((x-targetX) » (x—targetX) + (y-targetY)* (y-targetY));
emit (distanceToTargetSignal, d);

}

The mayHaveListeners () method is very efficient (a constant-time operation) because it only
uses this cached information; if the state is not cached for the signal, it just returns true. In
contrast, hasListeners () will search up to the top of the module tree if the answer is not
cached, so it is generally slower. We recommend that you take into account the cost of pro-
ducing notification information when deciding between mayHaveListeners () and hasLis-
teners ().

Signal Declarations

Since OMNeT++ 4.4, signals can be declared in NED files for documentation purposes, and
OMNeT++ can check that only declared signals are emitted, and that they actually conform to
the declarations (with regard to the data type, etc.)

The following example declares a queue module that emits a signal named queueLength:

103

OMNeT++ Manual — Simple Modules

simple Queue
{
parameters:
@signal [queuelength] (type=long) ;

}

As you can see, signals are declared with the @signal property on the module or channel that
emits it. (NED properties are described in[3.12). The property index corresponds to the signal
name, and the property’s body may declare various attributes of the signal; currently only the
data type is supported.

The type property key is optional; when present, its value should be bool, long, unsigned
long, double, simtime_t, string, or a registered class name optionally followed by a ques-

tion mark. Classes can be registered using the Register_Class () or Register_Abstract_Class ()
macros; these macros create a cObjectFactory instance, and the simulation kernel will call
cObjectFactory’s isInstance () method to check that the emitted object is really a subclass

of the declared class. isInstance () just wraps a C++ dynamic_cast.)

A question mark after the class name means that the signal is allowed to emit NULL pointers.
For example, a module named PPP may emit the frame (packet) object every time it starts
transmiting, and emit NULL when the transmission is completed:

simple PPP
{

parameters:
@signal [txFrame] (type=PPPFrame?); // a PPPFrame or NULL

}

The property index may contain wildcards, which is important if you want to declare signals
whose names are only known at runtime. For example, if a module emits signals called
session-l-seqgno, session-2-seqno, session-3-seqgno, etc. for the individual sessions it
handles, you can declare those signals as:

@signal[session—-*-seqno] () ;

Enabling Signal Checking

In OMNeT++ 4.x, signal checking is turned off by default. You can turn it on with the check-
signals configuration option in omnetpp.ini:

check-signals = true

It is expected that starting with OMNeT++ 5.0, signal checking will be turned on by default
when the simulation kernel is compiled in debug mode. It will continue to be turned off in
release mode simulation kernels due to performance reasons.

Signal Data Objects

When emitting a signal with a cObject* pointer, you can pass as data an object that you
already have in the model, provided you have a suitable object at hand. However, it is often
necessary to declare a custom class to hold all the details, and fill in an instance just for the
purpose of emitting the signal.

104

OMNeT++ Manual — Simple Modules

The custom notification class must be derived from cObject. We recommend that you also
add noncopyable as a base class, because then you don’t need to write a copy constructor,
assignment operator, and dup () function, sparing some work. When emitting the signal, you
can create a temporary object, and pass its pointer to the emit () function.

An example of custom notification classes is the firing of model change notifications (see
4.14.3). The data class that accompanies a signal that announces that a gate or gate vector
is about to be created looks like this:

class cPreGateAddNotification : public cObject, noncopyable
{
public:
cModule #*module;
const char *gateName;
cGate: :Type gateType;
bool isVector;
}i

And the code that emits the signal:

if (hasListeners (PRE_MODEL_CHANGE))
{
cPreGateAddNotification tmp;
tmp.module = this;

tmp.gateName = gatename;
tmp.gateType = type;
tmp.isVector = isVector;

emit (PRE_MODEL_CHANGE, &tmp);

Subscribing to Signals

The subscribe () method registers a listener for a signal. Listeners are objects that extend
the cIListener class. The same listener object can be subscribed to multiple signals. sub-
scribe () has two arguments: the signal and a pointer to the listener object:

cIListener xlistener = ...;
simsignal_t lengthSignalld = registerSignal ("length");
subscribe (lengthSignalld, listener);

For convenience, the subscribe () method has a variant that takes the signal name directly,
so the registerSignal () call can be omitted:

cIListener xlistener = ...;
subscribe ("length", listener);

One can also subscribe at other modules, not only the local one. For example, in order to get
signals from all parts of the model, one can subscribe at the system module level:

cIListener xlistener = ...;
simulation.getSystemModule () —>subscribe ("length", listener);

The unsubscribe () method has the same parameter list as subscribe (), and unregisters
the given listener from the signal:

unsubscribe (lengthSignalId, listener);

105

OMNeT++ Manual — Simple Modules

or

unsubscribe ("length", listener);

It is an error to subscribe the same listener to the same signal twice.

NOTE: When a listener is deleted, it must already be unsubscribed from all components
it has subscribed to. This is explained in [4.14.2]

It is possible to test whether a listener is subscribed to a signal, using the isSubscribed ()
method which also takes the same parameter list.

if (isSubscribed(lengthSignallId, listener))
{

}

For completeness, there are methods for getting the list of signals that the component has sub-
scribed to (getLocallistenedSignals ()), and the list of listeners for a given signal (getLo-
calSignallListeners ()). The former returns std: :vector<simsignal_t>; the latter takes
a signal ID (simsignal_t) and returns std: :vector<cIListenerx>.

The following example prints the number of listeners for each signal:

EV << "Signal listeners:\n";

std::vector<simsignal_t> signals = getLocallListenedSignals{();
for (unsigned int i = 0; i1 < signals.size(); i++) {
simsignal_t signalID = signals[i];
std::vector<cIListener*> listeners = getLocalSignallListeners(signallD);
EV << getSignalName (signalID) << ": " << listeners.size() << " signals\n";
}
Listeners

Listeners are objects that subclass from the cIListener class, which declares the following
methods:

class cIListener
{
public:

virtual ~cIListener() {}
virtual void receiveSignal (cComponent xsrc, simsignal_t id, bool b) = 0;
virtual void receiveSignal (cComponent xsrc, simsignal_t id, long 1) = O;
virtual void receiveSignal (cComponent =xsrc, simsignal_t id, double d) = 0;
virtual void receiveSignal (cComponent =*xsrc, simsignal_t id, simtime_t t) =
virtual void receiveSignal (cComponent xsrc, simsignal_t id, const char =xs)
virtual void receiveSignal (cComponent xsrc, simsignal_t id, cObject *obj)
virtual void finish (cComponent xcomponent, simsignal_t id) {}
virtual void subscribedTo (cComponent xcomponent, simsignal_t id) {}
virtual void unsubscribedFrom (cComponent *component, simsignal_t id) {}

}i

This class has a number of virtual methods:

106

OMNeT++ Manual — Simple Modules

e Several overloaded receiveSignal () methods, one for each data type. Whenever a
signal is emitted (via emit ()), the matching receiveSignal () methods of subscribed
listeners are invoked.

e finish () is called by a component on its local listeners after the component’s finish ()
method was called. If the listener is subscribed to multiple signals or at multiple compo-
nents, the method will be called multiple times. Note that finish () methods in general
are not invoked if the simulation terminates with an error, so this method is not a place
for doing cleanup.

e subscribedTo (), unsubscribedFrom() are called when this listener object is sub-
scribed /unsubscribed to (from) a signal. These methods give the opportunity for lis-
teners to track whether and where they are subscribed. It is also OK for a listener to
delete itself in the last statement of the unsubscribedFrom () method, but you must be
sure that there are no other places the same listener is still subscribed.

Since cIListener has a large number of pure virtual methods, it is more convenient to
subclass from cListener, a do-nothing implementation instead. It defines finish (), sub-
scribedTo () and unsubscribedFrom() with an empty body, and the receiveSignal ()
methods with a bodies that throw a "Data type not supported" error. You can redefine
the receiveSignal () method(s) whose data type you want to support, and signals emitted
with other (unexpected) data types will result in an error instead of going unnoticed.

The order in which listeners will be notified is undefined (it is not necessarily the same order
in which listeners were subscribed.)

Listener Life Cycle

When a component (module or channel) is deleted, it automatically unsubscribes (but does
not delete) the listeners it has. When a module is deleted, it first unsubscribes all listeners
from all modules and channels in its submodule tree before starting to recursively delete the
modules and channels themselves.

When a listener is deleted, it must already be unsubscribed from all components at that
point. If it is not unsubscribed, pointers to the dead listener object will be left in the compo-
nents’ listener lists, and the components will crash inside an emit () call, or when they try
to invoke unsubscribedFrom () on the dead listener from their destructors. The cIListener
class contains a subscription count, and prints a warning message when it is not zero in the
destructor.

NOTE: If your module has added listeners to other modules (e.g. the toplevel module),
these listeners must be unsubscribed in the module destructor at latest. Remember to
make sure the modules still exist before you call unsubscribe () on them, unless they
are an ancestor of your module in the module tree.

4.14.3 Listening to Model Changes

In simulation models it is often useful to hold references to other modules, a connecting
channel or other objects, or to cache information derived from the model topology. However,
such pointers or data may become invalid when the model changes at runtime, and need to be
updated or recalculated. The problem is how to get notification that something has changed
in the model.

107

OMNeT++ Manual — Simple Modules

NOTE: Whenever you see a cModulex, cChannelx, cGate* or similar pointer kept as
state in a simple module, you should think about how it will be kept up-to-date if the
model changes at runtime.

The solution is, of course, signals. OMNeT++ has two built-in signals, PRE_MODEL_CHANGE
and POST_MODEL_CHANGE (these macros are simsignal_t values, not names) that are emitted
before and after each model change.

Pre/post model change notifications are emitted with data objects that carry the details of the
change. The data classes are:

e cPreModuleAddNotification / cPostModuleAddNotification

e cPreModuleDeleteNotification / cPostModuleDeleteNotification

e cPreModuleReparentNotification / cPostModuleReparentNotification

e cPreGateAddNotification / cPostGateAddNotification

e cPreGateDeleteNotification / cPostGateDeleteNotification

e cPreGateVectorResizeNotification / cPostGateVectorResizeNotification
e cPreGateConnectNotification / cPostGateConnectNotification

e cPreGateDisconnectNotification / cPostGateDisconnectNotification

e cPrePathCreateNotification / cPostPathCreateNotification

e cPrePathCutNotification / cPostPathCutNotification

e cPreParameterChangeNotification / cPostParameterChangeNotification

e cPreDisplayStringChangeNotification / cPostDisplayStringChangeNotification

They all subclass from cModelChangeNotification, which is of course a cObject. Inside
the listener, you can use dynamic_cast<> to figure out what notification arrived.

NOTE: Please look up these classes in the API documentation to see their data fields,
when exactly they get fired, and what one needs to be careful about when using them.

An example listener that prints a message when a module is deleted:

class MylListener : public clListener

{
}i

void MyListener::receiveSignal (cComponent xsrc, simsignal_t id, cObject =xobj)
{
if (dynamic_cast<cPreModuleDeleteNotification %> (obj))
{
cPreModuleDeleteNotification xdata = (cPreModuleDeleteNotification =)obij;
EV << "Module " << data->module->getFullPath() << " is about to be deleted\n"

108

OMNeT++ Manual — Simple Modules

If you'd like to get notification about the deletion of any module, you need to install the listener
on the system module:

simulation.getSystemModule () ->subscribe (PRE_MODEL_CHANGE, listener);

NOTE: PRE_MODEIL_CHANGE and POST_MODEIL_CHANGE are fired on the module (or chan-
nel) affected by the change, and not on the module which executes the code that causes
the change. For example, pre-module-deleted is fired on the module to be removed, and
post-module-deleted is fired on its parent (because the original module no longer exists),
and not on the module that contains the deleteModule () call.

NOTE: A listener will not receive pre/post-module-deleted notifications if the whole sub-
module tree that contains the subscription point is deleted. This is because compound
module destructors begin by unsubscribing all modules/channels in the subtree before
starting recursive deletion.

4.15 Signal-Based Statistics Recording

4.15.1 Motivation

One use of signals is to expose variables for result collection without telling where, how, and
whether to record them. With this approach, modules only publish the variables, and the
actual result recording takes place in listeners. Listeners may be added by the simulation
framework (based on the configuration), or by other modules (for example by dedicated result
collection modules).

The signals approach allows for several possibilities:

e Provides a controllable level of detail: in some simulation runs you may want to record
all values as a time series, in other runs only record the mean, time average, minimum/-
maximum value, standard deviation etc, and in yet other runs you may want to record
the distribution as a histogram;

e Depending on the purpose of the simulation experiment, you may want to process the
results before recording them, for example record a smoothed or filtered value, record
the percentage of time the value is nonzero or over a threshold, record the sum of the
values, etc.;

¢ You may want aggregate statistics, e.g. record the total number of packet drops or the
average end-to-end delay for the whole network;

e You may want to record combined statistics, for example a drop percentage (drop coun-
t/total number of packets);

e You may want to ignore results generated during the warm-up period or during other
transients.

With the signals approach the above goals can be fulfilled.

109

OMNeT++ Manual — Simple Modules

4.15.2 Declaring Statistics
Introduction

In order to record simulation results based on signals, one must add @statistic properties
to the simple module’s (or channel’s) NED definition. A @statistic property defines the
name of the statistic, which signal(s) are used as input, what processing steps are to be
applied to them (e.g. smoothing, filtering, summing, differential quotient), and what properties
are to be recorded (minimum, maximum, average, etc.) and in which form (vector, scalar,
histogram). Record items can be marked optional, which lets you denote a “default” and a
more comprehensive “all” result set to be recorded; the list of record items can be further
tweaked from the configuration. One can also specify a descriptive name (“title”) for the
statistic, and also a measurement unit.

The following example declares a queue module with a queue length statistic:

simple Queue
{
parameters:
@statistic[queuelLength] (record=max, timeavg, vector?);
gates:
input in;
output out;
}

As you can see, statistics are represented with indexed NED properties (see [3.12). The prop-
erty name is always statistic, and the index (here, queueLength) is the name of the statis-
tic. The property value, that is, everything inside the parentheses, carries hints and extra
information for recording.

The above @statistic declaration assumes that module’s C++ code emits the queue’s up-
dated length as signal queueLength whenever elements are inserted into the queue or are
removed from it. By default, the maximum and the time average of the queue length will
be recorded as scalars. One can also instruct the simulation (or parts of it) to record “all”
results; this will turn on optional record items, those marked with a question mark, and then
the queue lengths will also be recorded into an output vector.

NOTE: The configuration lets you fine-tune the list of result items even beyond the
default and all settings; see section [12.2.4]

In the above example, the signal to be recorded was taken from the statistic name. When that
is not suitable, the source property key lets you specify a different signal as input for the
statistic. The following example assumes that the C++ code emits a glen signal, and declares
a queuelength statistic based on that:

simple Queue
{
parameters:
@signal[glen] (type=int); // optional
@statistic[queuelength] (source=glen; record=max,timeavg,vector?);

110

OMNeT++ Manual — Simple Modules

Note that beyond the source=glen property key we have also added a signal declaration
(@signal property) for the glen signal. Declaring signals is currently optional and in fact
@signal properties are currently ignored by the system, but it is a good practice nevertheless.

It is also possible to apply processing to a signal before recording it. Consider the following
example:

@statistic[dropCount] (source=count (drop); record=last,vector?);

This records the total number of packet drops as a scalar, and optionally the number of
packets dropped in the function of time as a vector, provided the C++ code emits a drop
signal every time a packet is dropped. The value and even the data type of the drop signal is
indifferent, because only the number of emits will be counted. Here, count () is a result filter.

NOTE: Starting from OMNeT++ 4.4, items containing parens (e.g. count (drop)) no
longer need to be enclosed in quotation marks.

Another example:

@statistic[droppedBytes] (source=sum (packetBytes (pkdrop)); record=last,
vector?);

This example assumes that the C++ code emits a pkdrop signal with a packet (cPacket*
pointer) as a value. Based on that signal, it records the total number of bytes dropped (as a
scalar, and optionally as a vector too). The packetBytes () filter extracts the number of bytes
from each packet using cPacket’s getByteLength () method, and the sum () filter, well, sums
them up.

Arithmetic expressions can also be used. For example, the following line computes the number
of dropped bytes using the packetBits () filter.

@statistic[droppedBytes] (source=sum (8*packetBits (pkdrop)); record=last,
vector?);

The source can also combine multiple signals in an arithmetic expression:
@statistic[dropRate] (source=count (drop) /count (pk); record=last,vector?);
When multiple signals are used, a value arriving on either signal will result in one output
value. The computation will use the last values of the other signals (sample-hold interpola-

tion). One limitation regarding multiple signals is that the same signal cannot occur twice,
because it would cause glitches in the output.

Record items may also be expressions and contain filters. For example, the statistic below is
functionally equivalent to one of the above examples: it also computes and records as scalar
and as vector the total number of bytes dropped, using a cPacket-valued signal as input;
however, some of the computations have been shifted into the recorder part.

@statistic[droppedBytes] (source=packetBits (pkdrop); record=last (8+sum),
vector (8+sum) ?) ;

Property Keys

The following keys are understood in @statistic properties:

source : Defines the input for the recorders (see record= key). When missing, the statistic
name is taken as the signal name;

111

OMNeT++ Manual — Simple Modules

record : Contains a list of recording modes, separated by comma. Recording modes define
how to record the source (see source= key).

title : A longer, descriptive name for the statistic signal; result visualization tools may use it
as chart label, e.g. in the legend.

unit : Measurement unit of the values. This may also appear in charts.

interpolationmode : Defines how to interpolate signal values where needed (e.g. for draw-
ing); possible values are none, sample-hold, backward-sample-hold, linear.

enum : Defines symbolic names for various integer signal values. The property value must be
a string, containing name=value pairs separated by comma. Example: "IDLE=1, BUSY=2, DOWN=3".

Available Filters and Recorders

The following table contains the list of predefined result filters. All filters in the table output a
value for each input value.

Filter Description

count Computes and outputs the count of values received so far.

sum Computes and outputs the sum of values received so far.

min Computes and outputs the minimum of values received so
far.

max Computes and outputs the maximum of values received so
far.

mean Computes and outputs the average (sum / count) of values
received so far.

timeavg Regards the input values and their timestamps as a step

function (sample-hold style), and computes and outputs
its time average (integral divided by duration).

constant0 Outputs a constant O for each received value (independent
of the value).

constantl Outputs a constant 1 for each received value (independent
of the value).

packetBits Expects cPacket pointers as value, and outputs the bit
length for each received one. Non-cPacket values are ig-
nored.

packetBytes Expects cPacket pointers as value, and outputs the byte
length for each received one. Non-cPacket values are ig-
nored.

sumPerDuration | For each value, computes the sum of values received so
far, divides it by the duration, and outputs the result.
removeRepeats Removes repeated values, i.e. discards values that are the
same as the previous value.

The list of predefined result recorders:

Recorder Description

last Records the last value into an output scalar.

count Records the count of the input values into an output
scalar; functionally equivalent to last (count)

112

OMNeT++ Manual — Simple Modules

sum Records the sum of the input values into an output scalar
(or zero if there was none); functionally equivalent to
last (sum)

min Records the minimum of the input values into an output

scalar (or positive infinity if there was none); functionally
equivalent to last (min)

max Records the maximum of the input values into an output
scalar (or negative infinity if there was none); functionally
equivalent to last (max)

mean Records the mean of the input values into an output
scalar (or NaN if there was none); functionally equivalent
to last (mean)

timeavg Regards the input values with their timestamps as a step
function (sample-hold style), and records the time aver-
age of the input values into an output scalar; functionally
equivalent to last (timeavg)

stats Computes basic statistics (count, mean, std.dev, min,
max) from the input values, and records them into the out-
put scalar file as a statistic object.

histogram | Computes a histogram and basic statistics (count, mean,
std.dev, min, max) from the input values, and records the
reslut into the output scalar file as a histogram object.
vector Records the input values with their timestamps into an
output vector.

NOTE: You can have the list of available result filters and result recorders printed
by executing the opp_run -h resultfilters andopp_run -h resultrecorders com-
mands.

Naming and Attributes of Recorded Results

The names of recorded result items will be formed by concatenating the statistic name and
the recording mode with a colon between them: "<statisticName>: <recordingMode>".

Thus, the following statistics

@statistic[dropRate] (source=count (drop) /count (pk); record=last,vector?);
@statistic[droppedBytes] (source=packetBytes (pkdrop); record=sum,vector (sum)?);

will produce the following scalars: dropRate:last, droppedBytes:sum, and the following
vectors: dropRate:vector, droppedBytes:vector (sum).

All property keys (except for record) are recorded as result attributes into the vector file or
scalar file. The title property will be tweaked a little before recording: the recording mode
will be added after a comma, otherwise all result items saved from the same statistic would
have exactly the same name.

Example: "Dropped Bytes, sum", "Dropped Bytes, vector(sum)"

It is allowed to use other property keys as well, but they won’t be interpreted by the OMNeT++
runtime or the result analysis tool.

113

OMNeT++ Manual — Simple Modules

Source and Record Expressions in Detail

To fully understand source and record, it will be useful to see how result recording is set
up.

When a module or channel is created in the simulation, the OMNeT++ runtime examines the
@statistic properties on its NED declaration, and adds listeners on the signals they mention
as input. There are two kinds of listeners associated with result recording: result filters and
result recorders. Result filters can be chained, and at the end of the chain there is always
a recorder. So, there may be a recorder directly subscribed to a signal, or there may be a
chain of one or more filters plus a recorder. Imagine it as a pipeline, or rather a “pipe tree”,
where the tree roots are signals, the leaves are result recorders, and the intermediate nodes
are result filters.

Result filters typically perform some processing on the values they receive on their inputs (the
previous filter in the chain or directly a signal), and propagate them to their output (chained
filters and recorders). A filter may also swallow (i.e. not propagate) values. Recorders may
write the received values into an output vector, or record output scalar(s) at the end of the
simulation.

Many operations exist both in filter and recorder form. For example, the sum filter propagates
the sum of values received on its input to its output; and the sum recorder only computes the
the sum of received values in order to record it as an output scalar on simulation completion.

The next figure illustrates which filters and recorders are created and how they are connected
for the following statistics:

@statistic[droppedBytes] (source=8xpacketBits (pkdrop); record=sum,vector (sum));

pkdrop packetBits

Figure 4.4: Result filters and recorders chained

HINT: To see how result filters and recorders have been set up for a particular simula-
tion, run the simulation with the debug-statistics-recording configuration option,
e.g. specify ~debug-statistics—recording=true on the command line.

4.15.3 Statistics Recording for Dynamically Registered Signals

It is often convenient to have a module record statistics per session, per connection, per client,
etc. One way of handling this use case is registering signals dynamically (e.g. sessionl-
jitter, session2-jitter, ...), and setting up @statistic-style result recording on each.

The NED file would look like this:

114

OMNeT++ Manual — Simple Modules

@signal[session*-jitter] (type=simtime_t); // note the wildcard
@statisticTemplate([sessionditter] (record=mean, vector?);

In the C++ code of the module, you need to register each new signal with registerSignal (),
and in addition, tell OMNeT++ to set up statistics recording for it as described by the @statis-
ticTemplate property. The latter can be achieved by calling ev.addResultRecorders ().

char signalName[32];
sprintf (signalName, "session%d-jitter", sessionNum);
simsignal_t signal = registerSignal (signalName) ;

char statisticName[32];

sprintf (statisticName, "session%d-jitter", sessionNum);

cProperty xstatisticTemplate =
getProperties () —->get ("statisticTemplate", "sessionJditter");

ev.addResultRecorders (this, signal, statisticName, statisticTemplate);

In the @statisticTemplate property, the source key will be ignored (because the signal
given as parameter will be used as source). The actual name and index of property will also
be ignored. (With @statistic, the index holds the result name, but here the name is explicitly
specified in the statisticName parameter.)

When multiple signals are recorded using a common @statisticTemplate property, you'll
want the titles of the recorded statistics to differ for each signal. This can be achieved by
using dollar variables in the title key of @statisticTemplate. The following variables are
available:

e Sname: name of the statistic
e Scomponent: component fullpath
e Smode: recording mode

e SnamePart [0-9]+: given part of statistic name, when split along colons (:); numbering
starts with 1

For example, if the statistic name is "conn:host1l-to-host4 (3) :bytesSent", and the title is
"bytes sent in connection $namePart2", it will become "bytes sent in connection
hostl-to-host4 (3)".

4.15.4 Adding Result Filters and Recorders Programmatically

As an alternative to @statisticTemplate and ev.addResultRecorders (), it is also possi-
ble to set up result recording programmatically, by creating and attaching result filters and
recorders to the desired signals.

The following code example sets up recording to an output vector after removing duplicate
values, and is essentially equivalent to the following @statistic line:

@statistic[queuelength] (source=glen; record=vector (removeRepeats);
title="Queue Length"; unit=packets);

The C++ code:

115

OMNeT++ Manual — Simple Modules

simsignal_t signal = registerSignal ("glen");

cResultFilter xremoveRepeatsFilter =
cResultFilterDescriptor: :get ("removeRepeats")->create();

cResultRecorder *vectorRecorder =
cResultRecorderDescriptor::get ("vector")->create();
opp_string _map *attrs = new opp_string _map;
(xattrs) ["title"] = "Queue Length";
(xattrs) ["unit"] = "packets";
vectorRecorder->init (this, "queuelength", "vector", NULL, attrs);

subscribe (signal, removeRepeatsFilter);
removeRepeatsFilter—->addDelegate (vectorRecorder) ;

4.15.5 Emitting Signals

Emitting signals for statistical purposes does not differ much from emitting signals for any
other purpose. Statistic signals are primarily expected to contain numeric values, so the
overloaded emit () functions that take long, double and simtime_t are going to be the most
useful ones.

Emitting with timestamp. The emitted values are associated with the current simulation
time. At times it might be desirable to associate them with a different timestamp, in much
the same way as the recordWithTimestamp () method of cOutvector (see does. For
example, assume that you want to emit a signal at the start of every successful wireless frame
reception. However, whether any given frame reception is going to be successful can only
be known after the reception has completed. Hence, values can only be emitted at reception
completion, and need to be associated with past timestamps.

To emit a value with a different timestamp, an object containing a (timestamp,value) pair
needs to be filled in, and emitted using the emit (simsignal_t, cObject x) method. The
class is called cTimestampedvalue, and it simply has two public data members called time
and value, with types simtime_t and double. It also has a convenience constructor taking
these two values.

NOTE: cTimestampedValue is not part of the signal mechanism. Instead, the result
recording listeners provided by OMNeT++ have been written in a way so that they under-
stand cTimestampedValue, and know how to handle it.

An example usage:

simtime_t frameReceptionStartTime = ...;

double receivePower = ...;

cTimestampedValue tmp (frameReceptionStartTime, receivePower);
emit (recvPowerSignal, &tmp);

If performance is critical, the cTimestampedvalue object may be made a class member or a
static variable to eliminate object construction/destruction time

Timestamps must be monotonically increasing.

111t is safe to use a static variable here because the simulation program is single-threaded, but ensure that there
isn’t a listener somewhere that would modify the same static variable during firing.

116

OMNeT++ Manual — Simple Modules

Emitting non-numeric values. Sometimes it is practical to have multi-purpose signals, or
to retrofit an existing non-statistical signal so that it can be recorded as a result. For this
reason, signals having non-numeric types (that is, const char » and cObject x) may also
be recorded as results. Wherever such values need to be interpreted as numbers, the following
rules are used by the built-in result recording listeners:

e Strings are recorded as 1.0, except for NULL which is recorded as 0.0;

e Objects that can be cast to cITimestampedvValue are recorded using the getSignal-
Time () and getSignalValue () methods of the class;

e Other objects are recorded as 1.0, except for NULL pointers which are recorded as 0.0.

cITimestampedValue is a C++ interface that may be used as an additional base class for any
class. It is declared like this:

class cITimestampedValue {

public:
virtual ~cITimestampedvValue () {}
virtual double getSignalValue (simsignal_t signalID) = 0;

virtual simtime_t getSignalTime (simsignal_t signallID);
}i

getSignalValue () is pure virtual (it must return some value), but getSignalTime () has a
default implementation that returns the current simulation time. Note the signalID argu-
ment that allows the same class to serve multiple signals (i.e. to return different values for
each).

4.15.6 Writing Result Filters and Recorders

You can define your own result filters and recorders in addition to the built-in ones. Similar
to defining modules and new NED functions, you have to write the implementation in C++,
and then register it with a registration macro to let OMNeT++ know about it. The new result
filter or recorder can then be used in the source= and record= attributes of @statistic
properties just like the built-in ones.

Result filters must be subclassed from cResultFilter or from one of its more specific sub-
classes cNumericResultFilter and cObjectResultFilter. The new result filter class needs
to be registered using the Register ResultFilter (NAME, CLASSNAME) macro.

Similarly, a result recorder must subclass from the cResultRecorder or the more specific
cNumericResultRecorder class, and be registered using the Register ResultRecorder (NAME,
CLASSNAME) macro.

An example result filter implementation from the simulation runtime:

J *k
* Filter that outputs the sum of signal values divided by the measurement
* interval (simtime minus warmup period).
*/
class SumPerDurationFilter : public cNumericResultFilter
{
protected:
double sum;
protected:

117

OMNeT++ Manual — Simple Modules

cResultFilter

cIListener

cResultListener

cNumericResultFilter ‘

cObjectResultFilter

[

SumFilter,

MinFilter,

MaxFilter,
TimeAverageFilter,

A

CountFilter,

PacketBitsFilter,
PacketBytesFilter,

cResultRecorder

| cNumericResultRecorder

A

CountRecorder,

VectorRecorder,
LastValueRecorder,
HistogramRecorder,

SumRecorder,

MinRecorder,

MaxRecorder,
TimeAverageRecorder,

Figure 4.5: Inheritance of result filter and recorder classes

virtual bool process(simtime_t& t,

public:

SumPerDurationFilter ()

bi

Register_ResultFilter ("sumPerDuration",

bool SumPerDurationFilter::process(simtime_t& t,

{
sum += value;
value = sum /
return true;
}

(simTime ()

{sum = 0;}

doubles& value) ;

SumPerDurationFilter);

double& value)

- simulation.getWarmupPeriod());

118

OMNeT++ Manual — Messages and Packets

Chapter 5

Messages and Packets

5.1 Overview

Messages are a central concept in OMNeT++. In the model, message objects represent events,
packets, commands, jobs, customers or other kinds of entities, depending on the model do-
main.

Messages are represented with the cMessage class and its subclass cPacket. cPacket is
used for network packets (frames, datagrams, transport packets, etc.) in a communication
network, and cMessage is used for everything else. Users are free to subclass both cMessage
and cPacket to create new types and to add data.

cMessage has the following fields; some are used by the simulation kernel, and others are
provided for the convenience of the simulation programmer:

e The name field is a string (const char =), which can be freely used by the simulation
programmer. The message name is displayed at many places in the graphical runtime in-
terface, so it is generally useful to choose a descriptive name. Message name is inherited
from cObject (see section|7.1.1).

e Message kind is an integer field. Some negative values are reserved by the simulation
library, but zero and positive values can be freely used in the model for any purpose.
Message kind is typically used to carry a value that conveys the role, type, category or
identity of the message.

e The scheduling priority field is used by the simulation kernel to determine the delivery
order of messages that have the same arrival time values. This field is rarely used in
practice.

e The send time, arrival time, source module, source gate, destination module, destination
gate fields store information about the message’s last sending or scheduling, and should
not be modified from the model. These fields are primarily used internally by the simu-
lation kernel while the message is in the future events set (FES), but the information is
still in the message object when the message is delivered to a module.

e Time stamp (not to be confused with arrival time) is a utility field, which the programmer
can freely use for any purpose. The time stamp is not examined or changed by the
simulation kernel at all.

119

OMNeT++ Manual — Messages and Packets

e The parameter list, control info and context pointer fields make some simulation tasks
easier to program, and they will be discussed later.

The cPacket class extends cMessage with fields that are useful for representing network
packets:

e The packet length field represents the length of the packet in bits. It is used by the
simulation kernel to compute the transmission duration when a packet travels through
a connection that has an assigned data rate, and also for error modeling on channels
with a nonzero bit error rate.

The encapsulated packet field helps modeling protocol layers by supporting the concept
of encapsulation and decapsulation.

The bit error flag field carries the result of error modelling after the packet is sent through
a channel that has a nonzero packet error rate (PER) or bit error rate (BER). It is up to
the receiver to examine this flag after having received the packet, and to act upon it.

The duration field carries the transmission duration after the packet was sent through a
channel with a data rate.

e The is-reception-start flag tells whether this packet represents the start or the end of
the reception after the packet travelled through a channel with a data rate. This flag is
controlled by the deliver-on-reception-start flag of the receiving gate.

5.2 The cMessage Class

5.2.1 Basic Usage

The cMessage constructor accepts an object name and a message kind, both optional:

cMessage (const char *name=NULL, short kind=0);

Descriptive message names can be very useful when tracing, debugging or demonstrating the
simulation, so it is recommended to use them. Message kind is usually initialized with a sym-
bolic constant (e.g. an enum value) which signals what the message object represents. Only
positive values and zero can be used — negative values are reserved for use by the simulation
kernel.

The following lines show some examples of message creation:
cMessage *msgl = new cMessage () ;

cMessage *msg2 new cMessage ("timeout");
cMessage *msg3 = new cMessage ("timeout", KIND_TIMEOUT) ;

Once a message has been created, its basic data members can be set with the following
methods:

void setName (const char xname);
void setKind (short k) ;

void setTimestamp () ;

void setTimestamp (simtime_t t);
void setSchedulingPriority (short p);

120

OMNeT++ Manual — Messages and Packets

The argument-less setTimeStamp () method is equivalent to setTimeStamp (simTime ()).

The corresponding getter methods are:

const char *getName () const;

short getKind () const;

simtime_t getTimestamp () const;
short getSchedulingPriority () const;

The getName () /setName () methods are inherited from a generic base class in the simulation
library, cNamedOb ject.

Two more interesting methods:

bool isPacket () const;
simtime_t getCreationTime () const;

The isPacket () method returns true if the particular message object is a subclass of cPacket,
and false otherwise. As isPacket () is implemented as a virtual function that just con-
tains a return false or a return true statement, it might be faster than calling dy-
namic_cast<cPacket*>.

The getCreationTime () method returns the creation time of the message. It is worthwhile
to mention that with cloned messages (see dup () later), the creation time of the original
message is returned and not the time of the cloning operation. This is particularly useful when
modeling communication protocols, because many protocols clone the transmitted packages
to be able to do retransmissions and/or segmentation/reassembly.

5.2.2 Duplicating Messages

It is often necessary to duplicate a message or a packet, for example, to send one and keep a
copy. Duplication can be done in the same way as for any other OMNeT++ object:

cMessage =*copy = msg—>dup() ;

The resulting message (or packet) will be an exact copy of the original including message
parameters and encapsulated messages, except for the message ID field. The creation time
field is also copied, so for cloned messages getCreationTime () will return the creation time
of the original, not the time of the cloning operation.

If you subclass from cMessage or cPacket, you need to reimplement dup () ; the recommended
implementation is to delegate to the copy constructor of the new class:

class FooMessage : public cMessage {
public:
FooMessage (const FooMessage& other) {...}
virtual FooMessage xdup () const {return new FooMessage (xthis);}

}i

For generated classes (chapter [6), this is taken care of automatically.

I'Note, however, that the simulation library may delay the duplication of the encapsulated message until it is really

needed; see section

121

OMNeT++ Manual — Messages and Packets

5.2.3 Message IDs

Every message object has a unique numeric message ID. It is normally used for identifying
the message in a recorded event log file, but may occasionally be useful for other purposes as
well. If you clone a message (msg->dup ()), the clone will have a different ID.

There is also another ID called tree ID. A tree ID starts out with the value of the message
ID; however, if you clone a message, the clone will retain the tree ID of the original. Thus,
messages that have the same tree ID have been created by cloning the same original message
or its clones (with one exception, the original message). The size of 1ong is usually enough so
that IDs remain unique during a single simulation run (i.e. the counter does not wrap).

The methods for obtaining message IDs:

long getId() const;
long getTreeld() const;

5.2.4 Control Info

One of the main application areas of OMNeT++ is the simulation of telecommunication net-
works. Here, protocol layers are usually implemented as modules which exchange packets.
Packets themselves are represented by messages subclassed from cPacket.

However, communication between protocol layers requires sending additional information to
be attached to packets. For example, a TCP implementation sending down a TCP packet to
IP will want to specify the destination IP address and possibly other parameters. When IP
passes up a packet to TCP after decapsulation from the IP header, it will want to let TCP know
at least the source IP address.

This additional information is represented by control info objects in OMNeT++. Control info
objects have to be subclassed from cObject (a small footprint base class with no data mem-
bers), and can be attached to any message. cMessage has the following methods for this
purpose:

void setControlInfo (cObject xcontrolInfo);
cObject *getControlInfo() const;
cObject *removeControlInfol();

When a "command" is associated with the message sending (such as TCP OPEN, SEND,
CLOSE, etc), the message kind field (getKind (), setKind () methods of cMessage) should
carry the command code. When the command doesn’t involve a data packet (e.g. TCP CLOSE
command), a dummy packet (empty cMessage) can be sent.

An object set as control info via setControlInfo () will be owned by the message object.
When the message is deallocated, the control info object is deleted as well.

5.2.5 Information About the Last Arrival

The following methods return the sending and arrival times that correspond to the last sending
of the message.

simtime_t getSendingTime () const;
simtime_t getArrivalTime () const;

122

OMNeT++ Manual — Messages and Packets

The following methods can be used to determine where the message came from and which
gate it arrived on (or will arrive if it is currently scheduled or under way.) There are two sets
of methods, one returning module/gate Ids, and the other returning pointers.

int getSenderModulelId() const;

int getSenderGateId() const;

int getArrivalModuleId() const;
int getArrivalGateId() const;
cModule xgetSenderModule () const;
cGate xgetSenderGate () const;
cModule *getArrivalModule () const;
cGate *getArrivalGate () const;

There are further convenience functions to tell whether the message arrived on a specific gate
given with id or with name and index.

bool arrivedOn (int gateId) const;
bool arrivedOn (const char xgatename) const;
bool arrivedOn (const char xgatename, int gateindex) const;

5.2.6 Display String

Display strings affect the message’s visualization on animating user interfaces, e.g. Tkenv.
Message objects do not store a display string by default, but contain a getDisplayString ()
method that can be overridden in subclasses to return a desired string. The method:

const char xgetDisplayString() const;

See chapter [8| for more information on display strings.

5.3 Self-Messages

5.3.1 Using a Message as Self-Message

Messages are often used to represent events internal to a module, such as a periodically firing
timer to represent expiry of a timeout. A message is termed self-message when it is used in
such a scenario — otherwise self-messages are normal messages of class cMessage or a class
derived from it.

When a message is delivered to a module by the simulation kernel, you can call the is-
SelfMessage () method to determine if it is a self-message; it other words, if it was scheduled
with scheduleAt () or was sent with one of the send... () methods. The isScheduled()
method returns true if the message is currently scheduled. A scheduled message can also be
cancelled (cancelEvent ()).

bool isSelfMessage () const;
bool isScheduled() const;

The methods getSendingTime() / getArrivalTime () are also useful with self-messages:
they return the time the message was scheduled and arrived (or will arrive; while the message
is scheduled, arrival time is the time it will be delivered to the module).

123

OMNeT++ Manual — Messages and Packets

5.3.2 Context Pointer

cMessage contains a context pointer of type voidx, which can be accessed by the following
functions:

void setContextPointer (void x*p);
void xgetContextPointer () const;

The context pointer can be used for any purpose by the simulation programmer. It is not used
by the simulation kernel, and it is treated as a mere pointer (no memory management is done
on it).

Intended purpose: a module which schedules several self-messages (timers) will need to iden-
tify a self-message when it arrives back to the module, ie. the module will have to determine
which timer went off and what to do then. The context pointer can be made to point at a data
structure kept by the module which can carry enough “context” information about the event.

5.4 The cPacket Class

5.4.1 Basic Usage

The cPacket constructor is similar to the cMessage constructor, but it accepts an additional
bit length argument:

cPacket (const char xname=NULL, short kind=0, int64 bitLength=0);

The most important field cPacket has over cMessage is the message length. This field is kept
in bits, but it can also be set/get in bytes. If the bit length is not a multiple of eight, the
getByteLength () method will round it up.

void setBitLength (int64 1);
void setBytelLength (int64d 1);
void addBitLength (int64 delta);
void addBytelLength (int64 delta);
int64 getBitLength() const;
int64 getBytelLength () const;

Another extra field is the bit error flag. It can be accessed with the following methods:

void setBitError (bool e);
bool hasBitError () const;

5.4.2 Identifying the Protocol

In OMNeT++ protocol models, the protocol type is usually represented in the message sub-
class. For example, instances of class IPvé6Datagram represent IPv6 datagrams and Eth-
ernetFrame represents Ethernet frames. The C++ dynamic_cast operator can be used to
determine if a message object is of a specific protocol.

An example:
cMessage *msg = receive();
if (dynamic_cast<IPvé6Datagram =*>(msg) != NULL)

124

OMNeT++ Manual — Messages and Packets

IPv6Datagram *xdatagram = (IPvéDatagram =*)msg;

5.4.3 Information About the Last Transmission

When a packet has been received, some information can be obtained about the transmission,
namely the transmission duration and the is-reception-start flag. They are returned by the
following methods:

simtime_t getDuration() const;
bool isReceptionStart () const;

5.4.4 Encapsulating Packets

It is often necessary to encapsulate a packet into another when you are modeling layered
protocols of computer networks.

The following cPacket methods are associated with encapsulation:

void encapsulate (cPacket *packet);
cPacket xdecapsulate();
cPacket xgetEncapsulatedPacket () const;

The encapsulate () function encapsulates a packet into another one. The length of the packet
will grow by the length of the encapsulated packet. An exception: when the encapsulating
(outer) packet has zero length, OMNeT++ assumes it is not a real packet but some out-of-
band signal, so its length is left at zero.

A packet can only hold one encapsulated packet at a time; the second encapsulate () call
will result in an error. It is also an error if the packet to be encapsulated is not owned by the
module.

You can get back the encapsulated packet by calling decapsulate (). decapsulate () will
decrease the length of the packet accordingly, except if it was zero. If the length would become
negative, an error occurs.

The getEncapsulatedPacket () function returns a pointer to the encapsulated packet, or
NULL if no packet is encapsulated.

Example usage:
cPacket xdata = new cPacket ("data");

data->setBytelength (1024) ;

UDPPacket *udp = new UDPPacket ("udp"); // subclassed from cPacket
udp->setByteLength (8);

udp—->encapsulate (data) ;
ev << udp->getByteLength() << endl; // —-—> 8+1024 = 1032

And the corresponding decapsulation code:

cPacket xpayload = udp->decapsulate();

125

OMNeT++ Manual — Messages and Packets

5.4.5 Reference Counting

Since the 3.2 release, OMNeT++ implements reference counting of encapsulated packets,
meaning that if you dup () a packet that contains an encapsulated packet, then the encap-
sulated packet will not be duplicated, only a reference count incremented. Duplication of the
encapsulated packet is deferred until decapsulate () actually gets called. If the outer packet
is deleted without its decapsulate () method ever being called, then the reference count of
the encapsulated packet is simply decremented. The encapsulated packet is deleted when its
reference count reaches zero.

Reference counting can significantly improve performance, especially in LAN and wireless
scenarios. For example, in the simulation of a broadcast LAN or WLAN, the IP, TCP and
higher layer packets won’t be duplicated (and then discarded without being used) if the MAC
address doesn’t match in the first place.

The reference counting mechanism works transparently. However, there is one implication:
one must not change anything in a packet that is encapsulated into another! That is,
getEncapsulatedPacket () should be viewed as if it returned a pointer to a read-only object
(it returns a const pointer indeed), for quite obvious reasons: the encapsulated packet may
be shared between several packets, and any change would affect those other packets as well.

5.4.6 Encapsulating Several Packets

The cPacket class does not directly support encapsulating more than one packet, but you
can subclass cPacket or cMessage to add the necessary functionality. (It is recommended
that you use the message definition syntax that will be described in chapter [6]- it can spare
you some work.)

You can store the messages in a fixed-size or a dynamically allocated array, or you can use
STL classes like std::vector or std::1ist. There is one additional “trick” that you might
not expect: your message class has to take ownership of the inserted messages, and release
them when they are removed from the message. These are done via the take () and drop ()
methods. Let us see an example which assumes you have added to the class an std::1list
member called messages that stores message pointers:

void MultiMessage::insertMessage (cMessage »*msq)
{
take (msqg); // take ownership
messages.push_back (msg); // store pointer

}

void MultiMessage: :removeMessage (cMessage »*msq)
{
messages.remove (msqg); // remove pointer
drop(msg); // release ownership

You will also have to provide an operator= () method to make sure your message objects can
be copied and duplicated properly — this is something often needed in simulations (think of
broadcasts and retransmissions!). Section contains more about the things you need to
take care of when deriving new classes.

126

OMNeT++ Manual — Messages and Packets

5.5 Attaching Parameters and Objects

If you want to add parameters or objects to a message, the preferred way to do that is via
message definitions, described in chapter [6]

5.5.1 Attaching Objects

The cMessage class has an internal cArray object which can carry objects. Only objects that
are derived from cObject (most OMNeT++ classes are so) can be attached. The addobject (),
getObject (), hasObject (), removeObject () methods use the object name as the key to the
array. An example:

cLongHistogram *pklenDistr = new cLongHistogram("pklenDistr");
msg->addObject (pklenDistr);

if (msg->hasObject ("pklenDistr"))
{
cLongHistogram xpklenDistr =
(cLongHistogram x) msg->getObject ("pklenDistr");

}

You should take care that names of the attached objects don’t conflict with each other or with
cMsgPar parameter names (see next section). If you do not attach anything to the message
and do not call the getParList () function, the internal cArray object will not be created.
This saves both storage and execution time.

You can attach non-object types (or non-cObject objects) to the message by using cMsgPar’s
voidx pointer 'P’) type (see later in the description of cMsgPar). An example:

struct conn_t *conn = new conn_t; // conn_t is a C struct
msg—>addPar ("conn") = (void x) conn;
msg->par ("conn") .configPointer (NULL, NULL, sizeof (struct conn_t));

5.5.2 Attaching Parameters

The preferred way of extending messages with new data fields is to use message definitions
(see chapter [6).

The old, deprecated way of adding new fields to messages is via attaching cMsgPar objects.
There are several downsides of this approach, the worst being large memory and execution
time overhead. cMsgPar’s are heavy-weight and fairly complex objects themselves. It has
been reported that using cMsgPar message parameters might account for a large part of
execution time, sometimes as much as 80%. Using cMsgPar is also error-prone because
cMsgPar objects have to be added dynamically and individually to each message object. In
contrast, subclassing benefits from static type checking: if you mistype the name of a field in
the C++ code, the compiler can detect the mistake.

If you still need cMsgPars for some reason, here is a short summary. At the sender side you
can add a new named parameter to the message with the addPar () member function, then set
its value with one of the methods setBoolvValue (), setLongValue (), setStringValue (),
setDoubleValue (), setPointerValue (), setObjectValue (), and setXMLValue (). There
are also overloaded assignment operators for the corresponding C/C++ types.

127

OMNeT++ Manual — Messages and Packets

At the receiver side, you can look up the parameter object on the message by name and
obtain a reference to it with the par () member function. hasPar () can be used to check
first whether the message object has a parameter object with the given name. Then the value
can be read with the methods boolvalue (), longValue (), stringValue (), doubleValue (),
pointervalue (), objectValue (), xmlValue (), or by using the provided overloaded type
cast operators.

Example usage:

msg—>addPar ("destAddr") ;
msg—>par ("destAddr") .setLongValue (168) ;

long destAddr = msg->par ("destAddr").longValue();

Or, using overloaded operators:

msg-—>addPar ("destAddr") ;
msg->par ("destAddr") = 168;

long destAddr = msg—>par ("destAddr");

128

OMNeT++ Manual — Message Definitions

Chapter 6

Message Definitions

6.1 Introduction

In practice, you will need to add various fields to cMessage or cPacket to make them useful.
For example, if you are modelling packets in communication networks, you need to have a
way to store protocol header fields in packets. Since the simulation library is written in C++,
the natural way of extending cMessage/cPacket is via subclassing them. However, because
for each field you need to write at least three things (a private data member, a getter and a
setter method), and the resulting class has to integrate with the simulation framework, writing
the necessary C++ code can be a tedious and time-consuming task.

OMNEeT++ offers a more convenient way called message definitions. Message definitions of-
fer you a compact syntax to describe message contents, and the corresponding C++ code is
automatically generated from the definitions. A common complaint about code generators in
general is lack of flexibility: if you have a different idea how the generated code should look,
there is little you can do about it. OMNeT++, however, allows you to extensively customize
the generated class. Even if you need to heavily customize the generated class, message
definitions still save you a great deal of manual work.

6.1.1 The First Message Class

Let us begin with a simple example. Suppose that you need a packet class that carries source
and destination addresses as well as a hop count. You may then write a MyPacket .msg file
with the following contents:

packet MyPacket
{

int srcAddress;

int destAddress;

int remainingHops = 32;
}i

It is the task of the message compiler is to generate C++ classes you can use from your models.
The message compiler is normally invoked automatically for your .msg files during build.

When the message compiler processes MyPacket.msg, it creates the following files: My-
Packet_m.h and MyPacket_m.cc. The generated MyPacket_m.h will contain the following
class declaration:

129

OMNeT++ Manual — Message Definitions

class MyPacket : public cPacket {

virtual int getSrcAddress () const;
virtual void setSrcAddress (int srcAddress);

}i

In your C++ files, you can use the MyPacket class by including the generated header file:

#include "MyPacket_m.h"

MyPacket xpkt = new MyPacket ("pkt");
pkt—>setSrcAddress (localAddr) ;

The MyPacket_m. cc file will contain implementation of the generated MyPacket class as well
as “reflection” code that allows you to inspect these data structures in the Tkenv GUI. The
MyPacket_m.cc file should be compiled and linked into your simulation; this is normally
taken care of automatically.

The following sections describe the message syntax and features in detail.

6.2 Messages and Packets

6.2.1 Defining Messages and Packets

Message and packet contents can be defined in a syntax resembling C structs. The keyword
can be message or packet; they cause the generated C++ class to be derived from cMessage
and cPacket, respectively. (Further keywords, class and struct, will be covered later.)

An example packet definition:

packet FooPacket

{
int sourceAddress;
int destAddress;
bool hasPayload;

}i

Saving the above code into a FooPacket .msg file and processing it with the message compiler,
opp_msgc, will produce the files FooPacket_m.h and FooPacket_m.cc. The header file will
contain the declaration of the generated C++ class.

The generated class will have a constructor that optionally accepts object name and message
kind, and also a copy constructor. An assignment operator (operator=()) and cloning method
(dup ()) will also be generated.

class FooPacket : public cPacket
{
public:
FooPacket (const char x*name=NULL, int kind=0);
FooPacket (const FooPacketé& other);
FooPacket& operator=(const FooPacket& other);

130

OMNeT++ Manual — Message Definitions

virtual FooPacket xdup() const;

For each field in the above description, the generated class will have a protected data member,
and a public getter and setter method. The names of the methods will begin with get and
set, followed by the field name with its first letter converted to uppercase. Thus, FooPacket
will contain the following methods:

virtual int getSourceAddress () const;

virtual void setSourceAddress (int sourceAddress);
virtual int getDestAddress () const;

virtual void setDestAddress (int destAddress);
virtual bool getHasPayload() const;

virtual void setHasPayload(bool hasPayload);

Note that the methods are all declared virtual to give you the possibility of overriding them
in subclasses.

String fields can also be declared:

packet HttpRequestMessage

{
string method; // "GET", "POST", etc.
string resource;

i
The generated getter and setter methods will return and accept const char* pointers:

virtual const char xgetMethod() const;

virtual void setMethod (const char xmethod);
virtual const char xgetResource () const;
virtual void setResource (const char xresource);

The generated object will have its own copy of the string, so it not only stores the const charx
pointer.

6.2.2 Field Data Types

Data types for fields are not limited to int and bool. You can use several C/C++ and other
data types:

e logical: bool

e integral types: char, short, int, long; and their unsigned versions unsigned char,
unsigned short, unsigned int, unsigned long

¢ floating-point types: float, double

e C99-style fixed-size integral types: int8_t, int16_t, int32_t, int64_t; and their un-
signed versions uint8_t, uint16_t, uint32_t, uint64_t;

e OMNeT++ simulation time: simtime_t

IThese type names are accepted without the _t suffix as well, but you are responsible to ensure that the generated
code compiles, i.e. the shortened type names must be defined in a header file you include.

131

OMNeT++ Manual — Message Definitions

e string. Getters and setters use the const charx data type; NULL is not allowed. The
object will store a copy of the string, not just the pointer.

e structs and classes, defined in message files or elsewhere (see in later sections and

e typedefd names declared in C++ and announced to the message compiler)

Numeric fields are initialized to zero, booleans to false, and string fields to empty string.

6.2.3 Initial Values

You can specify initial values for fields. Examples:

packet RequestPacket
{
int version = HTTP_VERSION;
string method = "GET";
string resource = "/";
int maxBytes = 100x1024%1024; // 100MiB
bool keepAlive = true;
}i

As you can see, macros and expressions are also accepted as initalizer values. The message
compiler does not check the syntax of the values, it only copies them into the generated C++
file; so if there is an error in them, it will be reported by the C++ compiler.

Field initialization statements will be placed into the constructor of the generated class.

6.2.4 Enums

You can declare that an int (or other integral type) field takes values from an enum. The
message compiler can then generate code that allows Tkenv display the symbolic value of the
field.

Example:

packet FooPacket

{
int payloadType @enum(PayloadType);
}i

The enum itself has to be declared separately. An enum is declared with the enum keyword,
using the following syntax:

enum PayloadType
{

NONE = 0;
UDP = 1;
TCP = 2;
SCTP = 3;

}i

Enum values need to be unique.

132

OMNeT++ Manual — Message Definitions

The message compiler translates an enum into a normal C++ enum, plus creates an object
which stores text representations of the constants. The latter makes it possible to display
symbolic names in Tkenv.

If the enum to be associated with a field comes from a different message file, then the enum
must be announced and its generated header file be included. An example:

cplusplus {{
#include "PayloadType_m.h"
+}

enum PayloadType;

packet FooPacket

{
int payloadType @enum(PayloadType);
}i

6.2.5 Fixed-Size Arrays

You can specify fixed size arrays:

packet SourceRoutedPacket
{

int route[4];
}i

The generated getter and setter methods will have an extra k argument, the array index:

virtual long getRoute (unsigned k) const;
virtual void setRoute (unsigned k, long route);

If you call the methods with an index that is out of bounds, an exception will be thrown.

6.2.6 Variable-Size Arrays

If the array size is not known in advance, you can declare the field to have a variable size:

packet SourceRoutedPacket
{
int routel[];

bi

In this case, the generated class will have two extra methods in addition to the getter and
setter methods: one for setting the array size, and another one for returning the current array
size.

virtual long getRoute (unsigned k) const;
virtual void setRoute (unsigned k, long route);
virtual unsigned getRouteArraySize () const;
virtual void setRouteArraySize (unsigned n);

The set...ArraySize () method internally allocates a new array. Existing values in the array
will be preserved (copied over to the new array.)

133

OMNeT++ Manual — Message Definitions

The default array size is zero. This means that you need to call set...ArraySize () with a
nonzero argument before you can start filling array elements.

6.2.7 Classes and Structs as Fields

In addition to primitive types, you can also use other types (classes, structs, typedefs, etc.) as
fields. For example, if you have a C++ type called IPAddress, you can write the following:

packet IPPacket

{
int version = 4;
IPAddress src;
IPAddress dest;

}i

The IPAddress type must be known to the message compiler, and also at compile time to the
C++ compiler; section [6.6| will describe how to achieve that.

The generated class will contain IPAddress data members (that is, not pointers to IPAddress
objects), and the following getter and setter methods will be generated for them:

virtual IPAddressé& getSrc();
virtual const IPAddress& getSrc () const;
virtual void setSrc (const IPAddressé& src);

virtual IPAddressé& getDest () ;
virtual const IPAddress& getDest () const;
virtual void setDest (const IPAddressé& dest);

6.2.8 Pointer Fields

Pointer fields where the setters and the destructor would delete the previous value are not
supported yet. However, there are workarounds, as described below.

You can create a typedef for the pointer and use the typedef name as field type. Then you’ll get
a plain pointer field where neither the setter nor the destructor deletes the old value (which is
a likely memory leak).

Example (section [6.6] will explain the details):

cplusplus {{ typedef Foo *FooPtr; }} // C++ typedef
class noncobject FooPtr; // announcement for the message compiler

packet Bar
{

FooPtr fooPtr; // leaky pointer field
}i

Then you can customize the class via C++ inheritance and reimplement the setter methods
in C++, inserting the missing delete statements. Customization via C++ inheritance will be
described in section

134

OMNeT++ Manual — Message Definitions

6.2.9 Inheritance

By default, messages are subclassed from cMessage or cPacket. However, you can explicitly
specify the base class using the extends keyword (only single inheritance is supported):

packet Ieece8021lDataFrame extends Ieee80211Frame
{

bi

For the example above, the generated C++ code will look like this:

// generated C++
class Iecee8021llDataFrame : public Ieee80211Frame {

}i

6.2.10 Assignment of Inherited Fields

Message definitions allow you to change the initial value of a field defined in an ancestor
type. The syntax is similar to that of a field definition with initial value, only the data type is
missing.

An example:

packet Ieee80211Frame

{
int frameType;

}i

packet Ieee80211DataFrame extends Ieee80211Frame

{
frameType = DATA_FRAME; // assignment of inherited field

}i

It may seem like the message compiler would need the definition of the base class to check
the definition of the field being assigned. However, it is not the case. The message compiler
trusts that such field exists; or rather, it leaves the check to the C++ compiler.

What the message compiler actually does is derives a setter method name from the field name,
and generates a call to it into the constructor. Thus, the generated constructor for the above
packet type would be something like this:

Ieee8021l1DataFrame: :Ieee80211DataFrame (const char xname, int kind)
IeeeB80211Frame (name, kind)

{
this->setFrameType (DATA_FRAME) ;

}

This implementation also lets you initialize cMessage / cPacket fields such as message kind
or packet length:

135

OMNeT++ Manual — Message Definitions

packet UDPPacket

{
byteLength = 16; // results in ’setByteLength(16);’ being placed into

}i

6.3 Classes

Until now we have only seen message and packet descriptions, which generate classes de-
rived from cMessage or cPacket. However, it is also useful to be able to generate classes
and structs, for building blocks for messages, as control info objects (see cMessage’s setCon-
trolInfo () and for other purposes. This section covers classes; structs will be described in
the next section.

The syntax for defining classes is almost the same as defining messages, only the class
keyword is used instead of message / packet. The base class can be specified with the
extends keyword, and defaults to cObject.

NOTE: cObject has no data members. It only defines virtual methods, so the only
overhead would be the vptr; however, the generated class already has a vptr because the
generated methods are also virtual. In other words, cObject adds zero overhead to the
generated class, and there is no reason not to always use it as base class.

Examples:

class TCPCommand // same as "extends cObject"

{
}i

class TCPOpenCommand extends TCPCommand

{

}i
The generated code:
// generated C++
class TCPCommand : public cObject
{
}i

class TCPOpenCommand : public TCPCommand
{

}i

6.4 Structs

You can define C-style structs to be used as fields in message classes, “C-style” meaning
“containing only data and no methods” (in contrast to C++ where a struct is just a class with

136

ctor

OMNeT++ Manual — Message Definitions

a different default member visibility.)
The syntax is similar to that of defining messages:

struct Place

{
int type;
string description;
double coords([3];
}i

However, the generated code is different. The generated struct has no getter or setter methods,
instead the fields are represented by public data members. The following code is generated
from the above definition:

// generated C++
struct Place

{
int type;
opp_string description; // minimal string class that wraps a const charx*
double coords([3];

}i

Note that string fields are generated with the opp_string C++ type, which is a minimalistic
string class that wraps const char* and takes care of allocation/deallocation. It was chosen
instead of std::string because of its significantly smaller memory footprint (the sizeof of
opp_string is the same as that of a const charx pointer).

Inheritance is supported for structs:

struct Base

{
bi

struct Extended extends Base

{

bi

However, because a struct has no member functions, there are limitations:

e variable-size arrays are not supported;
e customization via inheritance and abstract fields (see later in [6.7.2) cannot be used;

e cannot have classes subclassed from cOwnedObject as fields, because structs cannot be
owners.

6.5 Literal C++ Blocks

It is possible to have C++ code placed directly into the generated code, more precisely, into the
generated header file. This is done with the eplusplus keyword and a double curly braces.
As we’ll see in later sections, cplusplus blocks are customarily used to insert #include
directives, typedefs, #define macros and other elements into the generated header.

137

OMNeT++ Manual — Message Definitions

Example:

cplusplus {{

#include <vector>

#include "foo.h"

#define FOO_VERSION 4

typedef std::vector<int> IntVector;

H}

The message compiler does not try to make sense of the text in the body of the cplusplus
block, it just simply copies it into the generated header file.

6.6 Using C++ Types

The message compile only knows about the types defined within the same msg file, and the
built-in types. To be able to use other types, for example for fields or as base class, you need
to do two things:

1. Let the message compiler know about the type by announcing it; and

2. Make sure its C++ declaration will be available at compile time

The next two sections describe how to do each.

6.6.1 Announcing Types to the Message Compiler

If you want to use a C++ type (a class, struct or typedef) not declared with the message syntax
in the same file, you have to announce those types to the message compiler.

Type annoucements have a similar syntax to those in C++:

struct Point;

class PrioQueue; // implies it is derived from cOwnedObject! see below
message TimeoutMessage;

packet TCPSegment;

However, with the class keyword, the message compiler needs to know the whether the class
is derived (directly or indirectly) from cOwnedObject, cNamedObject, cObject or none of
the above, because it affects code generation. The ancestor class can be declared with the
extends keyword, like this:

class IPAddress extends void; // does not extend any "interesting" class
class ModulePtr extends void; // ditto

class IntVector extends void; // ditto

class IPCtlInfo extends cObject;

class FooOption extends cNamedObject;

class PrioQueue extends cOwnedObject;

class IPAddrExt extends IPAddress; // also OK: IPAddress has been announced

An alternative to extends void is the noncobject modifier:

class noncobject IPAddress; // same as "extends void"

138

OMNeT++ Manual — Message Definitions

By default, that is, when extends is missing, it is assumed that the class is derived from
cOwnedObject. Thus, the following two announcements are equivalent:

class PrioQueue;
class PrioQueue extends cOwnedObject;

NOTE: Notice that this default is inconsistent with the default base class for generat-
ing classes, which is cObject (see[6.3). The reason why type announcements assume
cOwnedObject is that it is safer: a mistake will surface in the form of a compile error and
will not remain hidden until it causes some obscure runtime error.

6.6.2 Making the C++ Declarations Available

In addition to announcing types to the message compiler, you also have to make sure their
C++ declarations will be available at compile time so that the generated code will actually
compile. This can be achieved with ecplusplus blocks that let you inject includes, typedefs,
class/struct declarations, etc. into the generated header file:

cplusplus {{

#include "IPAddress.h"

typedef std::vector<int> IntVector;
)

You need a cplusplus block even if the desired types are defined in a (different) message file,
to include the generated header file. It is currently not supported to import types from other
message files directly. Example:

cplusplus {{

#include "TCPSegment_m.h" // make types defined in TCPSegment.msg available
// for the C++ compiler

I

6.6.3 Putting it Together

Suppose you have header files and message files that define various types:

// IPAddress.h
class IPAddress {

bi

// Location.h
struct Location {
double lon;
double lat;
}i

// AppPacket.msg
packet AppPacket {

}

139

OMNeT++ Manual — Message Definitions

To be able to use the above types in a message definition (and two more, an IntVector and a
module pointer), the message file should contain the following lines:

cplusplus {{

#include <vector>

#include "IPAddress.h"

#include "Location.h"

#include "AppPacket_m.h"

typedef std::vector<int> IntVector;
typedef cModule xModulePtr;

}1i

class noncobject IPAddress;
struct Location;
packet AppPacket;
class noncobject IntVector;
class noncobject ModulePtr;

packet AppPacketExt extends AppPacket {
IPAddress destAddress;
Location senderLocation;
IntVector data;
ModulePtr originatingModule;

6.7 Customizing the Generated Class

6.7.1 Customizing Method Names

The names and some other properties of generated methods can be influenced with metadata
annotations (properties).

The names of the getter and setter methods can be changed with the @getter and @setter
properties. For variable-size array fields, the names of array size getter and setter methods
can be changed with @sizeGetter and @sizeSetter.

In addition, the data type for the array size (by default unsigned int) can be changed with
@sizetype property.
Consider the following example:

packet IPPacket {
int ttl @getter (getTTL) (@setter (setTTL);
Option options|[] @sizeGetter (getNumOptions)
@sizeSetter (setNumOptions)
@sizetype (short);
}

The generated class would have the following methods (note the differences from the de-
fault names getTt1 (), setTtl(), getOptions (), setOptions (), getOptionsArraySize (),
getOptionsArraySize (); also note that indices and array sizes are now short):

virtual int getTTL () const;
virtual void setTTL(int ttl);

140

OMNeT++ Manual — Message Definitions

virtual const Optioné& getOption (short k) const;
virtual void setOption(short k, const Option& option);
virtual short getNumOptions () const;

virtual void setNumOptions (short n);

In some older simulation models you may also see the use of the GomitGetVerb class property.
This property tells the message compiler to generate getter methods without the “get” prefix,
e.g. for a sourceAddress field it would generate a sourceAddress () method instead of the
default getSourceAddress (). It is not recommended to use QomitGetVerb in new models,
because it is inconsistent with the accepted naming convention.

6.7.2 Customizing the Class via Inheritance

Sometimes you need the generated code to do something more or do something differently
than the version generated by the message compiler. For example, when setting an integer
field named payloadLength, you might also need to adjust the packet length. That is, the
following default (generated) version of the setPayloadLength () method is not suitable:

void FooPacket::setPayloadLength (int payloadLength)
{

this->payloadLength = payloadLength;
}

Instead, it should look something like this:

void FooPacket::setPayloadLength (int payloadLength)

{
addBytelLength (payloadLength - this->payloadLength);
this->payloadLength = payloadLength;

}

According to common belief, the largest drawback of generated code is that it is difficult or
impossible to fulfill such wishes. Hand-editing of the generated files is worthless, because
they will be overwritten and changes will be lost in the code generation cycle.

However, object oriented programming offers a solution. A generated class can simply be
customized by subclassing from it and redefining whichever methods need to be different
from their generated versions. This practice is known as the Generation Gap design pattern.
It is enabled with the @customize property set on the message:

packet FooPacket
{
@Qcustomize (true) ;
int payloadLength;
}i

If you process the above code with the message compiler, the generated code will contain a
FooPacket_Base class instead of FooPacket. Then you would subclass FooPacket_Base to
produce FooPacket, while doing your customizations by redefining the necessary methods.

class FooPacket_Base : public cPacket
{
protected:
int src;
// make constructors protected to avoid instantiation

141

OMNeT++ Manual — Message Definitions

FooPacket_Base (const char *name=NULL) ;
FooPacket_Base (const FooPacket_Base& other);
public:

virtual int getSrc() const;
virtual void setSrc(int src);

bi

There is a minimum amount of code you have to write for FooPacket, because not everything
can be pre-generated as part of FooPacket_Base, e.g. constructors cannot be inherited. This
minimum code is the following (you will find it the generated C++ header too, as a comment):

class FooPacket : public FooPacket_Base
{

public:
FooPacket (const char *name=NULL) : FooPacket_Base (name) {}
FooPacket (const FooPacketé& other) : FooPacket_Base (other) {}

FooPacket& operator=(const FooPacketé& other)
{FooPacket_Base: :operator=(other); return =xthis;}
virtual FooPacket xdup() const {return new FooPacket (xthis);}
}i

Register_Class (FooPacket) ;

Note that it is important that you redefine dup () and provide an assignment operator (oper—
ator=()).

So, returning to our original example about payload length affecting packet length, the code
you’d write is the following;:

class FooPacket : public FooPacket_Base
{

// here come the mandatory methods: constructor,
// copy constructor, operator=(), dup/()
//

virtual void setPayloadLength (int newlength);

void FooPacket::setPayloadLength (int newlength)

{
// adjust message length
addBytelength (newlength - getPayloadLength());

// set the new length
FooPacket_Base::setPayloadLength (newlength) ;

6.7.3 Abstract Fields

The purpose of abstract fields is to let you to override the way the value is stored inside the
class, and still benefit from inspectability in Tkenv.

142

OMNeT++ Manual — Message Definitions

For example, this is the situation when you want to store a bitfield in a single int or short,
and yet you want to present bits as individual packet fields. It is also useful for implementing
computed fields.

You can declare any field to be abstract with the following syntax:

packet FooPacket
{

Qcustomize (true) ;
abstract bool urgentBit;

bi

For an abstract field, the message compiler generates no data member, and generated get-
ter/setter methods will be pure virtual:

virtual bool getUrgentBit () const = 0;
virtual void setUrgentBit (bool urgentBit) = 0;

Usually you’ll want to use abstract fields together with the Generation Gap pattern, so that
you can immediately redefine the abstract (pure virtual) methods and supply your implemen-
tation.

6.8 Using Standard Container Classes for Fields

One often wants to use standard container classes (STL) as fields, such as std: :vector,
std::stack or std: :map. The following sections describe two ways this can be done:

1. via a typedef;

2. by defining the field as abstract, and customizing the generated class.

6.8.1 Typedefs

The basic idea is that if we create a typedef for the desired type, we can use it for fields just
as any other type. Example:

cplusplus {{

#include <vector>

typedef std::vector<int> IntVector;
+}

class noncobject IntVector;

packet FooPacket {
IntVector addresses;
bi

The generated class will have the following methods:

virtual IntVector& getAddresses();
virtual const IntVector& getAddresses () const;
virtual void setAddresses (const IntVectors& addresses);

143

OMNeT++ Manual — Message Definitions

Thus, the underlying std: :vector<int> is exposed and you can directly manipulate it from
C++ code, for example like this:

FooPacket *pk = new FooPacket (
pk—->getAddresses () .push_back (1
pk—->getAddresses () .push_back (5
pk—->getAddresses () .push_back (9
// or:
IntVector& v
v.push_back (
(
(

4

4

4

)
) 4
)
)

pk->getAddresses () ;

1);
v.push_back (5);
v.push_back (9);
It is easy. However, there are also some drawbacks:

1. The message compiler won't know that your field is actually a data structure, so the
generated reflection code won’t be able to look into it;

2. The fact that STL classes are directly exposed may be a mixed blessing; on one hand
this makes it easier to manipulate its contents, but on the other hand it violates the
encapsulation principle. Container classes work best when they are used as “nuts and
bolts” for your C++ program, but they shouldn’t really be used as public API.

6.8.2 Abstract Fields

This approach uses abstract fields. We exploit the fact that std: :vector and std::stack
are representations of sequence, which is the same abstraction as fields’ variable-size array.
That is, if you declare the field to be abstract fieldname[], the message compiler will only
generate pure virtual functions and you can implement the underlying data storage using
standard container classes. You can also write additional C++ methods that delegate to the
container object’s push_back (), push (), pop (), etc. methods.

Consider the following message declaration:

packet FooPacket
{
@Qcustomize (true) ;
abstract int fool[]; // will use std::vector<int>
abstract int bar[]; // will use std::stack<int>
}

If you compile the above code, in the generated C++ code you will only find abstract methods
for foo and bar, but no underlying data members or method implementations. You can
implement everything as you like. You can write the following C++ file then to implement foo
and bar with std: :vector and std: : stack (some details omitted for brevity):

#include <vector>
#include <stack>
#include "FooPacket_m.h"

class FooPacket : public FooPacket_Base
{
protected:
std: :vector<int> foo;

144

OMNeT++ Manual — Message Definitions

std::stack<int> bar;

// helper method
void unsupported() {throw cRuntimeError ("unsupported method called");}

public:
// foo methods

virtual int getFoo (unsigned int k) {return foolk];}
virtual void setFoo (unsigned int k, int x) {foolk]l=x;}

virtual void addFoo (int x) {foo.push_back (x);}
virtual void setFooArraySize (unsigned int size) {foo.resize(size);}
virtual unsigned int getFooArraySize() const {return foo.size();}

// bar methods

virtual int getBar (unsigned int k) {...}

virtual void setBar (unsigned int k, int x) {unsupported();}
virtual void barPush (int x) {bar.push(x);}

virtual void barPop () {bar.pop();}

virtual int barTop() {return bar.top();}

virtual void setBarArraySize (unsigned int size) {unsupported();}
virtual unsigned int getBarArraySize () const {return bar.size();}

}i
Register_Class (FooPacket);

Some additional boilerplate code is needed so that the class conforms to conventions, and
duplication and copying works properly:

FooPacket (const char x*name=NULL, int kind=0) : FooPacket_Base (name, kind) {
}
FooPacket (const FooPacket& other) : FooPacket_Base (other.getName()) {
operator= (other);
}
FooPacket& operator=(const FooPacket& other) {
if (&other==this) return =xthis;
FooPacket_Base: :operator= (other);
foo = other.foo;
bar = other.bar;
return *this;
}
virtual FooPacket xdup () {
return new FooPacket (xthis);

}

Some additional notes:

1. setFooArraySize (), setBarArraySize () are redundant.

2. getBar (int k) cannot be implemented in a straightforward way (std: : stack does not
support accessing elements by index). It could still be implemented in a less efficient
way using STL iterators, and efficiency does not seem to be major problem because only
Tkenv is going to invoke this function.

145

OMNeT++ Manual — Message Definitions

3. setBar (int k, int x) could not be implemented, but this is not particularly a prob-
lem. The exception will materialize in a Tkenv error dialog when you try to change the
field value.

6.9 Namespaces

It is possible to place the generated classes into a C++ namespace, and also to use types from
other namespaces.

6.9.1 Declaring a Namespace

To place the generated types into a namespace, add a namespace declaration near the top of
the message file:

namespace inet;

If you are fond of hierarchical (nested) namespaces, you can declare one with a straightforward
syntax, using double colons in the namespace declaration. There is no need for multiple
nested namespace declarations as in C++:

namespace org::omnetpp::inet::ieee80211;

The above code will be translated into nested namespaces in the C++ code:
namespace org { namespace omnetpp { namespace inet { namespace ieee80211 {
}Pri}
Conceptually, the namespace extends from the place of the namespace declaration to the end
of the message file. (A message file may contain only one namespace declaration.) In other

words, it does matter whether you put something above the namespace declaration line or
below it:

1. The contents of ecplusplus blocks above the namespace declaration will be placed out-
side (i.e. above) the namespace block in the generated C++ header; blocks below the
namespace declaration will placed inside the C++ namespace block.

2. Type announcements are interpreted differently depending on whether they occur above
or below the namespace declaration (this will be detailed later).

3. Types defined with the message syntax are placed into the namespace of the message
file; thus, definitions must always be after the namespace declaration. Type definitions
above the namespace line will be rejected with an error message.

6.9.2 C++ Blocks and Namespace

As described above, the contents of a eplusplus block will be copied above or into the C++
namespace block in the generated header depending on whether it occurs above or below the
namespace declaration in the message file.

The placement of cplusplus blocks relative to the namespace declaration is important be-
cause you don’t want #include directives to be placed inside the C++ namespace block. That

146

OMNeT++ Manual — Message Definitions

would cause the declarations in the header file to be interpreted as being part of the names-
pace, which they are not. Includes should always be put into cplusplus blocks above the
namespace declaration. This is so important that I repeat it:

IMPORTANT: Includes should always be placed into a cplusplus block above the
namespace declaration.

As for typedefs and other C++ code, you need to place them above or below the namespace
declaration based on whether you want them to be in the C++ namespace or not.

6.9.3 Type Announcements and Namespace

The type announcement syntax allows one to specify the namespace of the type as well, so
the following lines are syntactically correct:

packet foo::FooPacket;
packet nes::ted::name::space::BarPacket;
packet ::BazPacket;

Announced type names are interpreted in the following way:

1. If the type name contains a double colon (: :), it is interpreted as being fully qualified
with an absolute namespace.

2. If the name is just an identifier (no double colon), the interpretation depends on whether
it is above or below the namespace declaration. If it is above, the name is interpreted as
a global type; otherwise it is interpreted as part of the package file’s namespace.

This also means that if you want to announce a global type, you either have to put the
announcement above the namespace declaration, or prefix the type with “: :” to declare that
it is not part of a namespace.

When the announced types are used later (as field type, base class, etc.), they can be referred
to just with their simple names (without namespace); or alternatively with their fully quali-
fied names. When a message compiler encounters type name as field type or base class, it
interprets the type name in the following way:

1. If the type name contains a double colon (: :), it is interpreted as being fully qualified
with an absolute namespace.

2. If the name is just an identifier (no double colon), and the message file’s namespace
contains that name, it is chosen; otherwise:

3. Itis looked up among all announced types in all namespaces (including the global names-
pace), and there must be exactly one match. That is, if the same name exists in multiple
namespaces, it may only be referenced with fully qualified name.

The following code illustrates the above rules:

cplusplus {{

// includes go above the namespace line
#include <vector>

#include "IPAddress.h"

147

OMNeT++ Manual — Message Definitions

H}

// the IPAddress type 1is in the global namespace
class noncobject IPAddress;

namespace foo; // namespace begins with this line

// we could also have announced IPAddress here as "::IPAddress":
//class noncobject ::IPAddress;

cplusplus {{
// we want IPAddressVector to be part of the namespace
typedef std::vector<IPAddress> IPAddressVector;

H}

// type will be understood as foo::IPAddressVector
class noncobject IPAddressVector;

packet FooPacket {
IPAddress source;
IPAddressVector neighbors;

}i

Another example that uses a PacketData class and a NetworkPacket type from a net names-
pace:

// NetworkPacket.msg
namespace net;

class PacketData { }
packet NetworkPacket { }

// FooPacket.msg
cplusplus {{
#include "NetworkPacket_m.h"

}}
class net::PacketData;
packet net::NetworkPacket;

namespace foo;
packet FooPacket extends NetworkPacket

{
PacketData data;

6.10 Descriptor Classes

For each generated class and struct, the message compiler generates an associated descriptor
class. The descriptor class carries “reflection” information about the new class, and makes it
possible to inspect message contents in Tkenv.

148

OMNeT++ Manual — Message Definitions

The descriptor class encapsulates virtually all information that the original message defini-
tion contains, and exposes it via member functions. It has methods for enumerating fields
(getFieldCount (), getFieldName (), getFieldTypeString (), etc.), for getting and setting
a field’s value in an instance of the class (getFieldAsString (), setFieldAsString()), for
exploring the class hierarchy (getBaseClassDescriptor (), etc.), for accessing class and field
properties, and for similar tasks. When you inspect a message or packet in the simulation,
Tkenv can uses the associated descriptor class to extract and display the field values.

The @descriptor class property can be used to control the generation of the descriptor class.
@descriptor (readonly) instructs the message compiler not to generate field setters for the
descriptor, and @descriptor (false) instructs it not to generate a description class for the
class at all.

It is also possible to use (or abuse) the message compiler for generating a descriptor class
for an existing class. (This can be useful for making your class inspectable in Tkenv.) To do
that, write a message definition for your existing class (for example, if it has int getFoo ()
and setFoo (int) methods, add an int foo field to the message definition), and mark it with
@existingClass (true). This will tell the message compiler that it should not generate an
actual class (as it already exists), only a descriptor class.

6.11 Summary

This section summarizes the possibilities offered by message definitions.

Base functionality:

e generation of classes and plain C structs from concise descriptions

e default base classes: cPacket (with the packet keyword), cMessage (with the message
keyword), or cObject (with the class keyword)

The following data types are supported for fields:

e primitive types: bool, char, short, int, long; unsigned char, unsigned short, un-
signed int, unsigned long; int8_t, intl6_t, int32_t, int64_t;uint8_t,uintl6_t,
uint32_t, uint64_t; float, double; simtime_t

e string, a dynamically allocated string, presented as const char =

e structs and classes, declared with the message syntax or in C++ code

e typedefd names declared in C++ and announced to the message compiler
¢ fixed-size arrays of the above types

e variable-size arrays of the above types (stored as a dynamically allocated array plus an
integer for the array size)

Further features:

¢ fields initialize to zero (except for struct/class fields)
¢ field initializers can be specified (except for struct/class fields)

e associating fields of integral types with enums

149

OMNeT++ Manual — Message Definitions

¢ inheritance

e namespaces

e customization of generated method names

e customization of the generated class via subclassing (Generation Gap pattern)

e abstract fields (for nonstandard storage and calculated fields)

generation of descriptor objects that encapsulate reflection information

Generated code (all generated methods are virtual, although this is not written out in the
following table):

Field declaration Generated code
primitive types

double field; double getField();
void setField(double d);

string type

string field; const char xgetField();
void setField(const char *);

fixed-size arrays

double field[4]; double getField(unsigned k) ;
void setField(unsigned k, double d);
unsigned getFieldArraySize();

variable-size arrays

double field[]; void setFieldArraySize (unsigned n);
unsigned getFieldArraySize();

double getField (unsigned k) ;

void setField(unsigned k, double d);

customized class

class Foo { class Foo_Base { ... };

Qcustomize (true) ; .
and you have to write:

class Foo : public Foo_Base {
}i

abstract fields

abstract double fiellddouble getField() = 0;
void setField(double d) = 0;

150

OMNeT++ Manual — The Simulation Library

Chapter 7

The Simulation Library

OMNeT++ has an extensive C++ class library which you can use when implementing simple
modules. Parts of the class library have already been covered in the previous chapters:

e the message class cMessage (chapter 5]

¢ sending and receiving messages, scheduling and canceling events, terminating the mod-
ule or the simulation (section |4.7]

e access to module gates and parameters via cModule member functions (sections 4.5/ and

4.6)
e accessing other modules in the network (section |4.11)

¢ dynamic module creation (section
This chapter discusses the rest of the simulation library:

e random number generation: normal (), exponential (), etc.

e module parameters: cPar class

e storing data in containers: the cArray and cQueue classes

e routing support and discovery of network topology: cTopology class
e recording statistics into files: cOutvector class

e collecting simple statistics: cStdDev and cWeightedStddev classes

e distribution estimation: cLongHistogram, cDoubleHistogram, cVarHistogram, cP-—
Square, cKSplit classes

e making variables inspectable in the graphical user interface (Tkenv): the WATCH () macros

¢ sending debug output to and prompting for user input in the graphical user interface
(Tkenv): the ev object (cEnvir class)

151

OMNeT++ Manual — The Simulation Library

7.1 Class Library Conventions

7.1.1 Base Class

Classes in the OMNeT++ simulation library are derived from cObject or its subclass cOwne-
dobject. Functionality and conventions that come from cObject:

e name attribute

e getClassName () member and other member functions giving textual information about
the object

e conventions for assignment, copying, duplicating the object
e ownership control for containers derived from cOwnedObject
e support for traversing the object tree

e support for inspecting the object in graphical user interfaces (Tkenv)

Classes inherit and redefine several cObject member functions; in the following we’ll discuss
some of the practically important ones.

7.1.2 Setting and Getting Attributes

Member functions that set and query object attributes follow a naming convention; the setter
member function begins with set, and the getter begins with get (or in the case of boolean
attributes, with is or has, whichever is more appropriate). For example, the length attribute
of the cPacket class can be set and read like this:

pk—->setBitLength (1024);
length = pk->getBitLength();

NOTE: OMNeT++ 3.x and earlier versions did not have the get verb in the name of getter
methods. There are scripts to port old source code to OMNeT++ 4.0; these tools and the
suggested porting produre are described in the Migration Guide.

7.1.3 getClassName()

For each class, the getClassName () member function returns the class name as a string:

const char *className = msg->getClassName (); // returns "cMessage"

7.1.4 Object Names

Gates, parameters and modules all have names in the NED files. At runtime, those names are
stored in the corresponding C++ objects, and are available for the code with the getName ()
method. Other objects such as messages, queues, result collection objects, etc. may also

152

OMNeT++ Manual — The Simulation Library

have names. || Object names are generally very useful when you are tracing, debugging or
demonstrating a simulation model.

For example, you can get the name of a message object like this:

const char *name = msg->getName () ;

The getName () method will never return NULL, the absence of name string is always returned
as the empty string ("").

By convention, the object name is the first argument to the constructor of every class, and it
defaults to the empty string. To create an object with a name, pass the name string (a const
char * pointer) as the first argument of the constructor:

cMessage *timeoutMsg = new cMessage ("timeout");

You can also change the name of an existing object:

timeoutMsg—->setName ("timeout") ;

Both the constructor and setName () make an internal copy of the string, instead of just
storing the pointer passed to them. E]

For convenience and efficiency reasons, the empty string "" and NULL are treated as inter-
changeable by library objects. That is, "" is stored as NULL but returned as "". If you create
a message object with either NULL or "" as its name string, it will be stored as NULL and
getName () will return a pointer to a static "".

cMessage *msg = new cMessage (NULL, <additional args>);
const char *str = msg->getName(); // -—-> returns ""

7.1.5 Object Full Name and Full Path

Objects have two additional member functions that return strings based on the object name:
getFullName () and getFullPath (). For gates and modules which are part of gate or module
vectors, getFullName () returns the name with the index in brackets. That is, for a module
node [3] in the submodule vector node [10] getName () returns "node", and getFullName ()
returns "node [3]". For other objects, getFullName () is the same as getName ().

getFullPath () returns getFullName (), prepended with the parent or owner object’s get—
FullPath () and separated by a dot. That is, if the node [3] module above is in the compound
module "net.subnetl", its getFullPath () method will return "net.subnetl.node[3]".

ev << this->getName () ; // —=> "node"
ev << this->getFullName(); // —--> "node[3]"
ev << this->getFullPath(); // —-—> "net.subnetl.node[3]"

getClassName (), getFullName () and getFullPath () are extensively used on the graphical
runtime environment Tkenv, and also appear in error messages.

getName () and getFullName () return const char = pointers, and getFullPath () returns
std::string. This makes no difference with ev«, but when getFullPath () is used as a
"$s" argument to sprintf () you have to write getFullPath() .c_str ().

1Object name is inherited from cObject (which defines getName ()), and from its subclass cNamedObject (wWhich
defines setName () and actually stores the name string).

2In a simulation, there are usually many objects with the same name: modules, parameters, gates, etc. To conserve
memory, several classes keep names in a shared, reference-counted name pool instead of making separate copies for
each object. The runtime cost of looking up an existing string in the name pool and incrementing its reference count
also compares favorably to the cost of allocation and copying.

153

OMNeT++ Manual — The Simulation Library

char buf[100];
sprintf ("msg is ’%80s’", msg->getFullPath().c_str()); // note c_str()

7.1.6 Copying and Duplicating Objects

The dup () member function creates an exact copy of the object, duplicating contained objects
also if necessary. This is especially useful in the case of message objects.

cMessage =*copy = msg->dup () ;

dup () delegates to the copy constructor. Classes also declare an assignment operator (opera-
tor=()) which can be used to copy contents of an object into another object of the same type.
dup (), the copy constructor and the assignment operator all perform deep coping: objects
contained in the copied object will also be duplicated if necessary.

operator= () differs from the other two in that it does not copy the object’s name string, i.e.
does not invoke setName (). The rationale is that the name string is often used for identifying
the particular object instance, as opposed to being considered as part of its contents.

NOTE: Since the OMNeT++ 4.0 version, dup () returns a pointer to the same type as the
object itself, and not a cObject+. This is made possible by a relatively new C++ feature
called covariant return types.

7.1.7 Iterators

There are several container classes in the library (cQueue, cArray etc.) For many of them,
there is a corresponding iterator class that you can use to loop through the objects stored in
the container.

For example:

cQueue queue;

/.
for (cQueue::Iterator queuelter (queue); !queuelter.end(); queuelter++)
{

cOwnedObject *containedObject = queuelter();

}

7.1.8 Error Handling

When library objects detect an error condition, they throw a C++ exception. This exception
is then caught by the simulation environment which pops up an error dialog or displays the
error message.

At times it can be useful to be able stop the simulation at the place of the error (just before the
exception is thrown) and use a C++ debugger to look at the stack trace and examine variables.
Enabling the debug-on-errors configuration option lets you do that — check it in section|10.2

If you detect an error condition in your code, you can stop the simulation with an error mes-
sage using the opp_error () function. opp_error ()’s argument list works like print £ () : the

154

OMNeT++ Manual — The Simulation Library

first argument is a format string which can contain "%s", "%d" etc, filled in using subsequent
arguments.

An example:
if (msg->getControlInfo ()==NULL)
opp_error ("message (%s)%s has no control info attached",

msg->getClassName (), msg->getName ());

7.2 Logging from Modules

The logging feature will be used extensively in the code examples, so we introduce it here.

The ev object represents the user interface of the simulation. You can send debugging output
to ev with the C++-style output operators:

ev << "packet received, sequence number is " << segNum << endl;
ev << "queue full, discarding packet\n";

An alternative solution is ev.printf ():

ev.printf ("packet received, sequence number is %d\n", segNum);

The exact way messages are displayed to the user depends on the user interface. In the
command-line user interface (Cmdenv), the message is simply dumped to the standard out-
put. (This output can also be disabled from omnetpp.ini so that it doesn’t slow down simu-
lation when it is not needed.) In Tkenv, the runtime GUI, you can open a text output window
for every module. It is not recommended that you use printf () or cout to print messages —
ev output can be controlled more easily from omnetpp.ini and it is more convenient to view,
using Tkenv.

One can save CPU cycles by making logging statements conditional on whether the output is
actually being displayed or recorded anywhere. The ev.isDisabled() call returns true when
ev« output is disabled, such as in Tkenv or Cmdenv “express” mode. Thus, one can write
code like this:

if (!ev.isDisabled())
ev << "Packet " << msg->getName () << " received\n";

A more sophisticated implementation of the same idea is to the EV macro which can be used
in logging statements instead of ev. One would simply write EV« instead of ev«:

EV << "Packet " << msg->getName () << " received\n";

EV’s implementation makes use of the fact that the « operator is bound more loosely than the
conditional operator (?:).

7.3 Simulation Time Conversion

Simulation time is represented by the type simtime_t which is a typedef to a class that stores
simulation time in a 64-bit integer, using decimal inAxed-point representation. OMNeT++
provides utility functions, which convert simtime_t to a printable string ("3s 130ms 230us")
and vica versa.

155

OMNeT++ Manual — The Simulation Library

The simtimeToStr () function converts a simtime_t (passed in the first argument) to textual
form. The result is placed into the char array pointed to by the second argument. If the
second argument is omitted or it is NULL, simtimeToStr () will place the result into a static
buffer which is overwritten with each call. An example:

char buf[32];
ev.printf ("tl=%s, t2=%s\n", simtimeToStr(tl), simTimeToStr (t2,buf));

The simtimeToStrShort () is similar to simtimeToStr (), but its output is more concise.

The strToSimtime () function parses a time specification passed in a string, and returns a
simtime_t. If the string cannot be entirely interpreted, -1 is returned.

simtime_t t = strToSimtime ("30s 152ms");

Another variant, strToSimtime0 () can be used if the time string is a substring in a larger
string. Instead of taking a char~, it takes a reference to char« (charxs&) as the first argument.
The function sets the pointer to the first character that could not be interpreted as part of
the time string, and returns the value. It never returns -1; if nothing at the beginning of the
string looked like simulation time, it returns O.

const char *s = "30s 152ms and something extra";

simtime_t t = strToSimtimeO(s); // now s points to "and something extra"

7.4 Generating Random Numbers

Random numbers in simulation are never random. Rather, they are produced using determin-
istic algorithms. Algorithms take a seed value and perform some deterministic calculations
on them to produce a “random” number and the next seed. Such algorithms and their im-
plementations are called random number generators or RNGs, or sometimes pseudo random
number generators or PRNGs to highlight their deterministic nature.

Starting from the same seed, RNGs always produce the same sequence of random numbers.
This is a useful property and of great importance, because it makes simulation runs repeat-
able.

RNGs produce uniformly distributed integers in some range, usually between O or 1 and 232
or so. Mathematical transformations are used to produce random variates from them that
correspond to specific distributions.

7.4.1 Random Number Generators
Mersenne Twister
By default, OMNeT++ uses the Mersenne Twister RNG (MT) by M. Matsumoto and T. Nishimura

[MN98]. MT has a period of 219937 — 1, and 623-dimensional equidistribution property is as-
sured. MT is also very fast: as fast or faster than ANSI C’s rand ().

3There are real random numbers as well, see e.g. http://www.random.org/, http://www.comscire.com, or the
Linux /dev/random device. For non-random numbers, try www.noentropy.net.

156

OMNeT++ Manual — The Simulation Library

The "Minimal Standard" RNG

OMNeT++ releases prior to 3.0 used a linear congruential generator (LCG) with a cycle length
of 231 -2, described in [Jai91l, pp. 441-444,455. This RNG is still available and can be selected
from omnetpp.ini (Chapter[11). This RNG is only suitable for small-scale simulation studies.
As shown by Karl Entacher et al. in [EHWO02], the cycle length of about 23! is too small (on
todays fast computers it is easy to exhaust all random numbers), and the structure of the
generated “random” points is too regular. The [Hel98] paper provides a broader overview of
issues associated with RNGs used for simulation, and it is well worth reading. It also contains
useful links and references on the topic.

The Akaroa RNG

When you execute simulations under Akaroa control (see section [11.5), you can also select
Akaroa’s RNG as the RNG underlying for the OMNeT++ random number functions. The Akaroa
RNG also has to be selected from omnetpp.ini (section[10.5).

Other RNGs

OMNeT++ allows plugging in your own RNGs as well. This mechanism, based on the cRNG in-
terface, is described in section[17.1] For example, one candidate to include could be L'Ecuyer’s
CMRG [LSCKO02] which has a period of about 2!°! and can provide a large number of guaran-
teed independent streams.

7.4.2 Random Number Streams, RNG Mapping

Simulation programs may consume random numbers from several streams, that is, from sev-
eral independent RNG instances. For example, if a network simulation uses random numbers
for generating packets and for simulating bit errors in the transmission, it might be a good
idea to use different random streams for both. Since the seeds for each stream can be con-
figured independently, this arrangement would allow you to perform several simulation runs
with the same traffic but with bit errors occurring in different places. A simulation technique
called variance reduction is also related to the use of different random number streams.

It is also important that different streams and also different simulation runs use non-overlapping
series of random numbers. Overlap in the generated random number sequences can intro-
duce unwanted correlation in your results.

The number of random number streams as well as seeds for the individual streams can be
configured in omnetpp.ini (section [10.5). For the "minimal standard RNG", the seedtool
program can be used for selecting good seeds (section|10.5.5).

In OMNeT++, streams are identified with RNG numbers. The RNG numbers used in simple
modules may be arbitrarily mapped to the actual random number streams (actual RNG in-
stances) from omnetpp.ini (section [10.5). The mapping allows for great flexibility in RNG
usage and random number streams configuration — even for simulation models which were
not written with RNG awareness.

157

OMNeT++ Manual — The Simulation Library

7.4.3 Accessing The RNGs

The intrand(n) function generates random integers in the range [0,n — 1], and dblrand ()
generates a random double on [0, 1). These functions simply wrap the underlying RNG objects.
Examples:

int dice = 1 + intrand(6); // result of intrand(6) is in the range 0..5
double p dblrand() ; // dblrand() produces numbers in [0,1)

They also have a counterparts that use generator k:

int dice = 1 + intrand(k,6); // uses generator k
double prob = dblrand(k); S/

The underlying RNG objects are subclassed from cRNG, and they can be accessed via cMod-
ule’s getRNG () method. The argument to getRNG () is a local RNG number which will un-
dergo RNG mapping.

cRNG xrngl = getRNG (1) ;
cRNG contains the methods implementing the above intrand() and dblrand() functions.
The cRNG interface also allows you to access the “raw” 32-bit random numbers generated by

the RNG and to learn their ranges (intRand (), intRandMax ()) as well as to query the number
of random numbers generated (getNumbersDrawn ()).

7.4.4 Random Variates

The following functions are based on dblrand() and return random variables of different
distributions:

Random variate functions use one of the random number generators (RNGs) provided by
OMNeT++. By default this is generator O, but you can specify which one to be used.

OMNeT++ has the following predefined distributions:

Function | Description
Continuous distributions

uniform(a, b, rng=0) uniform distribution in the range [a,b)

exponential (mean, rng=0) exponential distribution with the given
mean

normal (mean, stddev, rng=0) normal distribution with the given mean
and standard deviation

truncnormal (mean, stddev, normal distribution truncated to nonnega-

rng=0) tive values

gamma_d (alpha, beta, rng=0) gamma distribution with parameters al-
pha>0, beta>0

beta (alphal, alpha2, rng=0) beta distribution with parameters al-
phal>0, alpha2>0

erlang_k (k, mean, rng=0) Erlang distribution with k>0 phases and the
given mean

chi_square (k, rng=0) chi-square distribution with k>0 degrees of
freedom

student_t (i, rng=0) student-t distribution with i>0 degrees of
freedom

158

OMNeT++ Manual — The Simulation Library

cauchy (a, b, rng=0) Cauchy distribution with parameters a,b
where b>0

triang(a, b, ¢, rng=0) triangular distribution with parameters
a<=b<=c, al=c

lognormal (m, s, rng=0) lognormal distribution with mean m and
variance s>0

weibull (a, b, rng=0) Weibull distribution with parameters a>O0,
b>0

pareto_shifted(a, b, ¢, rng=0) generalized Pareto distribution with param-

eters a, b and shift c

Discrete distributions
intuniform(a, b, rng=0) uniform integer from a..b
bernoulli (p, rng=0) result of a Bernoulli trial with probability
O<=p<=1 (1 with probability p and O with
probability (1-p))

binomial (n, p, rng=0) binomial distribution with parameters n>=0
and 0<=p<=1

geometric (p, rng=0) geometric distribution with parameter
O<=p<=1

negbinomial (n, p, rng=0) negative binomial distribution with param-
eters n>0 and O<=p<=1

poisson (lambda, rng=0) Poisson distribution with parameter lambda

They are the same functions that can be used in NED files. intuniform() generates integers
including both the lower and upper limit, so for example the outcome of tossing a coin could
be written as intuniform(1,2). truncnormal () is the normal distribution truncated to non-
negative values; its implementation generates a number with normal distribution and if the
result is negative, it keeps generating other numbers until the outcome is nonnegative.

If the above distributions don’t suffice, you can write your own functions. If you register your
functions with the Define NED_Function () macro, you can use them in NED files and ini
files too.

7.4.5 Random Numbers from Histograms
You can also specify your distribution as a histogram. The cLongHistogram, cDoubleHis-
togram, cVarHistogram, cKSplit or cPSquare classes are there to generate random num-

bers from equidistant-cell or equiprobable-cell histograms. This feature is documented later,
with the statistical classes.

7.5 Container Classes

7.5.1 Queue class: cQueue
Basic Usage
cQueue is a container class that acts as a queue. cQueue can hold objects of type derived

from cObject (almost all classes from the OMNeT++ library), such as cMessage, cPar, etc.
Internally, cQueue uses a double-linked list to store the elements.

159

OMNeT++ Manual — The Simulation Library

A queue object has a head and a tail. Normally, new elements are inserted at its head and
elements are removed at its tail.

FRONT BACK

removal insertion
pop() insert()

Figure 7.1: cQueue: insertion and removal

The basic cQueue member functions dealing with insertion and removal are insert () and
pop (). They are used like this:

cQueue queue ("my-queue") ;
cMessage *msg;

// insert messages
for (int i=0; 1i<10; i++)
{
msg = new cMessage;
queue.insert (msqg) ;

}

// remove messages

while (!queue.empty ())

{
msg = (cMessage =*)queue.pop();
delete msg;

}

The length () member function returns the number of items in the queue, and empty () tells
whether there is anything in the queue.

There are other functions dealing with insertion and removal. The insertBefore () and
insertAfter () functions insert a new item exactly before or after a specified one, regardless
of the ordering function.

The front () and back () functions return pointers to the objects at the front and back of the
queue, without affecting queue contents.

The pop () function can be used to remove items from the tail of the queue, and the remove ()
function can be used to remove any item known by its pointer from the queue:

queue.remove (msqg) ;

160

OMNeT++ Manual — The Simulation Library

Priority Queue

By default, cQueue implements a FIFO, but it can also act as a priority queue, that is, it
can keep the inserted objects ordered. If you want to use this feature, you have to provide a
function that takes two cObject pointers, compares the two objects and returns -1, O or 1 as
the result (see the reference for details). An example of setting up an ordered cQueue:

cQueue queue ("queue", someCompareFunc);

If the queue object is set up as an ordered queue, the insert () function uses the ordering
function: it searches the queue contents from the head until it reaches the position where the
new item needs to be inserted, and inserts it there.

Iterators

Normally, you can only access the objects at the head or tail of the queue. However, if you
use an iterator class, cQueue: : Iterator, you can examine each object in the queue.

The cQueue: :Iterator constructor takes two arguments; the first is the queue object and
the second argument specifies the initial position of the iterator: O=tail, 1=head. Otherwise it
acts as any other OMNeT++ iterator class: you can use the ++ and - operators to advance it,
the () operator to get a pointer to the current item, and the end () member function to examine
if you are at the end (or the beginning) of the queue.

An example:

for (cQueue::Iterator iter(queue,l); !iter.end(), iter++)

{
cMessage xmsg = (cMessage x) iter();

YV

7.5.2 Expandable Array: cArray
Basic Usage

cArray is a container class that holds objects derived from cObject. cArray stores the
pointers of the objects inserted instead of making copies. cArray works as an array, but it
grows automatically when it becomes full. Internally, cArray is implemented with an array of
pointers; when the array fills up, it is reallocated.

cArray objects are used in OMNeT++ to store parameters attached to messages, and inter-
nally, for storing module parameters and gates.

Creating an array:

cArray array("array");

Adding an object at the first free index:

cPar xp = new cMsgPar ("par");
int index = array.add(p);

Adding an object at a given index (if the index is occupied, you will get an error message):

161

OMNeT++ Manual — The Simulation Library

cPar xp = new cMsgPar ("par");
int index = array.addAt (5,p);

Finding an object in the array:

int index = array.find(p);

Getting a pointer to an object at a given index:

cPar xp = (cPar %) arrayl[index];

You can also search the array or get a pointer to an object by the object’s name:
int index = array.find("par");

Par *p = (cPar) arrayl["par"];

You can remove an object from the array by calling remove () with the object name, the index
position or the object pointer:

array.remove ("par");
array.remove (index) ;
array.remove(p);

The remove () function doesn’t deallocate the object, but it returns the object pointer. If you
also want to deallocate it, you can write:

delete array.remove(index);

Iteration
cArray has no iterator, but it is easy to loop through all the indices with an integer variable.
The size () member function returns the largest index plus one.

for (int i=0; i<array.size(); i++)
{

if (arrayl[i]) // is this position used?

{
cObject *obj = arrayl[il;
ev << obj->getName () << endl;

7.6 Routing Support: cTopology

7.6.1 Overview

The cTopology class was designed primarily to support routing in telecommunication or
multiprocessor networks.

A cTopology object stores an abstract representation of the network in graph form:

e each cTopology node corresponds to a module (simple or compound), and

e each cTopology edge corresponds to a link or series of connecting links.

162

OMNeT++ Manual — The Simulation Library

You can specify which modules (either simple or compound) you want to include in the graph.
The graph will include all connections among the selected modules. In the graph, all nodes are
at the same level; there is no submodule nesting. Connections which span across compound
module boundaries are also represented as one graph edge. Graph edges are directed, just as
module gates are.

If you are writing a router or switch model, the cTopology graph can help you determine
what nodes are available through which gate and also to find optimal routes. The cTopology
object can calculate shortest paths between nodes for you.

The mapping between the graph (nodes, edges) and network model (modules, gates, connec-
tions) is preserved: you can easily find the corresponding module for a cTopology node and
vica versa.

7.6.2 Basic Usage

You can extract the network topology into a cTopology object by a single function call. You
have several ways to select which modules you want to include in the topology:

e by module type
e by a parameter’s presence and its value

e with a user-supplied boolean function

First, you can specify which node types you want to include. The following code extracts all
modules of type Router or Host. (Router and Host can be either simple or compound module

types.)

cTopology topo;
topo.extractByModuleType ("Router", "Host", NULL);

Any number of module types can be supplied; the list must be terminated by NULL.

A dynamically assembled list of module types can be passed as a NULL-terminated array of
const char~ pointers, or in an STL string vector std: :vector<std::string>. An example
for the former:

cTopology topo;

const char xtypeNames[3];
typeNames[0] = "Router";
typeNames[1l] = "Host";

typeNames [2] NULL;
topo.extractByModuleType (typeNames) ;

Second, you can extract all modules which have a certain parameter:

topo.extractByParameter ("ipAddress");

You can also specify that the parameter must have a certain value for the module to be
included in the graph:

cMsgPar yes = "yes";

topo.extractByParameter ("includeInTopo", &yes);

The third form allows you to pass a function which can determine for each module whether
it should or should not be included. You can have cTopology pass supplemental data to the

163

OMNeT++ Manual — The Simulation Library

function through a void« pointer. An example which selects all top-level modules (and does
not use the void«* pointer):

int selectFunction (cModule *mod, wvoid x)
{

return mod->getParentModule () == simulation.getSystemModule () ;

topo.extractFromNetwork (selectFunction, NULL);

A cTopology object uses two types: cTopology: :Node for nodes and cTopology: :Link for
edges. (sTopoLinkIn and cTopology: :LinkOut are ‘aliases’ for cTopology: :Link; we'll talk
about them later.)

Once you have the topology extracted, you can start exploring it. Consider the following code
(we’ll explain it shortly):

for (int i=0; i<topo.getNumNodes(); i++)
{
cTopology: :Node xnode = topo.getNode (i) ;

ev << "Node i=" << i << " is " << node->getModule () ->getFullPath() << endl;
ev << " It has " << node->getNumOutLinks () << " conns to other nodes\n";

ev << " and " << node->getNumInLinks () << " conns from other nodes\n";

ev << " Connections to other modules are:\n";

for (int j=0; j<node->getNumOutLinks(); J++)

{
cTopology: :Node *neighbour = node->getLinkOut (j)->getRemoteNode () ;
cGate *gate = node->getLinkOut (j)->getLocalGate();
ev << " " << neighbour->getModule () —->getFullPath ()
<< " through gate " << gate—->getFullName () << endl;

}

The getNumNodes () member function (1st line) returns the number of nodes in the graph,
and getNode(i) returns a pointer to the ith node, an cTopology: :Node structure.

The correspondence between a graph node and a module can be obtained by:

cTopology: :Node =xnode = topo.getNodeFor (module);
cModule *module = node—->getModule () ;

The getNodeFor () member function returns a pointer to the graph node for a given module.
(If the module is not in the graph, it returns NULL). getNodeFor () uses binary search within
the cTopology object so it is relatively fast.

cTopology: :Node’s other member functions let you determine the connections of this node:
getNumInLinks (), getNumOutLinks () return the number of connections, in (i) and out (i)
return pointers to graph edge objects.

By calling member functions of the graph edge object, you can determine the modules and
gates involved. The getRemoteNode () function returns the other end of the connection,
and getLocalGate (), getRemoteGate (), getLocalGateId() and getRemoteGateId () re-
turn the gate pointers and ids of the gates involved. (Actually, the implementation is a bit
tricky here: the same graph edge object cTopology: :Link is returned either as cTopol-
ogy::LinkIn or as cTopology: :LinkOut so that “remote” and “local” can be correctly inter-
preted for edges of both directions.)

164

OMNeT++ Manual — The Simulation Library

7.6.3 Shortest Paths

The real power of cTopology is in finding shortest paths in the network to support optimal
routing. cTopology finds shortest paths from all nodes to a target node. The algorithm is
computationally inexpensive. In the simplest case, all edges are assumed to have the same
weight.

A real-life example assumes we have the target module pointer; finding the shortest path to
the target looks like this:

cModule xtargetmodulep =...;
cTopology::Node xtargetnode = topo.getNodeFor (targetmodulep);
topo.calculateUnweightedSingleShortestPathsTo(targetnode);

This performs the Dijkstra algorithm and stores the result in the cTopology object. The result
can then be extracted using cTopology and cTopology: :Node methods. Naturally, each call
to calculateUnweightedSingleShortestPathsTo () overwrites the results of the previous
call.

Walking along the path from our module to the target node:

cTopology: :Node #*node = topo.getNodeFor (this);

if (node == NULL)
{
ev < "We (" << getFullPath() << ") are not included in the topology.\n";

}
else if (node->getNumPaths ()==0)
{
ev << "No path to destination.\n";

}

else
{
while (node != topo.getTargetNode ())
{
ev << "We are in " << node->getModule ()->getFullPath () << endl;

ev << node->getDistanceToTarget () << " hops to go\n";
ev << "There are " << node->getNumPaths ()
<< " equally good directions, taking the first one\n";

cTopology::LinkOut xpath = node->getPath (0);

ev << "Taking gate " << path->getLocalGate ()->getFullName ()
<< " we arrive in " << path->getRemoteNode () ->getModule () —>getFullPath ()
<< " on its gate " << path->getRemoteGate ()->getFullName () << endl;

node = path->getRemoteNode () ;

}

The purpose of the getDistanceToTarget () member function of a node is self-explanatory.
In the unweighted case, it returns the number of hops. The getNumPaths () member function
returns the number of edges which are part of a shortest path, and path (i) returns the ith
edge of them as cTopology::LinkOut. If the shortest paths were created by the ...Sin-
gleshortestPaths () function, getNumPaths () will always return 1 (or O if the target is not
reachable), that is, only one of the several possible shortest paths are found. The .. .Mul-
tiShortestPathsTo () functions find all paths, at increased run-time cost. The cTopology’s
getTargetNode () function returns the target node of the last shortest path search.

165

OMNeT++ Manual — The Simulation Library

You can enable/disable nodes or edges in the graph. This is done by calling their enable ()
or disable () member functions. Disabled nodes or edges are ignored by the shortest paths
calculation algorithm. The isEnabled () member function returns the state of a node or edge
in the topology graph.

One usage of disable () is when you want to determine in how many hops the target node
can be reached from our node through a particular output gate. To compute this, you compute
the shortest paths to the target from the neighbor node while disabling the current node to
prevent the shortest paths from going through it:

cTopology: :Node *thisnode = topo.getNodeFor(this);
thisnode->disable () ;
topo.calculateUnweightedSingleShortestPathsTo(targetnode);
thisnode—->enable () ;

for (int j=0; j<thisnode->getNumOutLinks(); j++)
{
cTopology::LinkOut =xlink = thisnode->getLinkOut (i) ;
ev << "Through gate " << link->getLocalGate ()->getFullName () << " : "
<< 1 + link->getRemoteNode () ->getDistanceToTarget () << " hops" << endl;
}

In the future, other shortest path algorithms will also be implemented:

unweightedMultiShortestPathsTo (cTopology: :Node *target);
weightedSingleShortestPathsTo (cTopology: :Node *target);
weightedMultiShortestPathsTo (cTopology: :Node =xtarget);

7.7 Pattern Matching

Since version 4.3, OMNeT++ contains two utility classes for pattern matching, cPattern-
Matcher and cMatchExpression.

cPatternMatcher is a glob-style pattern matching class, adopted to special OMNeT++ re-
quirements. It recognizes wildcards, character ranges and numeric ranges, and supports
options such as case sensitive and whole string matching. cMatchExpression builds on top
of cPatternMatcher and extends it in two ways: first, it lets you combine patterns with AND,
OR, NOT into boolean expressions, and second, it applies the pattern expressions to objects
instead of text. These classes are especially useful for making model-specific configuration
files more concise or more powerful by introducing patterns.

7.7.1 cPatternMatcher

cPatternMatcher holds a pattern string and several option flags, and has a boolean matches ()
function that lets you check whether the string passed as argument matches the pattern with
the given flags. The pattern and the flags can be set via the constructor or by calling the
setPattern () member function.

The pattern syntax is a variation on Unix glob-style patterns. The most apparent differences
to globbing rules are the distinction between = and »*, and that character ranges should be
written with curly braces instead of square brackets; that is, any-letter is expressed as {a-
zA-7} and not as [a-zA-Z], because square brackets are reserved for the notation of module
vector indices.

166

OMNeT++ Manual — The Simulation Library

The following option flags are supported:

e dottedpath: controls whether some wildcards (?, *) will match dots
e fullstring: controls whether to do full string or substring match.

e casesensitive: whether matching is case sensitive or case insensitive
Patterns may contain the following elements:

e question mark, 2 : matches any character (except dot if dottedpath=true)

e asterisk, ~ : matches zero or more characters (except dots if dottedpath=true)

e double asterisk, »+ : matches zero or more characters, including dots

e set, e.g. {a—zA-7} : matches any character that is contained in the set

e negated set, e.g. {~a-z}: matches any character that is NOT contained in the set

e numeric range, e.g. {38..150} : matches any number (i.e. sequence of digits) in the
given range

e numeric index range, e.g. [38..150] : matches any number in square brackets in the
given range

e backslash, \ : takes away the special meaning of the subsequent character

NOTE: The dottedpath option was introduced to make matching OMNeT++ module paths
more powerful. When it is off (dottedpath=false), there is no difference between « and x «,
they both match any character sequence. However, when matching OMNeT++ module
paths or other strings where dot is a separator character, it is useful to turn on the
dottedpath mode (dottedpath=true). In that mode, *, not being able to cross a dot, can
match only a single path component (or part of it), and *+ can match multiple path
components.

Sets and negated sets can contain several character ranges and also enumeration of charac-
ters, for example {_a-zA-70-9} or {xyzc-f}. To include a hyphen in the set, place it at a
position where it cannot be interpreted as character range, for example {a-z-} or {-a-z}.
If you want to include a close brace in the set, it must be the first character: {}a-z}, or for
a negated set: {~}a-z}. A backslash is always taken as literal backslash (and NOT as es-
cape character) within set definitions. When doing case-insensitive match, avoid ranges that
include both alpha and non-alpha characters, because they might cause funny results.

For numeric ranges and numeric index ranges, ranges are inclusive, and both the start
and the end of the range are optional; that is, {10..}, {..99} and {..} are all valid nu-
meric ranges (the last one matches any number). Only nonnegative integers can be matched.
Caveat: {17..19} will match "a17", "117" and also "963217"!

The cPatternMatcher constructor and the setPattern () member function have similar sig-
natures:

cPatternMatcher (const char xpattern, bool dottedpath, bool fullstring,
bool casesensitive);

void setPattern (const char xpattern, bool dottedpath, bool fullstring,
bool casesensitive);

167

OMNeT++ Manual — The Simulation Library

The matcher function:

bool matches (const char x*text);

There are also some more utility functions for printing the pattern, determining whether a
pattern contains wildcards, etc.

Example:
cPatternMatcher matcher ("xx.host[*]", true, true, true);
ev << matcher.matches ("Net.host[0]") << endl; // —-> true
ev << matcher.matches ("Net.areal.host[0]") << endl; // —> true
ev << matcher.matches ("Net.host") << endl; // —-> false
(

ev << matcher.matches ("Net.host[0].tcp") << endl; // -> false

7.7.2 cMatchExpression

The cMatchExpression class builds on top of cPatternMatcher, and lets you determine
whether an object matches a given pattern expression.

A pattern expression consists of elements in the fieldname(pattern) syntax; they check whether
the string representation of the given field of the object matches the pattern. For example,
srcAddr (192.168.0.) will match if the srcAddr field of the object starts with 192.168.0. A
naked pattern (without field name and parens) is also accepted, and it will be matched against
the default field of the object, which will usually be its name.

These elements can be combined with the AND, OR, NOT operators, accepted in both lower-
case and uppercase. AND has higher precedence than OR, but parentheses can be used to
change the evaluation order.

Pattern examples:

e "nodex"
e "nodex or hostx"
e "packet—-x and className (PPPFrame)"
e "className (TCPSegment) and byteLength ({4096..})"
e "className (TCPSegment) and (SYN or DATA-x) and not kind({0..2})"
The cMatchExpression class has a constructor and setPattern () method similar to those

of cPatternMatcher:

cMatchExpression (const char xpattern, bool dottedpath, bool fullstring,
bool casesensitive);

void setPattern (const char xpattern, bool dottedpath, bool fullstring,
bool casesensitive);

However, the matcher function takes a cMatchExpression: :Matchable instead of string:
bool matches (const Matchable xobject);
This means that objects to be matched must either be subclassed from cMatchExpres-—

sion::Matchable, or be wrapped into some adapter class that does. cMatchExpression: :Matchable
is a small abstract class with only a few pure virtual functions:

168

OMNeT++ Manual — The Simulation Library

VR
* Objects to be matched must implement this interface
*/
class SIM API Matchable
{
public:
J x*
* Return the default string to match. The returned pointer will not be
* cached by the caller, so it is OK to return a pointer to a static buffer.
*/

virtual const char xgetAsString() const = 0;

J x*
* Return the string value of the given attribute, or NULL if the object
* doesn’t have an attribute with that name. The returned pointer will not
* be cached by the caller, so it is OK to return a pointer to a static buffer.
*/
virtual const char xgetAsString(const char xattribute) const = 0;

J ok k
* Virtual destructor.
*/
virtual ~Matchable () {}
}i

To be able to match instances of an existing class that is not already a Matchable, you need
to write an adapter class. An adapter class that we can look at as an example is cMatch-
ableString. cMatchableString makes it possible to match strings with a cMatchExpres-—
sion, and is part of OMNeT++:

/x*
* Wrapper to make a string matchable with cMatchExpression.
*/
class cMatchableString : public cMatchExpression::Matchable
{

private:
std::string str;
public:
cMatchableString (const char xs) {str = s;}
virtual const char xgetAsString() const {return str.c_str();}

virtual const char xgetAsString(const char xname) const {return NULL; }

}i
An example:

cMatchExpression expr ("foox or barx", true, true, true);
cMatchableString strl("this is a foo");

cMatchableString str2 ("something else");

ev << expr.matches (&strl) << endl; // —-> true

ev << expr.matches (&str2) << endl; // —-> false

Or, by using temporaries:

ev << expr.matches (&cMatchableString("this is a foo")) << endl; // —-> true
ev << expr.matches (&cMatchableString("something else")) << endl; // —-> false

169

OMNeT++ Manual — The Simulation Library

7.8 Statistics and Distribution Estimation

7.8.1 cStatistic and Descendants

There are several statistic and result collection classes: cStdDev, cWeightedStdDev, Long—
Histogram, cDoubleHistogram, cVarHistogram, cPSquare and cKSplit. They are all de-
rived from the abstract base class cStatistic.

e cstdDev keeps the count, mean, standard deviation, minimum and maximum value etc
of the observations.

e cWeightedsStdDev is similar to cStdDev, but accepts weighted observations. cWeight-
edstdDev can be used for example to calculate time average. It is the only weighted
statistics class.

e clLongHistogram and cDoubleHistogram are descendants of cStdDev and also keep an
approximation of the distribution of the observations using equidistant (equal-sized) cell
histograms.

e cVarHistogram implements a histogram where cells do not need to be the same size.
You can manually add the cell (bin) boundaries, or alternatively, automatically have a
partitioning created where each bin has the same number of observations (or as close to
that as possible).

e cPSquare is a class that uses the P? algorithm described in [JC85]. The algorithm calcu-
lates quantiles without storing the observations; one can also think of it as a histogram
with equiprobable cells.

e cKSplit uses a novel, experimental method, based on an adaptive histogram-like algo-
rithm.

Basic Usage

One can insert an observation into a statistic object with the collect () function or the +=
operator (they are equivalent). cStdDev has the following methods for getting statistics from
the object: getCount (), getMin (), getMax (), getMean (), getStddev (), getVariance(),
getSum (), getSgrSum () with the obvious meanings. An example usage for cStdDev:

cStdbhev stat ("stat");

for (int i=0; 1i<10; i++)
stat.collect (normal(0,1));

long numSamples = stat.getCount();

double smallest stat.getMin(),
largest = stat.getMax();

double mean = stat.getMean(),
standardDeviation = stat.getStddev (),
variance = stat.getVariance();

170

OMNeT++ Manual — The Simulation Library

7.8.2 Distribution Estimation
Initialization and Usage

The distribution estimation classes (cLongHistogram, cDoubleHistogram, cVarHistogram,
cPSquare and cKSplit) are derived from cDensityEstBase. Distribution estimation classes
(except for cPSquare) assume that the observations are within a range. You may specify the
range explicitly (based on some a-priori info about the distribution), or you may let the object
collect the first few observations and determine the range from them.

The following member functions exist for setting up the range and to specify how many ob-
servations should be used for automatically determining the range (these methods are part of
cDensityEstBase):

setRange (lower, upper) ;

setRangeAuto (numFirstvals, rangeExtFactor);
setRangeAutolLower (upper, numFirstvals, rangeExtFactor);
setRangeAutoUpper (lower, numFirstvals, rangeExtFactor);

setNumFirstVals (numFirstvals);

The following example creates a histogram with 20 cells and automatic range estimation:

cDoubleHistogram histogram("histogram", 20);
histogram.setRangeAuto (100,1.5);

Here, 20 is the number of cells (not including the underflow/overflow cells, see later), and
100 is the number of observations to be collected before setting up the cells. 1.5 is the range
extension factor. It means that the actual range of the initial observations will be expanded
1.5 times and this expanded range will be used to lay out the cells. This method increases the
chance that further observations fall in one of the cells and not outside the histogram range.

4‘—+—0—0—0~0—0-.+0—0—0—+-—'7
range of initial observations

histogram range

Figure 7.2: Setting up a histogram’s range

The isTransformed () function returns true when the cells have already been set up. You
can force range estimation and setting up the cells by calling the transform () function.

The observations that fall outside the histogram range will be counted as underflows and
overflows. The number of underflows and overflows are returned by the getUnderflowCell ()
and getOverflowCell () member functions.

underflows cdls overflows

Figure 7.3: Histogram structure after setting up the cells

You create a P? object by specifying the number of cells:

171

OMNeT++ Manual — The Simulation Library

cPSquare psquare ("interarrival-times", 20);

Afterwards, a cPSquare can be used with the same member functions as a histogram.

Getting Histogram Data

There are three member functions to explicitly return cell boundaries and the number of ob-
servations in each cell. getNumCells () returns the number of cells, getBasepoint (int k)
returns the kth base point, getCellValue (int k) returns the number of observations in cell
k, and getCellPDF (int k) returns the PDF value in the cell (i.e. between getBasepoint (k)
and getBasepoint (k+1)). The getCellInfo (k) method returns multiple data (cell bounds,
counter, relative frequency) packed together in a struct. These functions work for all his-
togram types, plus cPSquare and cKSplit.

cdl 0,1,...

]

o

base point 0,1,...

Figure 7.4: base points and cells

An example:

long n = histogram.getCount () ;
for (int i=0; i<histogram.getNumCells (); i++)
{
double cellWidth = histogram.getBasepoint (i+1l)-histogram.getBasepoint (1) ;

int count = histogram.getCellValue(i);
double pdf = histogram.getCellPDF (i) ;
VI

}
The getPDF (x) and getCDF (x) member functions return the value of the Probability Density
Function and the Cumulated Density Function at a given x, respectively.

Random Number Generation from Distributions

The random () member function generates random numbers from the distribution stored by
the object:

double rnd = histogram.random() ;

cStdbev assumes normal distribution.

172

OMNeT++ Manual — The Simulation Library

The cPar object stores the pointer to the histogram (or P? object), and whenever it is asked
for the value, calls the histogram object’s random () function:

double rnd = (double)rndPar; // random number from the cPSquare

Storing and Loading Distributions

The statistic classes have loadFromFile () member functions that read the histogram data
from a text file. If you need a custom distribution that cannot be written (or it is inefficient) as
a C function, you can describe it in histogram form stored in a text file, and use a histogram
object with loadFromFile ().

You can also use saveToFile ()that writes out the distribution collected by the histogram
object:

FILE «f = fopen("histogram.dat","w");
histogram.saveToFile (f); // save the distribution
fclose (f);

cDoubleHistogram hist2 ("Hist-from-file");

FILE «f2 = fopen("histogram.dat","r");
hist2.loadFromFile (f2); // load stored distribution
fclose (£f2);

Histogram with Custom Cells

The cvarHistogram class can be used to create histograms with arbitrary (non-equidistant)
cells. It can operate in two modes:

e manual, where you specify cell boundaries explicitly before starting collecting

e automatic, where transform () will set up the cells after collecting a certain number of
initial observations. The cells will be set up so that as far as possible, an equal number
of observations fall into each cell (equi-probable cells).

Modes are selected with a transform-type parameter:

e HIST_TR_NO_TRANSFORM: no transformation; uses bin boundaries previously defined by
addBinBound ()

e HIST TR_AUTO_EPC_DBL: automatically creates equiprobable cells
e HIST_TR_AUTO_EPC_INT: like the above, but for integers

Creating an object:
cVarHistogram (const char »s=NULL,
int numcells=11,
int transformtype=HIST_ _TR_AUTO_EPC_DBL);
Manually adding a cell boundary:
void addBinBound (double x);

Rangemin and rangemax is chosen after collecting the numFirstvals initial observations.
One cannot add cell boundaries when the histogram has already been transformed.

173

OMNeT++ Manual — The Simulation Library

7.8.3 The k-split Algorithm
Purpose

The k-split algorithm is an on-line distribution estimation method. It was designed for
on-line result collection in simulation programs. The method was proposed by Varga and
Fakhamzadeh in 1997. The primary advantage of k-split is that without having to store the
observations, it gives a good estimate without requiring a-priori information about the distri-
bution, including the sample size. The k-split algorithm can be extended to multi-dimensional
distributions, but here we deal with the one-dimensional version only.

The Algorithm

The k-split algorithm is an adaptive histogram-type estimate which maintains a good parti-
tioning by doing cell splits. We start out with a histogram range [z;,,zp;) With k equal-sized
histogram cells with observation counts n,ns,---n;. Each collected observation increments
the corresponding observation count. When an observation count n; reaches a split threshold,
the cell is split into k£ smaller, equal-sized cells with observation counts n; 1,72, - - - n; & initial-
ized to zero. The n; observation count is remembered and is called the mother observation
count to the newly created cells. Further observations may cause cells to be split further (e.g.
ni1,1,---Ni1k €tc.), thus creating a k-order tree of observation counts where leaves contain live
counters that are actually incremented by new observations, and intermediate nodes contain
mother observation counts for their children. If an observation falls outside the histogram
range, the range is extended in a natural manner by inserting new level(s) at the top of the
tree. The fundamental parameter to the algorithm is the split factor k. Experience has shown
that £ = 2 works best.

Figure 7.5: Illustration of the k-split algorithm, & = 2. The numbers in boxes represent the
observation count values

For density estimation, the total number of observations that fell into each cell of the partition
has to be determined. For this purpose, mother observations in each internal node of the tree
must be distributed among its child cells and propagated up to the leaves.

Let n_ ; be the (mother) observation count for a cell, s ; be the total observation count in a
cell n__; plus the observation counts in all its sub-, sub-sub-, etc. cells), and m__; the mother
observations propagated to the cell. We are interested in the 7., = n_ ; + m__; estimated
amount of observations in the tree nodes, especially in the leaves. In other words, if we have
n..; estimated observation amount in a cell, how to divide it to obtain m__;1,m_ ;2---m. i
that can be propagated to child cells. Naturally, m._ ;1 +m_ o+ ---+m i ="M ;.

veey

Two natural distribution methods are even distribution (when m__ ;1 =m__ ;2 = - =m__ ;)

174

OMNeT++ Manual — The Simulation Library

and proportional distribution (Wwhen m__ ;1 :m__;2:---:m_;r=5.,:1:5 4215 ik. Even
distribution is optimal when the s ; ; values are very small, and proportional distribution is

them seems appropriate, where A = 0 means even and A = 1 means proportional distribution:
Mo i = (1 —)\)’ﬁ’l/k +)\ﬁ...,is,,