
OMNeT++
User Guide
Version 6.1

Copyright © 1992-2021, András Varga and OpenSim Ltd.

Build: 241008-f7568267cd

CONTENTS

1 Introduction 1
1.1 The Workbench . 1
1.2 Workspaces . 2
1.3 The Simulation Perspective . 3
1.4 Configuring OMNeT++ Preferences . 3
1.5 Creating OMNeT++ Projects . 4
1.6 Project References . 4
1.7 Getting Help . 5

2 Editing NED Files 7
2.1 Overview . 7
2.2 Opening Older NED Files . 7
2.3 Creating New NED Files . 8
2.4 Using the NED Editor . 9
2.5 Associated Views . 17

3 Editing INI Files 21
3.1 Overview . 21
3.2 Creating INI Files . 21
3.3 Using the INI File Editor . 22
3.4 Associated Views . 27

4 Editing Message Files 31
4.1 Creating Message Files . 31
4.2 The Message File Editor . 32

5 C++ Development 33
5.1 Introduction . 33
5.2 Prerequisites . 33
5.3 Creating a C++ Project . 34
5.4 Editing C++ Code . 36
5.5 Building the Project . 40
5.6 Configuring the Project . 42
5.7 Project Features . 49
5.8 Project Files . 53

6 Launching and Debugging 55
6.1 Introduction . 55
6.2 Launch Configurations . 56
6.3 Running a Simulation . 56
6.4 Batch Execution . 60
6.5 Debugging a Simulation . 61
6.6 Just-in-Time Debugging . 63
6.7 Profiling a Simulation on Linux . 63
6.8 Controlling the Execution and Progress Reporting 63

i

7 The Qtenv Graphical Runtime Environment 67
7.1 Features . 67
7.2 Overview of the User Interface . 68
7.3 Using Qtenv . 69
7.4 Using Qtenv with a Debugger . 75
7.5 Parts of the Qtenv UI . 75
7.6 Inspecting Objects . 83
7.7 The Preferences Dialog . 86
7.8 Qtenv and C++ . 93
7.9 Reference . 94

8 Sequence Charts 97
8.1 Introduction . 97
8.2 Creating an Eventlog File . 97
8.3 Sequence Chart . 98
8.4 Eventlog Table . 105
8.5 Filter Dialog . 108
8.6 Other Features . 110
8.7 Examples . 112

9 Analyzing the Results 121
9.1 Overview . 121
9.2 Creating Analysis Files . 122
9.3 Opening Older Analysis Files . 123
9.4 Using the Analysis Editor . 123
9.5 The Inputs Page . 123
9.6 The Browse Data Page . 125
9.7 The Charts Page . 128
9.8 The Outline View . 128
9.9 Basic Chart Usage . 129
9.10 Configuring Charts . 134
9.11 Editing the Chart Script . 143
9.12 Editing Dialog Pages . 145
9.13 Chart Programming . 147
9.14 Custom Chart Templates . 150
9.15 Under the Hood . 152

10 NED Documentation Generator 153
10.1 Overview . 153

11 Extending the IDE 157
11.1 Installing New Features . 157
11.2 Adding New Wizards . 157
11.3 Project-Specific Extensions . 158

ii

CHAPTER

ONE

INTRODUCTION

The OMNeT++ simulation IDE is based on the Eclipse platform and extends it with new ed-
itors, views, wizards, and other functionality. OMNeT++ adds functionality for creating and
configuring models (NED and INI files), performing batch executions, and analyzing the sim-
ulation results, while Eclipse provides C++ editing, SVN/GIT integration, and other optional
features (UML modeling, bug-tracker integration, database access, etc.) via various open-
source and commercial plug-ins. The environment will be instantly recognizable to those
familiar with the Eclipse platform.

1.1 The Workbench

The Eclipse main window consists of various Views and Editors. These are collected into
Perspectives that define which Views and Editors are visible and how they are sized and
positioned.

Eclipse is a very flexible system. You can move, resize, hide, and show various panels, editors,
and navigators. This allows you to customize the IDE to your liking, but it also makes it more
difficult to describe. First, we need to make sure that we are looking at the same thing.

The OMNeT++ IDE provides a “Simulation perspective” to work with simulation-related NED,
INI, and MSG files. To switch to the simulation perspective, select Window → Open Perspective
→ Simulation.

Fig. 1.1: Selecting the “Simulation Perspective” in Eclipse

Most interface elements within Eclipse can be moved or docked freely, so you can construct
your own workbench to fit your needs.

1

User Guide, Release 6.1

Fig. 1.2: Default layout of the OMNeT++ IDE

The Project Explorer on the top left part of the screen shows the projects and their content in
your workspace. In the example above, the “queueinglib” demo project is open. You can see
the various .ned, .ini, and other files inside. A number of views are docked at the bottom
of the window.

The screenshot shows the open README.txt file in the editor area. When a user double-clicks
on a file, Eclipse automatically launches the editor associated with that particular file type.

The Properties View contains information on the particular object that is selected in the editor
area or one of the other views that serve as a selection provider. The Problems View references
code lines where Eclipse encountered problems.

Several OMNeT++-specific views exist that can be used during development. We will discuss
how you can use them effectively in a later chapter. You can open any View by selecting
Window → Show View from the menu.

1.2 Workspaces

A workspace is basically a directory where all your projects are located. You may create
and use several workspaces and switch between them as needed. During the first run, the
OMNeT++ IDE offers to open the samples directory as the workspace, so you will be able
to experiment with the available examples immediately. Once you start working on your
own projects, we recommend that you create your own workspace by selecting File → Switch
Workspace → Other. You can switch between workspaces as necessary. Please be aware that
the OMNeT++ IDE restarts with each switch in workspaces. This is normal. You can browse
workspace content in the Project Explorer, Navigator, C/C++ Projects, and similar views. We
recommend using the Project Explorer.

2 Chapter 1. Introduction

User Guide, Release 6.1

1.3 The Simulation Perspective

The OMNeT++ IDE defines the Simulation Perspective so that it is specifically geared towards
the design of simulations. The Simulation Perspective is simply a set of conveniently selected
views, arranged to make the creation of NED, INI, and MSG files easier. If you are working
with INI and NED files a lot, we recommend selecting this perspective. Other perspectives are
optimized for different tasks like C++ development or debugging.

1.4 Configuring OMNeT++ Preferences

The OMNeT++ IDE preferences dialog is available through the standard preferences menu,
which is under the main Window menu item. These settings are global and shared between
all projects. The OMNeT++ install locations are automatically filled in for you after instal-
lation. The default settings for the NED documentation generation assume that the PATH
environment variable is already set so that third-party tools can be found. The license con-
figuration settings specify the preferred license type or custom license text. The IDE will copy
the license into new files and projects. The license will also be shown in the generated NED
documentation.

Fig. 1.3: Configuring OMNeT++ preferences

Use the Browse buttons to find files or folders easily. Specify the full path for executables if
you do not want to extend the PATH environment variable.

1.3. The Simulation Perspective 3

User Guide, Release 6.1

1.5 Creating OMNeT++ Projects

In Eclipse, all files are within projects, so you will need a suitable project first. The project
needs to be one designated as an OMNeT++ Project (in Eclipse lingo, it should have the
OMNeT++ Nature). The easiest way to create such a project is to use a wizard. Choose File →
New → OMNeT++ Project from the menu, specify a project name, and click the Finish button.
If you do not plan to write simple modules, you may unselect the C++ Support checkbox,
which will disable all C++ related features for the project.

Fig. 1.4: Creating a new OMNeT++ project

1.6 Project References

Most aspects of a project can be configured in the Project Properties dialog. The dialog is
accessible via the Project → Properties menu item or by right-clicking the project in the Project
Explorer and choosing Properties from the context menu.

An important Eclipse concept is that a project may reference other projects in the workspace;
project references can be configured in the Project References page of the properties dialog.
To update the list of referenced projects, simply check those projects in the list that your
project depends on, then click Apply. Note that circular references are not allowed (i.e. the
dependency graph must be a tree).

4 Chapter 1. Introduction

User Guide, Release 6.1

Fig. 1.5: Setting project dependencies

In the OMNeT++ IDE, all NED types, C++ code, and build artifacts (executables, libraries) in
a project are available to other projects that reference the given project.

Note: To see an example of project references, check the “queuenet” and “queueinglib” ex-
ample projects. In this example, “queuenet” references “queueinglib”. “Queueinglib” provides
simple modules (NED files, and a prebuilt shared library that contains the code of the sim-
ple modules) and makes those modules available to “queuenet” that contains simulations
(networks and ini files) built from them.

1.7 Getting Help

You may access the online help system from the Help → Help Contents menu item. The
OMNeT++ IDE is built on top of Eclipse, so if you are not familiar with Eclipse, we recommend
reading the Workbench User Guide and the C/C++ Development User Guide before starting to
use OMNeT++-specific features.

1.7. Getting Help 5

User Guide, Release 6.1

6 Chapter 1. Introduction

CHAPTER

TWO

EDITING NED FILES

2.1 Overview

When you double-click a .ned file in the IDE, it opens in the NED editor. The new NED editor
is a dual-mode editor. In the graphical mode, you can edit the network using the mouse. The
textual mode allows you to work directly on the NED source.

When the IDE detects errors in a NED file, the problem will be flagged with an error marker
in the Project Explorer, and the Problems View will show the description and location of the
problem. Additionally, error markers will appear in the text window or on the graphical
representation of the problematic component. Opening a NED file with an error will open
it in text mode. Switching to graphical mode is only possible if the NED file is syntactically
correct.

Note: As a side effect, if there are two modules with the same name and package in related
projects, they will collide, and both will be marked with an error. Furthermore, the name will
be treated as undefined, and any other modules depending on it will also generate an error
(thus, a “no such module type” error may mean that there are actually multiple definitions
which nullify each other).

2.2 Opening Older NED Files

The syntax of NED files has significantly changed from the 3.x version. The NED editor
primarily supports the new syntax. However, it is still possible to read and display NED
files with the old syntax. It is important to note that many of the advanced features (syntax
highlighting, content assistance, etc.) will not work with the old syntax. There is automatic
conversion from the old syntax to the new, available both from the NED editor and as an
external utility program (opp_nedtool).

The gned program from OMNeT++ 3.x viewed NED files in isolation. In contrast, the OMNeT++
IDE gathers information from all .ned files in all open OMNeT++ projects and makes this
information available to the NED editor. This is necessary because OMNeT++ 4.x modules
may inherit parameters, visual appearance, or even submodules and connections from other
modules. So, it is only possible to display a compound module correctly if all related NED
definitions are available.

7

User Guide, Release 6.1

2.3 Creating New NED Files

Once you have an empty OMNeT++ project, you can create new NED files. Choose File → New
→ Network Description File from the menu. A wizard will appear where you can specify the
target directory and the file/module name. You may choose to create an empty NED file, a
simple/compound module, or a network. When you press the Finish button, a new NED file
will be created with the requested content.

Fig. 2.1: Creating a new NED file

Tip: Make sure that the NED file and the contained module have the same name. For exam-
ple, a compound module named Wireless42 should be defined within its own Wireless42.
ned file.

2.3.1 NED Source Folders

You can specify the folders the IDE should scan for NED files and use as the base directory
for your NED package hierarchy. The IDE will not use any NED files outside the specified
NED Source Folders, and those files will be opened in a standard text editor. To specify the
directory where the NED files will be stored, right-click on the project in the Project Explorer
and choose Properties. Select the OMNeT++ → NED Source Folders page and click on the
folders where you store your NED files. The default value is the project root.

8 Chapter 2. Editing NED Files

User Guide, Release 6.1

Fig. 2.2: Specifying the folder where NED files will be stored

2.4 Using the NED Editor

To open an NED file, double-click its icon in the Project Explorer. If the NED file can be
parsed without an error, the graphical representation of the file opens; otherwise, the text
view opens, and the text is annotated with error markers.

Warning: Only files located in NED Source Folders open with the graphical editor. If a
NED file is not in the NED Source Folders, it opens in a standard text editor.

You can switch between graphical and source editing modes by clicking the tabs at the bottom
of the editor or by using the Alt+PGUP / Alt+PGDN key combinations. The editor tries to keep
the selection during the switch. Selecting an element in a graphical view and then switching
to text view will move the cursor to the related element in the NED file. When switching back
to the graphical view, the graphical editor tries to select the element that corresponds to the
cursor’s location in the NED source. This allows you to keep the context, even when switching
back and forth.

2.4.1 Editing in Graphical Mode

The graphical editor displays the visible elements of the loaded NED file. Simple modules,
compound modules, and networks are represented by figures or icons. Each NED file can
contain more than one module or network. If it does, the corresponding figures appear in the
same order as they are found in the NED file.

Tip: Place only a single module or network into an NED file and name the file according to
the module name.

Simple modules and submodules are represented as icons while compound modules and
networks are displayed as rectangles where other submodules can be dropped. Connections
between submodules are represented either by lines or arrows depending on whether the
connection was uni- or bi-directional. Submodules can be dragged or resized using the mouse
and connected using the Connection Tool in the palette.

2.4. Using the NED Editor 9

User Guide, Release 6.1

Fig. 2.3: Graphical NED Editor

The palette is normally on the right side of the editor area. The upper part of the palette
contains the basic tools: selector, connection selector, and the connection creator tool. To
use a palette item, click on it, and click in the module where you want to place/activate it.
The mouse pointer gives you feedback whether the requested operation is allowed. The middle
part of the toolbox contains the basic elements that can be placed at the top level in an NED
file (simple module, compound module, interface, channel, etc.) and a “generic” submodule.
Click on any of these and then click into the editor area to create an instance. The bottom
part of the palette contains all module types that can be instantiated as a submodule. They
are shortcuts for creating a generic submodule and then modifying its type. They display
the default icon (if any) and a short description if you hover the mouse over them. You can
configure the palette by right-clicking a button and selecting Settings or filter its content by
selecting Select Packages

Right-clicking any element in the edited NED file brings up a context menu that allows various
actions like changing the icon, pinning/unpinning a submodule, re-layouting a compound
module, or deleting/renaming the element. There are also items to activate various views.
For example, the Properties View allows you to edit properties of the element.

Hovering over an element displays its documentation (the comment in the NED source above
the definition) as a tooltip. Pressing F2 makes the tooltip window persistent, so it can be
resized and scrolled for more convenient reading.

Creating Modules

To create a module or a submodule, click on the appropriate palette item and then click
where you want to place the new element. Submodules can only be placed inside compound
modules or networks.

Creating Types and Inner Types

To create a type or an inner type inside a compound module, click on the appropriate palette
item in the “Types” drawer and then click where you want to place the new element. If
you click on the background, a new top-level type will be created. Clicking on an existing
compound module or network creates an inner type inside that module.

10 Chapter 2. Editing NED Files

User Guide, Release 6.1

Creating and Changing Connections

Select the connection tool (if there are channels defined in the project, you can use the drop-
down to select the connection channel type). First, click the source module, and then the
destination. A popup menu will appear, asking which gates should be connected on the two
selected modules. The tool only offers valid connections (e.g., it will not offer to connect two
output gates).

Reconnecting Modules

Clicking and dragging a connection endpoint to another module will reconnect it (optionally,
asking which gate should be connected). If you only want to change the gate, drag the
connection endpoint, and drop it over the original module. A popup will appear asking for the
source or destination gate.

Selecting Elements

You can select an element by clicking on it or by dragging a rectangle over the target modules.
A compound module can be selected by clicking on its border or title. If you only want to select
connections within a selection rectangle, use the connection selector tool in the dropdown
menu of the connection tool . The Ctrl and Shift keys can be used to add/remove the
current selection. Note that the keyboard (arrow keys) can also be used to navigate between
submodules. You can also select using a selection rectangle by dragging the mouse around
the modules.

Undo, Redo, Deleting Elements

Use Ctrl+Z and Ctrl+Y for undo and redo, respectively, and the DEL key for deletion. These
functions are also available in the Edit menu and in the context menu of the selected element.

Moving and Resizing Elements

You can move/resize the selected elements with the mouse. Holding down Shift during move
will perform a constrained (horizontal, diagonal, or vertical) move operation. Shift + resize
will keep the aspect ratio of the element.

If you turn on Snap to Geometry in the View menu, helper lines will appear to align with other
modules. Selecting more than one submodule activates the Alignment menu (found in both
the View menu and the context menu).

Copying Elements

Holding down Ctrl while dragging will clone the module(s). Copy/Paste can also be used on
single modules and with group selection.

2.4. Using the NED Editor 11

User Guide, Release 6.1

Zooming

Zooming in and out is possible from the View menu or using Ctrl+-, Ctrl+=, or holding
down Ctrl and using the mouse wheel.

Pinning, Unpinning, Re-Layouting

A submodule display string may or may not contain explicit coordinates for the submodule; if
it does not, then the location of the submodule will be determined by the layouting algorithm.
A submodule with explicit coordinates is pinned; one without is unpinned. The Pin action
inserts the current coordinates into the display string, and the Unpin action removes them.
Moving a submodule also automatically pins it. The position of an unpinned module is
undetermined and may change every time the layouting algorithm runs. For convenience,
the layouter does not run when a submodule gets unpinned (so that the submodule does not
jump away on unpinning), but this also means that unpinned submodules may appear at
different locations the next time the same NED file is opened.

Changing a Module Property

To change a module property, right-click on it and select the Properties menu item from the
context menu or select the module and modify that property in the Properties View. Alterna-
tively, you can press Ctrl+Enter when the module is selected. NED properties like name,
type, and vector size are available on the General tab. Visual properties like icon, size, color,
border, etc. can be set on the Appearance tab. You can check how your module will look in
the preview panel at the bottom of the dialog.

Fig. 2.4: Editing Visual Properties

Note: You can select multiple modules at the same time and open the Properties dialog to
set their common properties simultaneously.

12 Chapter 2. Editing NED Files

User Guide, Release 6.1

Changing a Module Parameter

To change a module parameter, right-click on it and select the Parameters menu item from
the context menu. The dialog allows you to add or remove module parameters or assign
values to them.

Fig. 2.5: Editing Module Parameters

Renaming Modules

To rename an existing module, select its context menu and choose Rename or click on an
already selected module a second time. You can specify a new name for the module or even
turn a submodule into a vector by adding [vectorsize] after its name. Alternatively, the
name of a module can be set in the Properties dialog or can be edited by pressing F6 when
the module is selected.

Exporting a Module as an Image

A module can be exported using several image formats by selecting Export Image from the
module’s context menu.

Navigation

Double-clicking a submodule opens the corresponding module type in a NED editor. Selecting
an element in the graphical editor and then switching to text mode places the cursor near the
previously selected element in the text editor.

Navigating inside a longer NED file is easier if you open the Outline View to see the structure
of the file. Selecting an element in the outline selects the same element in the graphical editor.

To see the selected element in a different view, select the element and right-click on it. Choose
Show In from the context menu and select the desired view.

2.4. Using the NED Editor 13

User Guide, Release 6.1

Opening a NED Type

If you only know the name of a module type or other NED element, you can use the Open
NED Type dialog by pressing Ctrl+Shift+N. Type the name or search with wildcards. The
requested type opens in an editor. This feature is not tied to the graphical editor: the Open
NED Type dialog is available from anywhere in the IDE.

Setting Properties

Elements of the display string and other properties associated with the selected elements can
be edited in the Properties View. The Property View is grouped and hierarchically organized;
however, you can switch off this behavior on the view toolbar. Most properties can be edited
directly in the Properties View, but some also have specific editors that can be activated by
pressing the ellipsis button at the end of the field. Fields marked with a small light bulb
support content assist. Use the Ctrl+SPACE key combination to get a list of possible values.

Note: The following functions are available only in source editing mode:

• Creating or modifying gates

• Creating grouped and conditional connections

• Adding or editing properties

2.4.2 Editing in Source Mode

The NED source editor supports all functionality expected from an Eclipse-based text ed-
itor, such as syntax highlighting, clipboard cut/copy/paste, unlimited undo/redo, folding,
find/replace, and incremental search.

The NED source is continually parsed as you type, and errors and warnings are displayed as
markers on the editor rulers. When the NED text is syntactically correct, the editor has full
knowledge of “what is what” in the text buffer.

Fig. 2.6: NED Source Editor

14 Chapter 2. Editing NED Files

User Guide, Release 6.1

Basic Functions

• Undo Ctrl+Z, Redo Ctrl+Y

• Indent/unindent code blocks TAB / Shift+TAB

• Correct indentation (NED syntax aware) Ctrl+I

• Find Ctrl+F, incremental search Ctrl+J

• Move lines Alt+UP Alt+DOWN

Tip: The following functions can help you explore the IDE:

• Ctrl+Shift+L pops up a window that lists all keyboard bindings, and

• Ctrl+3 brings up a filtered list of all available commands.

Converting to the New NED Syntax

If you have an NED file with older syntax, you can still open it. A context menu item allows
you to convert it to the new syntax. If the NED file already uses the new syntax, the Convert
to 4.x Format menu item is disabled.

View Documentation

Hovering the mouse over a NED type name displays the documentation in a “tooltip” window,
which can be made persistent by hitting F2.

Content Assist

If you need help, just press Ctrl+SPACE. The editor offers possible words or templates. This
is context-sensitive, so it only offers valid suggestions. Content assist is also a good way to
explore the new NED syntax and features.

Fig. 2.7: NED Source Editor with content assist activated

2.4. Using the NED Editor 15

User Guide, Release 6.1

Searching in NED Files

Selecting a text or moving the cursor over a word and pressing Ctrl+Shift+G searches for the
selection in all NED files in the open projects. This function lets you quickly find references
to the word or type currently under the cursor. The results are shown in the standard Search
View.

Organizing Imports

Sometimes, it is very inconvenient to add the necessary import statements to the begin-
ning of the NED file by hand. The IDE can do it for you (almost) automatically. Pressing
Ctrl+Shift+O will make the IDE try to insert all necessary import statements. You will be
prompted to specify the used packages in case of ambiguity.

Cleaning Up NED Files

This function does a general repair on all selected NED files by throwing out or adding import
statements as needed, checking (and fixing) the file’s package declaration, and reformatting
the source code. It can be activated by clicking on the Project → Clean Up NED Files menu
item from the main menu.

Commenting

To comment out the selected lines, press Ctrl+/. To remove the comment, press Ctrl+/
again.

Formatting the Source Code

It is possible to reformat the whole NED file according to the recommended coding guidelines
by activating the Format Source context menu item or by pressing the Ctrl+Shift+F key
combination.

Note: Using the graphical editor and switching to source mode automatically re-formats the
NED source code, as well.

Navigation

Holding the Ctrl key and clicking any identifier type will jump to the definition. Alternatively,
move the cursor into the identifier and hit F3 to achieve the same effect.

If you switch to graphical mode from text mode, the editor will try to locate the NED element
under the cursor and select it in the graphical editor.

The Eclipse platform’s bookmarking and navigation history facilities also work in the NED
editor.

16 Chapter 2. Editing NED Files

User Guide, Release 6.1

2.4.3 Other Features

Exporting Images

To export a compound module as a picture, select the compound module and bring up its
context menu, select Export Image and choose file name and type. The module will be ex-
ported to the file system. BMP, PNG, JPEG, SVG and PDF formats are supported.

It is also possible to export images from all (or selected) NED files; the corresponding wizard
can be found under File → Export in the menu.

2.5 Associated Views

There are several views related to the NED editor. These views can be displayed (if not already
open) by choosing Window → Show View in the menu or by selecting a NED element in the
graphical editor and selecting Show In from the context menu.

Note: If you are working with very large NED files, you may improve the performance of the
editor by closing all NED file related views you do not need.

2.5.1 Outline View

The Outline View allows an overview of the current NED file. Clicking on an element will select
the corresponding element in the text or graphical view. It has limited editing functionality;
you can copy/cut/paste and delete an object.

Fig. 2.8: Outline View

2.5.2 Property View

The Property View contains all properties of the selected graphical element. Visual appear-
ance, name, type and other properties can be changed in this view. Some fields have special-
ized editors that can be activated by clicking on the ellipsis button in the field editor. Fields
marked with a small light bulb icon have content assist support. Pressing Ctrl+SPACE will
display the possible values the field can hold.

2.5. Associated Views 17

User Guide, Release 6.1

Fig. 2.9: Properties View

2.5.3 Palette View

The Palette is normally displayed on the left or right side of the editor area and contains tools
to create various NED elements. It is possible to hide the Palette by clicking on the little arrow
in the corner. You can also detach it from the editor and display it as a normal Eclipse View
(Window → Show View → Other → General → Palette).

2.5.4 Problems View

The Problems View contains error and warning messages generated by the parser. Double-
clicking a line will open the problematic file and move to the appropriate marker.

Fig. 2.10: Problems View

2.5.5 NED Inheritance View

The Inheritance View displays the relationship between different NED types. Select a NED
element in the graphical editor or move the cursor into a NED definition and the Inheritance
View will display the ancestors of this type. If you do not want the view to follow the selection
in the editor, click the Pin icon on the view toolbar. This will fix the displayed type to the
currently selected one.

18 Chapter 2. Editing NED Files

User Guide, Release 6.1

Fig. 2.11: NED Inheritance View

2.5.6 Module Hierarchy View

The Module Hierarchy View shows the contained submodules and their parameters, several
levels deep. It also displays the parameters and other contained features.

Fig. 2.12: Module Hierarchy View

2.5.7 Parameters View

The Parameters View shows the parameters of the selected module including inherited pa-
rameters.

Fig. 2.13: Outline View

The latter two views are used mainly with the INI File Editor.

2.5. Associated Views 19

User Guide, Release 6.1

20 Chapter 2. Editing NED Files

CHAPTER

THREE

EDITING INI FILES

3.1 Overview

In OMNeT++, simulation models are parameterized and configured for execution using con-
figuration files with the .ini extension, called INI files. INI files are text files, which can be
edited using any text editor. However, OMNeT++ 4.x introduces a tool specifically designed
for editing INI files. The INI File Editor is part of the OMNeT++ IDE and is highly effective in
assisting the user to author INI files. It is a very useful feature because it has detailed knowl-
edge of the simulation model, the INI file syntax, and the available configuration options.

Note: The syntax and features of INI files have changed since OMNeT++ 3.x. These changes
are summarized in the “Configuring Simulations” chapter of the “OMNeT++ 4.x User Manual.”

The INI File Editor is a dual-mode editor. The configuration can be edited using forms and
dialogs, or as plain text. Forms are organized around topics such as general setup, Cmdenv,
Qtenv, output files, extensions, and so on. The text editor provides syntax highlighting and
auto completion. Several views can display information, which is useful when editing INI files.
For example, you can see the errors in the current INI file or all the available module param-
eters in one view. You can easily navigate from the module parameters to their declaration in
the NED file.

3.2 Creating INI Files

To create a new INI file, choose File → New → Initialization File from the menu. It opens a
wizard where you can enter the name of the new file and select the name of the network to be
configured.

21

User Guide, Release 6.1

Fig. 3.1: New Initialization File dialog

3.3 Using the INI File Editor

The INI File Editor has two modes. The Source mode provides a text editor with syntax
highlighting and auto completion of names. In the Form mode, you can edit the configuration
by entering the values in a form. You can switch between the modes by selecting the tabs at
the bottom of the editor.

3.3.1 Editing in Form Mode

The INI file contains the configuration of simulation runs. The content of the INI file is divided
into sections. In the simplest case, all parameters are set in the General section. If you want
to create several configurations in the same INI file, you can create named Configuration
(Config) sections and refer to them with the -c option when starting the simulation. The
Config sections inherit the settings from the General section or from other Config sections.
This way, you can factor out the common settings into a “base” configuration.

On the first page of the form editor, you can edit the sections. The sections are displayed as
a tree; the nodes inherit settings from their parents. The icon before the section name shows
how many runs are configured in that section. You can use drag and drop to reorganize the
sections. You can delete, edit, or add a new child to the selected section.

22 Chapter 3. Editing INI Files

User Guide, Release 6.1

Fig. 3.2: Editing INI file sections

Table 3.1: Legend of Icons Before Sections

contains a single run
contains multiple replications (specified by ‘repeat=. . . ’)
contains iteration variables
contains multiple replications for each iteration

The Config sections have a name and an optional description. You can specify a fallback
section other than General. If the network name is not inherited, it can be specified as well.

Fig. 3.3: Creating a new INI file section

On the Parameters page of the form editor, you can set module parameters. First, you have
to select the section where the parameters are stored. After selecting the section from the
list, the form shows the name of the edited network and the fallback section. The table below
the list box shows the current settings of the section and all other sections from which it
has inherited settings. You can move parameters by dragging them. If you click a table
cell, you can edit the parameter name (or pattern), its value, and the comment attached to
it. Ctrl+SPACE brings up a content assist. If you hover over a table row, the parameter is
described in the tooltip that appears.

3.3. Using the INI File Editor 23

User Guide, Release 6.1

Fig. 3.4: Editing module parameters

New parameters can be added one by one by pressing the New button and filling the new
table row. The selected parameters can be removed with the Remove button. If you press the
Add button, you can add any missing parameters.

Fig. 3.5: Add missing module parameters dialog

The rest of the settings do not belong to modules (e.g., configuration of random number
generators, output vectors, simulation time limit). These settings can be edited from the
forms listed under the Configuration node. If the field has a default value and it is not set,
the default value is displayed in gray. If its value is set, you can reset the default value by
pressing the Reset button. These fields are usually set in the General section. If you want to
specify them in a Config section, press the button and add a section-specific value to the
opening table. If the table contains the Generic section only, then it can be collapsed again
by pressing the button. Some fields can be specified in the General section only, so they
do not have an button next to them.

24 Chapter 3. Editing INI Files

User Guide, Release 6.1

Fig. 3.6: Editing general configuration

3.3.2 Editing in Text Mode

If you want to edit the INI file as plain text, switch to the Source mode. The editor provides
several features in addition to the usual text editor functions like copy/paste, undo/redo,
and text search.

Fig. 3.7: Editing the INI file in text mode

3.3. Using the INI File Editor 25

User Guide, Release 6.1

Opening Old INI Files

When you open an INI file with the old format, the editor offers to convert it to the new format.
It creates Config sections from Run sections and renames old parameters.

Content Assist

If you press Ctrl+SPACE, you will get a list of proposals valid at the insertion point. The list
may contain section names, general options, and parameter names and values of the modules
of the configured network.

Fig. 3.8: Content assist in source mode

Tooltip

If you hover over a section or parameter, a tooltip appears showing the properties of the sec-
tion or parameter. The tooltip for sections displays the inheritance chain, the network name,
the number of errors and warnings, and the yet unassigned parameters. For parameters, the
definition, description, and the module name are displayed.

Add Unassigned Parameters

You can add the names of unassigned module parameters to a Config section by choosing
Add Missing keys from the context menu or pressing Ctrl+Shift+O.

Commenting

To comment out the selected lines, press Ctrl+/. To remove the comment, press Ctrl+/
again.

26 Chapter 3. Editing INI Files

User Guide, Release 6.1

Navigation

If you press the Ctrl key and click on a module parameter name, then the declaration of the
parameter will be shown in the NED editor. You can navigate from a network name to its
definition too.

Error Markers

Errors are marked on the left/right side of the editor. You can move to the next/previous
error by pressing Ctrl+. and Ctrl+, respectively. You can get the error message in a tooltip
if you hover over the marker.

3.4 Associated Views

There are several views related to the INI editor. These views can be displayed (if not already
open) by choosing the view from the Window → Show View submenu.

Note: If you are working with very large NED or INI files, you may improve the performance
of the editor by closing all views related to INI files (Parameters, Module Hierarchy, and NED
Inheritance View).

3.4.1 Outline View

The Outline View allows an overview of the sections in the current INI file. Clicking on a
section will highlight the corresponding element in the text or form view.

Fig. 3.9: Outline View showing the content of an INI file

3.4.2 Problems View

The Problems View contains error and warning messages generated by the parser. Double-
clicking on a row will open the problematic file and move to the location of the problem.

3.4. Associated Views 27

User Guide, Release 6.1

3.4.3 Parameters View

The Parameters View shows parameters of the selected section including inherited param-
eters. It also displays the parameters that are unassigned in the configuration. When the

toggle button on the toolbar is on, then all parameters are displayed; otherwise, only the
unassigned ones are visible.

If you want to fix the content of the view, press the button. After pinning, the content of
this view will not follow the selection made by the user in other editors or views.

Fig. 3.10: Parameters View

Table 3.2: Legend of icons before module parameters

value is set in the NED file
default from the NED file is explicitly set in the INI file (**.paramname=default)
default from the NED file is automatically applied because no value is specified in the
INI file
value is set in the INI file (may override the value from the NED file)
value is set in the INI file to the same value as the NED default
will ask the user at runtime (**.paramname=ask)
unassigned – has no values specified in the NED or INI files

Tip: Right-clicking on any line will show a context menu that allows you to navigate to the
definition of that parameter or module.

3.4.4 Module Hierarchy View

The Module Hierarchy View shows the contained submodules, several levels deep. It also
displays the module parameters and where their values come from (INI file, NED file, or
unassigned).

Fig. 3.11: Module Hierarchy View

28 Chapter 3. Editing INI Files

User Guide, Release 6.1

Tip: Before you use the context menu to navigate to the NED definition, pin down the
hierarchy view. This way, you will not lose the current context and content if the view will
not follow the selection.

3.4.5 NED Inheritance View

The NED Inheritance View shows the inheritance tree of the network configured in the selected
section.

3.4. Associated Views 29

User Guide, Release 6.1

30 Chapter 3. Editing INI Files

CHAPTER

FOUR

EDITING MESSAGE FILES

4.1 Creating Message Files

Choosing File → New → Message Definition (msg) from the menu will bring up a wizard where
you can specify the target directory and the file name for your message definition. You can
choose to create an empty MSG file or choose from the predefined templates. Once you press
the Finish button, a new MSG file will be created with the requested content.

Fig. 4.1: Creating a new MSG file

31

User Guide, Release 6.1

4.2 The Message File Editor

The message file editor is a basic text editor with syntax highlight support.

Fig. 4.2: Message File Editor

Note: Currently, the editor does not provide support for advanced features like content
assistance or syntax-aware folding.

32 Chapter 4. Editing Message Files

CHAPTER

FIVE

C++ DEVELOPMENT

5.1 Introduction

The OMNeT++ IDE contains editors, views, and other tools to assist you in developing your
C++ code. C++ files open in the IDE in the C++ source editor. The C++ source editor supports
syntax highlighting, documentation tooltips, content assist, automatic indentation, code for-
matting, refactoring, and several other useful features. The IDE also allows you to configure
the build, start the build process, launch simulations, and debug the model without leaving
the IDE.

Most of these features are provided by the Eclipse CDT (C/C++ Development Tooling) project
(http://eclipse.org/cdt). This chapter briefly explains the basics of using CDT to develop sim-
ulation models. If you want to learn more about how to use CDT effectively, we recommend
that you read the CDT documentation in the IDE help system (Help/Help Content).

The OMNeT++ IDE extends CDT with the following features to facilitate model development:

• A new OMNeT++ project creation wizard enables you to create simple, working simula-
tion models in one step.

• Makefiles are automatically generated for your project based on the project build
configuration. The built-in makefile generator is compatible with the command line
opp_makemake tool and features deep makefiles, recursive make, cross-project refer-
ences, invoking the message compiler, automatic linking with the OMNeT++ libraries,
and support for building executables, shared libraries, or static libraries.

• Makefile generation and the project build system can be configured using a GUI inter-
face.

• Project Features: Large projects can be partitioned into smaller units that can be inde-
pendently excluded or included in the build. Disabling parts of the project can signifi-
cantly reduce build time or make it possible to build the project at all.

5.2 Prerequisites

The OMNeT++ IDE (and the OMNeT++ simulation framework itself) requires a preinstalled
compiler toolchain to function properly.

• On Windows: The OMNeT++ distribution comes with a preconfigured MinGW compiler
toolchain. There is no need to manually install anything. By default, the IDE uses the
Clang compiler from MinGW, but it is also possible to switch to the GCC compiler (also
part of MinGW).

• On Linux: By default, the Clang compiler is used, but OMNeT++ falls back to using GCC
if Clang is not present on the system. You have to install Clang or GCC on your system
before trying to compile a simulation with OMNeT++. Please read the Install Guide for
detailed instructions.

33

http://eclipse.org/cdt

User Guide, Release 6.1

• On macOS: You need to install Xcode Developer Tools to get compiler support before
trying to compile a simulation with OMNeT++. Please read the Install Guide for detailed
instructions.

5.3 Creating a C++ Project

To create an OMNeT++ project that supports C++ development, select File → New → OMNeT++
Project.

Fig. 5.1: Creating an OMNeT++ project

This menu item will bring up the New OMNeT++ Project wizard. The wizard lets you create an
OMNeT++-specific project, which includes support for NED, MSG, and INI file editing, as well
as C++ development of simple modules.

On the first page of the wizard, specify the project name and ensure that the Support C++
Development checkbox is selected.

Fig. 5.2: Setting project name and enabling C++ support

Select a project template. A template defines the initial content and layout of the project.

34 Chapter 5. C++ Development

User Guide, Release 6.1

Fig. 5.3: Selecting a project template

Select a toolchain that is supported on your platform. Usually, you will see only a single
supported toolchain, so there is no need to change anything on the page.

Fig. 5.4: Selecting a toolchain

Finally, select one or more from the preset build configurations. A configuration is a set of
options that are associated with the build process. It is mainly used to build debug and
release versions of your program.

5.3. Creating a C++ Project 35

User Guide, Release 6.1

Fig. 5.5: Selecting configurations

Clicking the Finish button will create the project.

5.4 Editing C++ Code

The OMNeT++ IDE comes with a C/C++ editor. In addition to standard editing features,
the C/C++ editor provides syntax highlighting, content assistance, and other C++ specific
functionality. The source is continually parsed as you type, and errors and warnings are
displayed as markers on the editor rulers.

Fig. 5.6: C++ source editor

36 Chapter 5. C++ Development

User Guide, Release 6.1

5.4.1 The C++ Editor

The C++ source editor provides the usual features of Eclipse-based text editors, such as
syntax highlighting, clipboard cut/copy/paste, unlimited undo/redo, folding, find/replace,
and incremental search.

The IDE scans and indexes the C++ files in your project in the background and provides
navigation and code analysis features based on that knowledge. This database is kept up to
date as you edit the source.

Basic Functions

Some of the most useful features of the source editor:

• Undo Ctrl+Z, Redo Ctrl+Y

• Switch between a C++ source and its matching header file Ctrl+TAB

• Indent/unindent code blocks TAB / Shift+TAB

• Correct indentation Ctrl+I

• Move lines Alt+UP / Alt+DOWN

• Find Ctrl+F, incremental search Ctrl+J

Tip: The following functions help you explore the IDE:

• Ctrl+Shift+L brings up a window listing all keyboard bindings, and

• Ctrl+3 shows a filtered list of all available commands.

View Documentation

Hovering the mouse over an identifier displays its declaration and the documentation com-
ment in a “tooltip” window. The window can be made persistent by hitting F2.

Tip: If you are on Ubuntu and see all-black tooltips, you need to change the tooltip colors in
Ubuntu; see the Ubuntu chapter of the install-guide for details.

Content Assist

If you need help, just press Ctrl+SPACE. The editor will offer possible completions (variable
names, type names, argument lists, etc.).

Navigation

Hitting F3 or holding the Ctrl key and clicking an identifier will jump to the defini-
tion/declaration.

The Eclipse platform’s bookmarking and navigation history facilities are also available in the
C++ editor.

5.4. Editing C++ Code 37

User Guide, Release 6.1

Commenting

To comment out the selected lines, press Ctrl+/. To remove the comment, press Ctrl+/
again.

Open Type

Pressing Ctrl+Shift+T will bring up the Open Element dialog, which lets you type a class name,
method name, or any other identifier and opens its declaration in a new editor.

Exploring the Code

The editor offers various ways to explore the code: Open Declaration F3, Open Type Hierarchy
F4, Open Call Hierarchy Ctrl+Alt+H, Quick Outline Ctrl+O, Quick Type Hierarchy Ctrl+T,
Explore Macro Expansion Ctrl+=, Search for References Ctrl+Shift+G, etc.

Refactoring

Several refactoring operations are available, such as Rename Shift+Alt+R.

Note: Several features such as content assist, go to definition, type hierarchy, and refac-
torings rely on the Index. The index contains the locations of all functions, classes, enums,
defines, etc. in the project and referenced projects. Initial indexing of large projects may
take a significant amount of time. The index is kept up to date mostly automatically, but
occasionally it may be necessary to manually request reindexing the project. Index-related
actions can be found in the Index submenu of the project’s context menu.

5.4.2 Include Browser View

Dropping a C++ file into the Include Browser View displays the include files used by the C++
file (either directly or indirectly).

Fig. 5.7: Include Browser

38 Chapter 5. C++ Development

User Guide, Release 6.1

5.4.3 Outline View

During source editing, the Outline View gives you an overview of the structure of your source
file and can be used to quickly navigate within the file.

Fig. 5.8: Navigating with the Outline View

5.4.4 Type Hierarchy View

Displaying the C++ type hierarchy may be helpful in understanding the inheritance relation-
ships among your classes (and among OMNeT++ classes).

Fig. 5.9: C++ Type hierarchy

5.4. Editing C++ Code 39

User Guide, Release 6.1

5.5 Building the Project

5.5.1 Basics

Once you have created your source files and configured your project settings, you can build
the project by selecting Build Project from the Project menu or from the project context menu.
You can also press Ctrl+B to build all open projects in the workspace.

Fig. 5.10: Building a project

Build Output

The build output (standard output and standard error) is displayed in the Console View as the
build progresses. Errors and warnings parsed from the output are displayed in the Problems
View. Double-clicking a line in the Problems View will jump to the corresponding source line.
Conversely, the Console View is more useful when you want to look at the build messages in
their natural order (Problems View is usually sorted), for example when you get a lot of build
errors and you want to begin by looking at the first one.

Makefile Generation

When you start the build process, a makefile is created or refreshed in each folder where
makefile creation is configured. After that, make will be invoked with the all target in the
folder configured as the build root.

Note: During the build process, the makefile will print out only the names of the compiled
files. If you want to see the full command line used to compile each file, specify V=1 (verbose
on) on the make command line. To add this option, open Project Properties → C/C++ Build →
Behavior (tab) and replace all with all V=1 on the Build target line.

40 Chapter 5. C++ Development

User Guide, Release 6.1

Cleaning the Project

To clean the project, choose Clean from the Project menu or Clean Project from the project
context menu. This will invoke make with the clean target in the project’s build root folder,
and also in referenced projects. To clean only the local project and keep referenced projects
intact, use Clean Local from the project context menu (see next section).

Referenced Projects and the Build Process

When you start the build, the IDE will build the referenced projects first. When you clean
the project, the IDE will also clean the referenced projects first. This is often inconvenient
(especially if your project depends on a large third-party project). To avoid cleaning the
referenced projects, use Clean Local from the project context menu.

Build Configurations

A project is built using the active build configuration. A project may have several build
configurations, where each configuration selects a compiler toolchain, debug or release mode,
defines symbols, etc. To set the active build configuration, choose Build Configurations → Set
Active from the project context menu.

Fig. 5.11: Activating a build configuration

5.5.2 Console View

The Console View displays the output of the build process.

Fig. 5.12: Build output in a console

5.5. Building the Project 41

User Guide, Release 6.1

5.5.3 Problems View

The Problems View contains the errors and warnings generated by the build process. You
can browse the problem list and double-click any message to go to the problem location in
the source file. NED file and INI file problems are also reported in this view along with C++
problems. The editors are annotated with these markers as well. Hover over an error marker
in the editor window to get the corresponding message as a tooltip.

Fig. 5.13: C++ problems

5.6 Configuring the Project

5.6.1 Configuring the Build Process

The make invocation can be configured on the C/C++ Build page of the Project Properties
dialog. Most settings are already set correctly and do not need to be changed. One exception
is the Enable parallel build option on the Behavior tab that you may want to enable, especially
if you have a multi-core computer.

Warning: Do not set the number of parallel jobs to be significantly higher than the number
of CPU cores you have. In particular, never turn on the Use unlimited jobs option, as it
will start an excessive number of compile processes and can easily consume all available
memory in the system.

We do not recommend changing any setting on property pages under the C/C++ Build tree
node.

42 Chapter 5. C++ Development

User Guide, Release 6.1

5.6.2 Managing Build Configurations

A project may have several build configurations, where each configuration describes the se-
lected compiler toolchain, debug or release mode, extra include and linker paths, defined
symbols, etc. You can activate, create, or delete build configurations under the Build Config-
urations submenu of the project context menu.

Note: Make sure that the names of all configurations contain the debug or release sub-
string. The IDE launcher uses the name of the configuration to switch to the matching
configuration depending on whether you want to debug or run the simulation.

5.6.3 Configuring the Project Build System

OMNeT++ uses makefiles to build the project. You can use a single makefile for the entire
project or a hierarchy of makefiles. Each makefile may be hand-written (provided by you) or
generated automatically. The IDE offers several options for automatically created makefiles.

The build system for an OMNeT++ project can be configured on the OMNeT++ → Makemake
page of the Project Properties dialog. All settings on this page will affect all build configura-
tions.

Fig. 5.14: Configuring Makefiles

Folders and Makefiles

The page displays the folder tree of the project. Using controls on the page (Build group in
the top-right corner), you can declare that a selected folder contains a hand-written (custom)
makefile or tell the IDE to generate a makefile for you. Generated makefiles will be automat-
ically refreshed before each build. If a makefile is configured for a folder, the makefile kind
will be indicated with a small decoration on the folder icon.

The build root folder is indicated with a small arrow. This is the folder in which the IDE’s
Build function will invoke the make command, so it should contain a makefile. It is expected
that this makefile will build the entire project by invoking all other makefiles, either directly
or indirectly. By default, the build root folder is the project root. This is usually fine, but
if you really need to change the project build root, overwrite the Build location setting in the
C/C++ Build page of the same dialog.

Note: All generated makefiles will be named Makefile. Custom makefiles are also expected
to have this name.

5.6. Configuring the Project 43

User Guide, Release 6.1

Source Folders

In addition to makefiles, you also need to specify where your C++ files are located (source
folders). This is usually the src folder of the project or, for small projects, the project root. It
is also possible to exclude folders from a source folder. The controls on the bottom-right part
of the dialog (Source group) allow you to set up source folders and exclusions for the project.
Source files outside source folders or in an excluded folder will be ignored by both the IDE
and the build process.

Note: Source folders and exclusions configured on this page actually modify the contents of
the Source Location tab of the C++ General → Paths and Symbols page of the project properties
dialog, and the changes will affect all build configurations.

Automatically created makefiles are by default deep, meaning that they include all (non-
excluded) source files under them in the build. That is, a source file will be included in the
build if it is under a source folder and covered by a makefile. (This applies to automatically
generated makefiles; the IDE has no control over the behavior of custom makefiles.)

Makefile Generation

Makefile generation for the selected folder can be configured on the Makemake Options dialog,
which can be accessed by clicking the Options button on the page. The dialog is described in
the next section.

Command-line Build

To recreate your makefiles on the command line, you can export the settings by clicking the
Export button. This action will create a file named makemakefiles. After exporting, execute
make -f makemakefiles from the command line.

5.6.4 Configuring Makefile Generation for a Folder

Makefile generation for a folder can be configured on the Makemake Options dialog. To access
the dialog, open the OMNeT++ → Makemake page in the Project Properties dialog, select the
folder, make sure makefile generation is enabled for it, and click the Options button.

The following sections describe each page of the dialog.

The Target Tab

On the first, Target tab of the dialog, you can specify how the final target of the makefile is
created.

• Target type: The build target can be an executable, a shared or static library, or the
linking step may be omitted altogether. Makemake options: --make-so, --make-lib,
--nolink

• Export this shared/static library for other projects: This option is observed if a library
(shared or static) is selected as the target type and works in conjunction with the Link
with libraries exported from referenced projects option on the Link tab. Namely, referenc-
ing projects will automatically link with this library if both the library is exported from
this project AND linking with exported libraries is enabled in the referencing project.
Makemake option: --meta:export-library

44 Chapter 5. C++ Development

User Guide, Release 6.1

• Target name: You may set the target name. The default value is derived from the project
name. Makemake option: -o (If you are building a debug configuration, the target name
will be implicitly suffixed with the _dbg string.)

• Output directory: The output directory specifies where the object files and the final target
will be created, relative to the project root. Makemake option: -O

Fig. 5.15: Target definition

The Scope Tab

Fig. 5.16: Scope of the makefile

The Scope tab allows you to configure the scope of the makefile and specify which source files
will be included.

• Deep compile: When enabled, the makefile will compile the source files in the entire
subdirectory tree (except excluded folders and folders covered by other makefiles). When
disabled, the makefile will only compile sources in the makefile’s folder. Makemake
option: --deep

• Recursive make: When enabled, the build will invoke make in all descendant folders that
are configured to contain a makefile. Makemake option: --meta:recurse (expands to
multiple -d options)

• More » Additionally invoke make in the following directories: If you want to invoke addi-
tional makefiles from this makefile, specify which directories should be visited (relative
to this makefile). This option is useful if you want to invoke makefiles outside this source
tree. Makemake option: -d

5.6. Configuring the Project 45

User Guide, Release 6.1

The Compile Tab

Fig. 5.17: Compiler options

The Compile tab allows you to adjust the parameters passed to the compiler during the build
process.

Settings that affect the include path:

• Export include path for other projects makes this project’s include path available for other
dependent projects. This is usually required if your project expects other independent
models to extend it in the future.

• Add include paths exported from referenced projects allows a dependent project to use
header files from dependencies if those projects have exported their include path (i.e.,
the above option is turned on.)

• Add include dirs and other compile options from enabled project features: Project features
may require additional include paths and defines to compile properly. Enabling this
option will add those command-line arguments (specified in the .oppfeatures file) to
the compiler command line.

Source files:

• C++ file extension: You can specify the source file extension used in the project (.cc or
.cpp). We recommend using .cc in your projects. Makemake option: -e

If you build a Windows DLL, symbols you want to be available from other DLLs (or exe-
cutables) need to be explicitly exported from the DLL. Functions, variables, and classes
must be marked with __declspec(dllexport) when the DLL is compiled and with
__declspec(dllimport) when you reference them from external code. This is achieved
by defining a macro that expands differently in the two cases. The OMNeT++ convention is
to name the macro FOO_API, where FOO is your project’s short name. The macro should be
defined as follows:

#if defined(FOO_EXPORT)
define FOO_API OPP_DLLEXPORT

(continues on next page)

46 Chapter 5. C++ Development

User Guide, Release 6.1

(continued from previous page)

#elif defined(FOO_IMPORT)
define FOO_API OPP_DLLIMPORT
#else
define FOO_API
#endif

The above definition should be manually placed into a header file that is included by all
headers where the macro is used. OPP_DLLEXPORT and OPP_DLLIMPORT are provided by
<omnetpp.h>, and the generated makefile will provide the FOO_EXPORT / FOO_IMPORT macros
that control the macro expansion via a compile option.

The FOO_API macro is used as illustrated in the following code:

class FOO_API ExportedClass {
// public methods will be automatically exported

};
int FOO_API exportedFunction(...);
extern int FOO_API exportedGlobalVariable;

Settings for Windows DLLs:

• Force compiling object files for use in DLLs: If the makefile target is a DLL, OMNeT++
automatically compiles the sources for use in the DLL (defines the FOO_EXPORT macro,
etc.), regardless of the state of this option. Rather, this option is useful if the make-
file target is not a DLL, but the code compiled here will eventually end up in a DLL.
Makemake option: -S

• DLL export/import symbol: Name for the DLL import/export symbol, i.e., FOO in the
above examples. Makemake option: -p

The Link Tab

Link options allow you to fine-tune the linking steps at the end of the build process.

Fig. 5.18: Linker options

• Link with libraries exported from referenced projects: If your project references other
projects that build static or dynamic libraries, you can instruct the linker to automat-
ically link with those libraries by enabling this option. The libraries from the other
projects must be exported via the Export this shared/static library for other projects op-
tion on the Target tab. Makemake option: --meta:use-exported-libs

• Add libraries and other linker options from enabled project features: Project features may
require additional libraries and linker options to properly build. Enabling this option

5.6. Configuring the Project 47

User Guide, Release 6.1

will add those command line arguments (specified in the .oppfeatures file) to the linker
command line.

• User interface libraries to link with: If the makefile target is an executable, you may
specify which OMNeT++ user interface libraries (Cmdenv, Qtenv, or both) should be
linked into the program. Makemake option: -u

• More » Additional libraries to link with: This box allows you to specify additional libraries
to link with. Specify the library name without its path, possible prefix (lib), and file
extension, and also without the -l option. The library must be on the linker path, which
can be edited on the Library Paths tab of the C/C++ General → Paths and Symbols page
of the Project Properties dialog. Makemake option: -l

• More » Additional objects to link with: Additional object files and libraries can be specified
here. The files must be given with their full paths and file extensions. Wildcards and
makefile macros are also accepted. Example: $O/subdir/*.o. Makemake option: none
(files will become plain makemake arguments)

The Custom Tab

The Custom tab allows you to customize the makefiles by inserting handwritten makefile
fragments into the automatically generated makefile. This lets you add additional targets,
rules, variables, etc., to the generated makefile.

• Makefrag: If the folder contains a file named makefrag, its contents will be automatically
copied into the generated makefile, just above the first target rule. makefrag allows
you to customize the generated makefile to some extent. For example, you can add
new targets (e.g., to generate documentation or run a test suite), new rules (e.g., to
generate source files during the build), override the default target, add new dependencies
to existing targets, or overwrite variables. The dialog lets you edit the contents of the
makefrag file directly (it will be saved when you accept the dialog).

• More » Fragment files to include: Here, you can explicitly specify a list of makefile frag-
ment files to include, instead of the default makefrag. Makemake option: -i

The Preview Tab

The Preview tab displays the command line options that will be passed to opp_makemake to
generate the makefile. It consists of two parts:

• Makemake options: This is an editable list of makefile generation options. Most options
map directly to checkboxes, edit fields, and other controls on the previous tabs of the
dialog. If you check the Deep compile checkbox on the Scope tab, the --deep option will
be added to the command line. If you delete --deep from the command line options,
that will cause the Deep compile checkbox to be unchecked. Some options are directly
understood by opp_makemake, others are “meta” options that the IDE will resolve to one
or more opp_makemake options; see below.

• Makemake options modified with CDT settings and with meta-options resolved: This read-
only text field is displayed for information purposes only. Not all options in the above op-
tions list are directly understood by opp_makemake; namely, the options that start with
--meta: denote higher-level features offered by the IDE only. Meta options will be trans-
lated to opp_makemake options by the IDE. For example, --meta:auto-include-path
will be resolved by the IDE to multiple -I options, one for each directory in the C++
source trees of the project. This field shows the opp_makemake options after the resolu-
tion of the meta options.

48 Chapter 5. C++ Development

User Guide, Release 6.1

5.6.5 Project References and Makefile Generation

When your project references another project (such as the INET Framework), your project’s
build will be affected in the following way:

• Include path: Source folders in referenced projects will be automatically added to the
include path of your makefile if the Add include paths exported from referenced projects
option on the Compile tab is checked, and the referenced projects also enable the Export
include path for other projects option.

• Linking: If the Link with libraries exported from referenced projects option on the Link
tab is enabled, then the makefile target will be linked with those libraries in referenced
projects that have the Export this shared/static library for other projects option checked
on the Target tab.

• NED types: NED types defined in a referenced project are automatically available in
referencing projects.

5.7 Project Features

5.7.1 Motivation

Long compile times are often an inconvenience when working with large OMNeT++-based
model frameworks like the INET Framework. The IDE feature called Project Features enables
you to reduce build times by excluding or disabling parts of the model framework that you do
not use for your simulation study. For example, when working on mobile ad-hoc simulations
in INET, you can disable the compilation of Ethernet, IPv6/MIPv6, MPLS, and other unrelated
protocol models. The word feature refers to a piece of the project codebase that can be turned
off as a whole.

Additional benefits of project features include a less cluttered model palette in the NED editor,
being able to exclude code that does not compile on your system, and enforcing cleaner
separation of unrelated parts in the model framework.

Note: A similar effect could also be achieved by breaking up the model framework (e.g.,
INET) into several smaller projects, but that would cause other kinds of inconveniences for
model developers and users alike.

5.7.2 What is a Project Feature

Features can be defined per project. As mentioned earlier, a feature is a portion of the
project codebase that can be turned off as a whole, meaning it can be excluded from the
C++ sources (and thus from the build) as well as from NED. Feature definitions are typically
written and distributed by the project author, and end users are only presented with the
option of enabling/disabling those features. A feature definition contains:

• ID, which is a unique identifier within the feature definition file.

• Feature name, for example "UDP" or "Mobility examples".

• Feature description. This is a brief description of what the feature is or does, for
example "Implementation of the UDP protocol".

• Labels. This is a list of labels or keywords that facilitate grouping or finding features.

• Initially enabled. This is a boolean flag that determines the initial enablement of
the feature.

5.7. Project Features 49

User Guide, Release 6.1

• Required features. Some features may be built on top of others; for example, a
HMIPv6 protocol implementation relies on MIPv6, which in turn relies on IPv6. Thus,
HMIPv6 can only be enabled if MIPv6 and IPv6 are enabled as well. This is a space-
separated list of feature IDs.

• NED packages. This is a space-separated list of NED package names that identify the
code that implements the feature. When you disable the feature, NED types defined in
those packages and their subpackages will be excluded; also, C++ code in the folders
that correspond to the packages (i.e., in the same folders as excluded NED files) will also
be excluded.

• Extra C++ source folders. If the feature contains C++ code that lives outside NED
source folders (non-typical), those folders are listed here.

• Compile options, for example -DWITH_IPv6. When the feature is enabled, the compiler
options listed here are either added to the compiler command line of all C++ files or they
can be used to generate a header file containing all these defines so that header file can
be included in all C++ files. A typical use of this field is defining symbols (WITH_xxx) that
allows you to write conditional code that only compiles when a given feature is enabled.
Currently, only the -D option (define symbol) is supported here.

• Linker options. When the feature is enabled, the linker options listed here are added
to the linker command line. A typical use of this field is linking with additional libraries
that the feature’s code requires, for example libavcodec. Currently, only the -l option
(link with library) is supported here.

5.7.3 The Project Features Dialog

Features can be viewed, enabled, and disabled on the Project Features page of the Project
Properties dialog. The Project → Project Features menu item is a direct shortcut to this property
page.

Fig. 5.19: The Project Features page

The central area of the dialog page lists the features defined for the project. Hovering the

50 Chapter 5. C++ Development

User Guide, Release 6.1

mouse over a list item will display the description and other fields of the feature in a tooltip
window. Checking an item enables the feature, and unchecking disables it.

When you enable a feature that requires other features to work, the dialog will ask for permis-
sion to enable the required features as well. Also, if you disable a feature that others depend
on, they will be disabled too.

The Apply, OK, and Cancel buttons work as expected. Restore Defaults restores the features
to their initial state (see the Initially enabled attribute above).

Above the list, there is a notification area in the dialog. If the IDE detects that your project’s
configuration is inconsistent with the feature enablements, it will display a warning there
and offer a way to automatically fix the problems. Fixing means that the IDE will adjust the
project’s NED and C++ settings to make them consistent with the feature enablements. Such
a check is also performed just before the build.

5.7.4 What Happens When You Enable/Disable a Feature

When you enable or disable a feature on the Project Features page, several project settings
will be modified:

• NED package exclusions. This corresponds to the contents of the Excluded package
subtrees list on the NED Source Folders property page. When a feature is disabled, its
NED packages will be excluded (added to the list), and vice versa.

• C++ folder exclusions. This can be viewed/edited on the Makemake property page, and
also on the Source Location tab of the C/C++ General > Paths and Symbols property
page.

• Compile options. For example, if the feature defines preprocessor symbols (-DWITH_xxx),
they can be used to generate a header file that contains the enabled macro definitions,
and that file can be included in all C++ files.

• Linker options. For example, if the feature defines additional libraries to link with,
they will be displayed on the Libraries tab of the C/C++ General → Paths and Symbols
property page.

Note: Feature enablements are saved to the .oppfeaturestate file in the project root.

5.7.5 Using Features from the Command Line

Project Features can be easily configured from the IDE, but command line tools
(opp_makemake, etc.) can also use them with the help of the opp_featuretool command.

If you want to build the project from the command line with the same feature combination the
IDE is using, you need to generate the makefiles with the same opp_makemake options that
the IDE uses in that feature combination. The opp_featuretool makemakeargs command
(executed in the project’s root directory) will show all the required arguments that you need
to specify for the opp_makemake command to build the same output as the IDE. This allows
you to keep the same features enabled no matter how you build your project.

Alternatively, you can choose Export on the Makemake page and copy/paste the options from
the generated makemakefiles file. This method is not recommended because you must redo
it manually each time after changing the enablement state of a feature.

5.7. Project Features 51

User Guide, Release 6.1

5.7.6 The .oppfeatures File

Project features are defined in the .oppfeatures file in your project’s root directory. This is
an XML file, and it currently has to be written manually (there is no specialized editor for it).

The root element is <features>, and it may have several <feature> child elements, each
defining a project feature. Attributes of the <features> element define the root(s) of the
source folder(s) (cppSourceRoots) and the name of a generated header file that contains
all the defines specified by the compilerFlags attribute in the enabled features. The
fields of a feature are represented with XML attributes; attribute names are id, name,
description, initiallyEnabled, requires, labels, nedPackages, extraSourceFolders,
compileFlags, and linkerFlags. Items within attributes that represent lists (requires,
labels, etc.) are separated by spaces.

Here is an example feature from the INET Framework:

<features cppSourceRoots="src" definesFile="src/inet/features.h">
<feature

id="TCP_common"
name="TCP Common"
description="The common part of TCP implementations"
initiallyEnabled="true"
requires=""
labels=""
nedPackages="

inet.transport.tcp_common
inet.applications.tcpapp
inet.util.headerserializers.tcp
"

extraSourceFolders=""
compileFlags="-DWITH_TCP_COMMON"
linkerFlags=""

/>

5.7.7 How to Introduce a Project Feature

If you plan to introduce a project feature into your project, here’s what you’ll need to do:

• Isolate the code that implements the feature into a separate source directory (or several
directories). This is because only whole folders can be declared as part of a feature;
individual source files cannot.

• Check the remainder of the project. If you find source lines that reference code from the
new feature, use conditional compilation (#ifdef WITH_YOURFEATURE) to make sure
that the code compiles (and either works sensibly or throws an error) when the new
feature is disabled. (Your feature should define the WITH_YOURFEATURE symbol, i.e.
-DWITH_YOURFEATURE will need to be added to the feature compile flags.)

• Add the feature description into the .oppfeatures file of your project, including the
required feature dependencies.

• Test. At the very least, test that your project compiles at all, both with the new
feature enabled and disabled. More thorough, automated tests can be built using
opp_featuretool.

52 Chapter 5. C++ Development

User Guide, Release 6.1

5.8 Project Files

Eclipse, CDT, and the OMNeT++ IDE use several files in the project to store settings. These
files are located in the project root directory and are normally hidden by the IDE in the Project
Explorer View. The files include:

• .project : Eclipse stores the general project properties in this file, including project
name, dependencies from other projects, and project type (i.e., whether OMNeT++-
specific features are supported or this is only a generic Eclipse project).

• .cproject : This file contains settings specific to C++ development, including the build
configurations; and per-configuration settings such as source folder locations and exclu-
sions, include paths, linker paths, symbols; the build command, error parsers, debugger
settings, and so on.

• .oppbuildspec : Contains settings specific to OMNeT++. This file stores per-folder
makefile generation settings that can be configured on the Makemake page of the Project
Properties dialog.

• .oppfeatures : Optionally contains the definitions of project features.

• .oppfeaturestate : Optionally contains the current enablement state of the features.
(We do not recommend keeping this file under version control.)

• .nedfolders : Contains the names of NED source folders; this is the information that
can be configured on the NED Source Folders page of the Project Properties dialog.

• .nedexclusions : Contains the names of excluded NED packages.

If you are creating a project where no C++ support is needed (i.e., you are using an existing
precompiled simulation library and you only edit NED and Ini files), the .cproject and .
oppbuildspec files will not be present in your project.

5.8. Project Files 53

User Guide, Release 6.1

54 Chapter 5. C++ Development

CHAPTER

SIX

LAUNCHING AND DEBUGGING

6.1 Introduction

The OMNeT++ IDE allows you to execute single simulations and simulation batches, as well
as debug and, to some extent, profile simulations. You can choose whether you want the
simulation to run in graphical mode (using Qtenv) or in console mode (using Cmdenv); which
simulation configuration and run number to execute; whether to record an eventlog or not;
and many other options.

When running simulation batches, you can specify the number of processes allowed to run in
parallel, so you can take advantage of multiple processors or processor cores. The progress of
the batch can be monitored, and you can also terminate processes from the batch if needed.
Batches are based on the parameter study feature of INI files; you can read more about it in
the OMNeT++ Simulation Manual.

Debugging support comes from the Eclipse C/C++ Development Toolkit (CDT), and beyond
the basics (such as single-stepping, stack trace, breakpoints, watches, etc.), it also offers sev-
eral conveniences and advanced functionality such as inspection tooltips, conditional break-
points, and more. Debugging with CDT also has extensive literature on the Internet. Cur-
rently, CDT uses the GNU Debugger (gdb) as the underlying debugger.

Profiling support is based on the valgrind program, available at http://valgrind.org. Val-
grind is a suite of tools for debugging and profiling on Linux. It can automatically detect
various memory access and memory management bugs, and perform a detailed profiling of
your program. Valgrind support is brought into the OMNeT++ IDE by the Linux Tools Project
of Eclipse.

55

http://valgrind.org

User Guide, Release 6.1

6.2 Launch Configurations

Eclipse, and therefore the IDE as well, uses launch configurations to store the details of the
program to be launched: which program to run, the list of arguments and environment
variables, and other options. Eclipse and its C/C++ Development Toolkit (CDT) already come
with several types of launch configurations (e.g., “C/C++ Application”), and the IDE adds
OMNeT++ Simulation. The same launch configuration can be used with the Run, Debug, and
Profile buttons.

6.3 Running a Simulation

6.3.1 Quick Run

The simplest way to launch a simulation is by selecting a project, folder, INI, or NED file in
Project Explorer and clicking the Run button on the toolbar. This will create a suitable launch
configuration (if one does not already exist) and start the simulation. Alternatively, you can
choose the Run As → OMNeT++ Simulation option from the context menu.

Details:

• If a folder is selected and it contains a single INI file, the IDE will use that file to start
the simulation.

• If an INI file is selected, it will be used as the main INI file for the simulation.

• If a NED file is selected (containing a network definition), the IDE will search for INI files
in the active projects and try to find a configuration that allows the network to start.

6.3.2 The Run Configurations Dialog

Launch configurations can be managed in the Run Configurations dialog. (Two other dialogs,
Debug Configurations and Profile Configurations, are very similar and allow you to manage
debugging/profiling aspects of launch configurations).

The Run Configurations dialog can be opened in various ways: via the main menu (Run →
Run Configurations), via the context menu of a project, folder, or file (Run As → Run Configu-
rations), via the green Run toolbar button (Run Configurations item in its attached menu, or
by Ctrl-clicking any other menu item or the toolbar button itself).

Fig. 6.1: One way to open the Run Configurations dialog

56 Chapter 6. Launching and Debugging

User Guide, Release 6.1

6.3.3 Creating a Launch Configuration

The OMNeT++ IDE adds a new Eclipse launch configuration type, OMNeT++ Simulation, that
supports launching simulation executables. To create a new run configuration, open the Run
Configurations dialog. In the dialog, select OMNeT++ Simulation from the tree and click the
New launch configuration icon in the top-left corner. A blank launch configuration will be
created, where you can give it a name at the top of the form.

Fig. 6.2: The Simulation Launcher

The Main tab of the configuration dialog is designed to make the launching of simulations
as easy as possible. The only required field is Working directory; all others have defaults.
If you only select the working directory and the simulation program, it will start the first
configuration from the omnetpp.ini file in the specified working directory.

Tip: Hover your mouse over the controls in this dialog to receive tooltip help for the selected
control.

Note: The Launch dialog will try to figure out your initial settings automatically. If you select
an INI file in the Project Explorer View, or the active editor contains an INI file before launching
the Run dialog, the INI file and working directory fields will be automatically populated for
you. The dialog will also try to guess the executable name based on the settings of your
currently open projects.

• Executable: You must set the name of the simulation executable here. This is a
workspace path. You may use the Browse button to select the executable directly. If
your project output is a shared library, select opp_run. This will cause the IDE to use the
opp_run or opp_run_dbg helper executable with the -l option to run the simulation.
Make sure that the Dynamic Libraries field in the advanced section contains the libraries
you want to load.

• Working directory: Specifies the working directory of the simulation program. This is
a workspace path. Note that values in several other fields in the dialog are treated as
relative to this directory, so changing the working directory may invalidate or change
the meaning of previously selected entries in other fields of the dialog.

• Initialization file(s): You should specify one or more INI files that will be used to launch

6.3. Running a Simulation 57

User Guide, Release 6.1

the simulation. The default is omnetpp.ini. Specifying more than one file (separated
by space) will cause the simulation to load all those files in the specified order.

• Config name: Once you specify a valid INI file, this box will display all the Config sections
in that file. In addition, it will display the description of each section and the information
regarding which Config section is extended by it. You can select which Configuration to
launch.

Note: The working directory and the INI file must contain valid entries before setting
this option.

• Runs: You can specify which run(s) to execute for the simulation. An empty field cor-
responds to all runs. You can specify run numbers or a filter expression that refers
to iteration variables. Use commas and the .. operator to separate the run num-
bers; for example, 1,2,5..9,20 corresponds to run numbers 1,2,5,6,7,8,9,20. You can
also specify run filters, which are boolean expressions involving constants and iteration
variables (e.g., $numHosts>5 and $numHosts<10). Running several simulations in this
manner is called batch execution.

Tip: If the executable name and the INI file have already been selected, hover the mouse
over the field to get the list of matching runs.

• User interface: You can specify which UI environment should be used during execution.
The dialog offers Cmdenv (command-line UI) and Qtenv (Qt-based GUI). If you have a
custom user interface, you can also specify its name here. Make sure that the code of the
chosen UI library is available (linked into the executable/library or loaded dynamically).

Note: Batch execution and progress feedback during simulation are only supported
when using Cmdenv.

• Allow multiple processes: With batch execution, you can tell the launcher to
keep two or more

simulations running at a time or to start a new simulation process after a certain
number of runs have been executed. This way, you can take advantage of multiple
CPUs or CPU cores. You can set the number of CPUs to use and the number of runs
to execute in a single process.

Warning: Only use this option if your simulation is CPU-limited and you have
enough physical RAM to support all of the processes at the same time. Do not
set it higher than the number of physical processors or cores you have in your
machine.

• Simulation time limit and CPU time limit can also be set to limit the runtime length of the
simulation from the launch dialog, in case those were not set in the INI file.

• Output options: Various options can be set regarding simulation output. These check-
boxes may be in one of three states: checked (on), unchecked (off), and grayed out
(unspecified). When a checkbox is grayed out, the launcher lets the corresponding con-
figuration option from the INI file take effect.

• Clicking on the More >>> link will reveal additional controls.

• Dynamic libraries: A simulation may load additional DLLs or shared libraries before
execution, or your entire simulation may be built as a shared library. The Browse
button is available to select one or more files (use Ctrl + click for multiple selection).
This option can be used to load simulation code (i.e., simple modules), user interface

58 Chapter 6. Launching and Debugging

User Guide, Release 6.1

libraries, or other extension libraries (scheduler, output file managers, etc.). The special
macro ${opp_shared_libs:/workingdir} expands to all shared libraries provided by
the current project or any other project on which you currently depend.

Note: If your simulation is built as a shared library, you must use the opp_run stub
executable to start it. opp_run is basically an empty OMNeT++ executable that under-
stands all command line options but does not contain any simulation code.

Warning: If you use external shared libraries (i.e., libraries other than the ones pro-
vided by the current open projects or OMNeT++ itself), ensure that the executable part
has access to the shared library. On Windows, you must set the PATH environment
variable, while on Linux and Mac, you must set the LD_LIBRARY_PATH environment
variable to point to the directory where the DLLs or shared libraries are located. You
can set these variables either globally or in the Environment tab of the Launcher Con-
figuration Dialog.

• NED Source Path: The directory or directories where the NED files are read from.

Tip: The variable ${opp_ned_path:/workingdir} refers to an automatically computed
path (derived from project settings). If you want to add additional NED folders to the au-
tomatically calculated list, use the ${opp_ned_path:/workingdir}:/my/additional/
path syntax.

• Image path: A path that is used to load images and icons in the model.

• Additional arguments: Other command-line arguments can be specified here and will be
passed to the simulation process.

• Build before launch: This section allows you to configure the behavior of automatic build
before launching. The build scope can be set to this project and all its dependencies,
this project only, or you can turn off autobuild before launch. The active configuration
switching during the build can also be configured here (Ask, Switch, Never switch).

Related Command-Line Arguments

Most settings in the dialog correspond to command-line options for the simulation executable.
Here is a summary:

• Initialization files: maps to multiple -f <inifile> options.

• Configuration name: adds a -c <configname> option.

• Run number: adds a -r <runnumber/filter> option.

• User interface: adds a -u <userinterface> option.

• Dynamically loaded libraries: maps to multiple -l <library> options.

• NED source path: adds a -n <nedpath> option.

6.3. Running a Simulation 59

User Guide, Release 6.1

6.3.4 Debug vs. Release Launch

The launcher automatically determines whether to start the release or debug build of the
model. When running, release-mode binaries are used automatically. For debugging, debug
builds are started (i.e., those with a binary name ending with the _dbg suffix). Before starting
the simulation, the launcher checks if the binary is up to date and triggers a build process
(and also changes the active configuration) if necessary.

6.4 Batch Execution

OMNeT++ INI files allow you to run a simulation several times with different parameters. You
can specify loops or conditions for specific parameters.

Fig. 6.3: Iteration variable in the INI file

Note: Batch running is supported only in the command-line environment.

If you create an INI file configuration (a [Config] section) with one or more iteration variables,
you will be able to run your simulations and explore the parameter space defined by those
variables. Basically, the IDE creates the Cartesian product from these variables and assigns
a run number to each combination. To execute one, several, or all runs of the simulation, you
can specify the Run number field in the Run Dialog. You can specify a single number (e.g., 3), a
combination of several numbers (e.g., 2,3,6,7..11), all run numbers (using *), or a boolean
expression using constants and iteration variables (e.g., $numHosts>5 and $numHosts<10).

Tip: If you have already specified your executable, selected the configuration to be run, and
chosen the command line environment, you can hover over the Run number field. This will
give you a description of the possible runs and how they are associated with the iteration
variable values (the tooltip is calculated by executing the simulation program with the -x
Configuration -G options in command line mode).

Fig. 6.4: Iteration loop expansion in a tooltip

60 Chapter 6. Launching and Debugging

User Guide, Release 6.1

If you have a multi-core or multi-processor system and sufficient memory, you can set the
Processes to run parallel field to a higher number. This will allow the IDE to start more
simulation processes in parallel, resulting in a much lower overall simulation time for the
whole batch.

Warning: Be aware that you need enough memory to run all these processes in parallel.
We recommend using this feature only if your simulation is CPU-bound. If you do not
have enough memory, your operating system may start using virtual memory, dramatically
decreasing the overall performance.

6.5 Debugging a Simulation

The OMNeT++ IDE integrates with the CDT (C/C++ Development Tooling) of Eclipse, which
includes debugging support as well. The CDT debugger UI relies on gdb to do the actual work.

6.5.1 Starting a Debug Session

Launching a simulation in debug mode is very similar to running it (see previous sections),
except you need to select the Debug toolbar icon or menu item instead of Run. The same
launch configurations used for running are used for debugging, so if you open the Debug
Configurations dialog, you will see the same launch configurations as in the Run dialog. The
launcher automatically uses the debug build of the model (i.e., the executable with a _dbg
suffix). The dialog will have extra tab pages where you can configure the debugger and other
details.

Note: If you have problems starting the debug session, check the following:

• Ensure that your executable is built with debug information.

• Verify that you can run the same executable without any issues (using the same launch
configuration, but with the addition of a _dbg suffix to the executable name).

• Make sure the debugger type is set correctly on the Debugger tab of the Launch dialog.

Warning: Batch (and parallel) execution is not possible in this launch type, so you can
only specify a single run number.

6.5.2 Using the Debugger

The CDT debugger provides functionality that can be expected from a good C/C++ debug-
ger: run control (run, suspend, step into, step over, return from function, drop to stack
frame), breakpoints (including conditional and counting breakpoints), watchpoints (expres-
sion breakpoints that stop the execution whenever the value of a given expression changes),
and watching and inspecting variables. Access to machine-level details such as disassembly,
registers, and memory is also available.

Source code is shown in the editor area, and additional information and controls are displayed
in various Views such as Debug, Breakpoints, Expressions, Variables, Registers, Memory, etc.

CDT’s conversation with gdb can also be viewed in the appropriate pages of the Console View.
(Click the Display Selected Console icon and choose either gdb or gdb traces from the menu.)

6.5. Debugging a Simulation 61

User Guide, Release 6.1

Tip: If you have a pointer in the program that points to an array (of objects, etc.), you can
have it displayed as an array too. In Variables, right-click the variable and choose Display As
Array from the menu. You will be prompted for a start index and the number of elements to
display.

More information on the debugger is available in the CDT documentation, which is part of the
IDE’s Help system. See the C/C++ Development User Guide, chapter Running and debugging
projects.

6.5.3 Pretty Printers

Many programs contain data structures whose contents are difficult to comprehend by look-
ing at “raw” variables in the program. One example is the std::map<T> class, which is
essentially a dictionary but implemented with a binary tree, making it practically impossible
to figure out with a C++ debugger what data a concrete map instance contains.

The solution gdb offers to this problem is pretty printers. Pretty printers are Python classes
that gdb invokes to transform some actual data structure into something that is easier for
humans to understand. The *.py files that provide and register these pretty printers are
usually loaded via gdb’s startup script, .gdbinit (or some .gdbinit.py script, as gdb allows
startup scripts to be written in Python too).

The OMNeT++ IDE includes pretty printers for container classes in the standard C++ library
(such as std::map<T> and std::vector<T>), as well as for certain OMNeT++ data types,
such as simtime_t. These scripts are located under misc/gdb/ in the OMNeT++ root direc-
tory. The IDE also supports project-specific pretty printers: if the root folder of the debugged
project contains a .gdbinit.py file, it will be loaded by gdb. (The project’s .gdbinit.py file
can then load further Python scripts, such as from an etc/gdb/ folder of the project.)

Pretty printer loading works as follows: the IDE invokes gdb with misc/gdb/gdbinit.py as
the startup script (for new launch configurations, the GDB command file field on the Debugger
tab is set to ${opp_root}/misc/gdb/gdbinit.py). This script loads the pretty printers
under misc/gdb, as well as the project-specific pretty printers.

Tip: If you want to write your own pretty printers, refer to the gdb documentation. It is
available online, for example, here: http://sourceware.org/gdb/current/onlinedocs/gdb/

Some pretty printers may occasionally interfere with the debugged program (especially if the
program’s state is already corrupted by earlier errors). Therefore, at times, it may be useful
to temporarily disable pretty printers. To prevent pretty printers from being loaded for a
session, clear the GDB command file setting in the launch configuration. To disable them
for a currently active debug session, switch to the gdb page in the Console and enter the
following gdb command:

disable pretty-printer global

Or, to only disable OMNeT++-specific pretty printers (but leave the standard C++ library print-
ers on):

disable pretty-printer global omnetpp;.*

62 Chapter 6. Launching and Debugging

http://sourceware.org/gdb/current/onlinedocs/gdb/

User Guide, Release 6.1

6.6 Just-in-Time Debugging

The OMNeT++ runtime has the ability to launch an external debugger and attach it to the
simulation process. You can configure a simulation to launch the debugger immediately on
startup or when an error (runtime error or crash) occurs. This just-in-time debugging facility
was primarily intended for use on Linux.

To enable just-in-time debugging, set the debugger-attach-on-startup or
debugger-attach-on-error configuration option to true. You can do this by adding
the appropriate line to omnetpp.ini or specifying --debugger-attach-on-startup=true
in the Additional arguments field in the launch configuration dialog. You can also configure
the debugger command line.

Note: On some systems (e.g., Ubuntu), just-in-time debugging requires extra setup beyond
installing an external debugger. See the install-guide for more details.

6.7 Profiling a Simulation on Linux

On Linux systems, the OMNeT++ IDE supports executing your simulation using the valgrind
program. Running your program with valgrind allows you to find memory-related issues
and programming errors in your code. The simulation will run in an emulated environment
(much slower than normal execution speeds), but valgrind will generate a detailed report
when it finishes. The report is shown in a separate Valgrind View at the end of the simulation
run. The OMNeT++ IDE contains support only for the memcheck tool. If you want to use other
tools (cachegrind, callgrind, massif, etc.), you may try to install the full ‘Linux Tools
Project’ from the Eclipse Marketplace.

To start profiling, right-click on your project in the Project Explorer tree and select Profile As
→ OMNeT++ Simulation. Valgrind must already be installed on your system.

Note: Simulation executes considerably slower than a normal run. Prepare for long run
times or limit the simulation time in your .INI file. Statistical convergence is not required;
just run long enough that all the code paths are executed in your model.

6.8 Controlling the Execution and Progress Reporting

After starting a simulation process or simulation batch, you can keep track of the started
processes in the Debug View. To open the Debug View automatically during launch, check
the “Show Debug View on Launch” option in the run configuration dialog, or select Window
→ Show View → Other → Debug → Debug. Select a process and click the terminate button
to stop a specific simulation run, or use the context menu for more options to control the
process execution.

6.6. Just-in-Time Debugging 63

User Guide, Release 6.1

Fig. 6.5: Debug View

Tip: Place the Debug View in a different tab group than the console so you will be able to
switch between the process outputs and see the process list at the same time.

Note: You can terminate all currently running processes by selecting the root of the launch.
This will not cancel the entire batch, only the currently active processes. If you want to cancel
the whole batch, open the Progress View and cancel the simulation batch there.

Clicking on a process in the Debug View switches to the output of that process in the Console
View. The process may request user input via the console as well. Switch to the appropriate
console and provide the requested parameters.

Fig. 6.6: Displaying the output of a simulation process in the Console View

Note: By default, the Console View automatically activates when a process writes to it. If
you are running several parallel processes, this behavior might be inconvenient and prevent
you from switching to the Progress View. You can turn off auto-activation by disabling the
Show Console When Standard Out/Error Changes option in the Console View toolbar.

64 Chapter 6. Launching and Debugging

User Guide, Release 6.1

6.8.1 Progress Reporting

If you have executed the simulation in the command-line environment, you can monitor the
progress of the simulation in the Progress View. See the status line for the overall progress
indicator, and click on it to open the detailed progress view. You can terminate the entire
batch by clicking on the cancel button in the Progress View.

Fig. 6.7: Progress report on four parallel processes

Note: When the Progress View displays “Waiting for user input”, the simulation is waiting
for user input. Switch to the appropriate console and provide the requested input for the
simulation.

Note: If you need more frequent progress updates, set the cmdenv-status-frequency
option in your INI file to a lower value.

6.8. Controlling the Execution and Progress Reporting 65

User Guide, Release 6.1

66 Chapter 6. Launching and Debugging

CHAPTER

SEVEN

THE QTENV GRAPHICAL RUNTIME ENVIRONMENT

7.1 Features

Qtenv is a graphical runtime interface for simulations. Qtenv supports interactive simulation
execution, animation, inspection, tracing, and debugging. In addition to model development
and verification, Qtenv is also useful for presentation and educational purposes, as it allows
the user to get a detailed picture of the state and history of the simulation at any point of its
execution.

When used together with a C++ source-level debugger, Qtenv can significantly speed up model
development.

Its most important features are:

• network visualization

• message flow animation

• various run modes: event-by-event, normal, fast, express

• run until (a scheduled event, any event in a module, or given simulation time)

• simulation can be restarted

• a different configuration/run or network can be set up

• log of message flow

• display of textual module logs

• inspectors for viewing contents of objects and variables in the model

• eventlog recording for later analysis

• capturing a video of the main window

• snapshots (detailed report about the model: objects, variables, etc.)

67

User Guide, Release 6.1

7.2 Overview of the User Interface

Fig. 7.1: The main window of Qtenv

Note: If you are experiencing graphics glitches, unreadable text, or the desktop color scheme
you have set up is not suitable for Qtenv, you can disable the platform integration style
plugins of Qt by setting the QT_STYLE_OVERRIDE environment variable to fusion. This will
make the widgets appear in a platform-independent manner, as shown above.

The top of the window contains the following elements below the menu bar:

• Toolbar: The toolbar lets you access the most frequently used functions, such as step-
ping, running and stopping the simulation.

• Animation speed: The slider at the end of the toolbar lets you scale the speed of the
built-in animations, as well as the playback speed of the custom animations added by
the model.

• Event Number and Simulation Time: These two labels at the right end of the toolbar
display the event number of the last executed or the next future event, and the current
simulation time. The display format can be changed from the context menu.

• Top status bar: Three labels in a row that display either information about the next
simulation event (in Step and Normal mode), or performance data like the number of
events processed per second (in Fast and Express mode). This can be hidden to free up
vertical space.

• Timeline: Displays the contents of the Future Events Set (FES) on a logarithmic time
scale. The timeline can be turned off to free up vertical space.

• Bottom status bar: Displays the current configuration, the run number, and the name

68 Chapter 7. The Qtenv Graphical Runtime Environment

User Guide, Release 6.1

of the root module (network) on the left, and a few statistics about the message objects
in the model on the right.

The central area of the main window is divided into the following regions:

• Object Navigator: Displays the hierarchy of objects in the current simulation and in the
FES.

• Object Inspector: Displays the contents and properties of the selected object.

• Network Display: Displays the network or any module graphically. This is also where
animation takes place.

• Log Viewer: Displays the log of packets or messages sent between modules, or log mes-
sages output by modules during simulation.

Additionally, you can open inspector windows that float on top of the main window.

7.3 Using Qtenv

7.3.1 Starting Qtenv

When you launch a simulation from the IDE, it will be started with Qtenv by default. When
it does not, you can explicitly select Qtenv in the Run or Debug dialog.

Qtenv is also the default when you start the simulation from the command line. When
necessary, you can force Qtenv by adding the -u Qtenv switch to the command line.

The complete list of command-line options, related environment variables, and configuration
options can be found at the end of this chapter.

7.3.2 Setting Up and Running the Simulation

On startup, Qtenv reads the ini file(s) specified on the command line (or omnetpp.ini if none
is specified), and automatically sets up the simulation described in them. If they contain
several simulation configurations, Qtenv will ask you which one you want to set up.

Fig. 7.2: Setting Up a New Simulation

Once a simulation has been set up (modules have been created and initialized), you can run
it in various modes and examine its state. You can restart the simulation at any time, or set
up another simulation. If you choose to quit Qtenv before the simulation finishes (or try to
restart the simulation), Qtenv will ask you whether to finalize the simulation, which usually
translates to saving summary statistics.

Functions related to setting up a simulation are in the File and Simulate menus, and the
most important ones are accessible via toolbar icons and keyboard shortcuts.

Some of these functions are:

7.3. Using Qtenv 69

User Guide, Release 6.1

Fig. 7.3: The File menu

Set up a Configuration

This function lets you choose a configuration and run number from the ini file.

Open Primary Ini File

Opens the first ini file in a text window for viewing.

Fig. 7.4: The Simulate menu

Step

Step lets you execute one simulation event, which is at the front of the FES. The next event
is always shown on the status bar. The module where the next event will be delivered is
highlighted with a red rectangle on the graphical display.

70 Chapter 7. The Qtenv Graphical Runtime Environment

User Guide, Release 6.1

Run (or Normal Run)

In Run mode, the simulation runs with all tracing aids on. Message animation is active,
and the simulation time is interpolated if the model requested a non-zero animation speed.
Inspector windows are constantly updated. Output messages are displayed in the main win-
dow and module output windows. You can stop the simulation with the Stop button on the
toolbar. You can fully interact with the user interface while the simulation is running, such
as opening inspectors.

Note: If you find this mode too slow or distracting, you may switch off animation features in
the Preferences dialog.

Fast Run

In Fast mode, message animation is turned off. The inspectors are updated much less often.
Fast mode is several times faster than the Run mode; the speed can increase by up to 10
times (or up to the configured event count).

Express Run

In Express mode, the simulation runs at about the same speed as with Cmdenv, with all
tracing disabled. Module log is not recorded. The simulation can only be interacted with once
in a while, so the run-time overhead of the user interface is minimal. UI updates can even
be disabled completely, in which case you have to explicitly click the Update now button to
refresh the inspectors.

Run Until

You can run the simulation until a specified simulation time, event number, or until a specific
message has been delivered or canceled. This is a valuable tool during debugging sessions. It
is also possible to right-click on an event in the simulation timeline and choose the Run until
this event menu item.

Fig. 7.5: The Run Until dialog

7.3. Using Qtenv 71

User Guide, Release 6.1

Run Until Next Event

It is also possible to run until an event occurs in a specified module. Browse for the module
and choose Run until next event in this module. Simulation will stop once an event occurs in
the selected module.

Debug Next Event

This function is useful when you are running the simulation under a C++ source-level de-
bugger. Debug Next Event will perform one simulation event just like Step, but executes
a software debugger breakpoint (int3 or SIGTRAP) just before entering the module’s event
handling code (handleMessage() or activity()). This will cause the debugger to stop the
program there, allowing you to examine state variables, single-step, etc. When you resume
execution, Qtenv will regain control and become responsive again.

Debug On Errors

This menu item allows you to change the value of the debug-on-errors configuration vari-
able on the fly. This is useful if you forgot to set this option before starting the simulation,
but would like to debug a runtime error. The state of this menu item is reset to the value of
debug-on-errors every time Qtenv is started.

Recording an Event Log

The OMNeT++ simulation kernel allows you to record event-related information into a file,
which can later be used to analyze the simulation run using the Sequence Chart tool in the
IDE. Eventlog recording can be turned on with the record-eventlog=true ini file option, but
also interactively, via the respective item in the Simulate menu, or using a toolbar button.

Note that starting Qtenv with record-eventlog=true and turning on recording later does
not result in exactly the same eventlog file. In the former case, all steps of setting up the
network, such as module creations, are recorded as they happen; while for the latter, Qtenv
has to “fake” a chain of steps that would result in the current state of the simulation.

Capturing a Video

When active, this feature will save the contents of the main window into a subfolder named
frames in the working directory with a regular frequency (in animation time). Each frame is
a PNG image, with a sequence number in its file name. Currently, the user has to convert
(encode) these images into a video file after the fact by using an external tool (such as ffmpeg,
avconv, or vlc). When the recording is started, an info dialog pops up, showing further
details on the output, and an example command for encoding in high quality using ffmpeg.
The resulting video is also affected by the speed slider on the toolbar.

Note: This built-in recording feature is able to produce a smooth video, in contrast to
external screen-capture utilities. This is possible because it has access to more information
and has more control over the process than external tools.

72 Chapter 7. The Qtenv Graphical Runtime Environment

User Guide, Release 6.1

Conclude Simulation

This function finalizes the simulation by invoking the user-supplied finish() member func-
tions on all module and channel objects in the simulation. The customary implementation of
finish() is to record summary statistics. The simulation cannot be continued afterwards.

Rebuild Network

Rebuilds the simulation by deleting the current network and setting it up again. Improperly
written simulations often crash when Rebuild Network is invoked, usually due to incorrectly
written destructors in module classes.

7.3.3 Inspecting Simulation Objects

Inspectors

The Network Display, the Log Viewer, and the Object Inspector in the main window share some
common properties: they display various aspects (graphical view / log messages / fields or
contents) of a given object. Such UI parts are called inspectors in Qtenv.

The three inspectors mentioned above are built into the main window, but you can open
additional ones at any time. The new inspectors will open in floating windows above the main
window, and you can have any number of them open.

Fig. 7.6: A floating inspector window

Inspectors come in many flavors. They can be graphical like the network view, textual like
the log viewer, tree-based like the object inspector, or something entirely different.

Note: Some window managers might disable/hide the close button of floating inspectors. If
this happens, you can still close them with a keyboard shortcut (most commonly Alt + F4),
or by right-clicking on the title bar, and choosing the Close option in the appearing menu.

7.3. Using Qtenv 73

User Guide, Release 6.1

Opening Inspectors

Inspectors can be opened in various ways: by double-clicking an item in the Object Navigator
or in other inspectors; by choosing one of the Open menu items from the context menu of an
object displayed on the UI; via the Find/Inspect Objects dialog (see later); or even by directly
entering the C++ pointer of an object as a hex value. Inspector-related menu items are in the
Inspect menu.

Fig. 7.7: The Inspect menu

History

Inspectors always show some aspect of one simulation object, but they can change objects.
For example, in the Network View, when you double-click a submodule that is itself a com-
pound module, the view will switch to showing the internals of that module; or, the Object
Inspector will always show information about the object last clicked in the UI. Inspectors
maintain a navigable history: the Back/Forward functions go to the object inspected be-
fore/after the currently displayed object. Objects that are deleted during simulation also
disappear from the history.

Restoring Inspectors

When you exit and then restart a simulation program, Qtenv tries to restore the open inspec-
tor windows. However, as object identity is not preserved across different runs of the same
program, Qtenv uses the object full path, class name, and object ID (where exists) to find and
identify the object to be inspected.

Preferences such as zoom level or open/closed state of a tree node are usually maintained
per object type (i.e. tied to the C++ class of the inspected object).

Extending Qtenv

It is possible for the user to contribute new inspector types without modifying Qtenv code.
For this, the inspector C++ code needs to include Qtenv header files and link with the Qtenv
library. One caveat is that the Qtenv headers are not public API and thus subject to change
in a new version of OMNeT++.

74 Chapter 7. The Qtenv Graphical Runtime Environment

User Guide, Release 6.1

7.4 Using Qtenv with a Debugger

You can use Qtenv in combination with a C++ debugger, which is mainly useful when devel-
oping new models. When doing so, there are a few things you need to know.

Qtenv is a library that runs as part of the simulation program. This has several implications,
the most apparent being that when the simulation crashes (due to a bug in the model’s C++
code), it will bring down the whole OS process, including the Qtenv GUI.

The second consequence is that suspending the simulation program in a debugger will also
freeze the GUI until it is resumed. Also, Qtenv is single-threaded and runs in the same
thread as the simulation program, so even if you only suspend the simulation’s thread in the
debugger, the UI will freeze.

The Qtenv UI deals with cObjects (the C++ methods that the GUI relies on are defined on
cObject). All other data such as primitive variables, non-cObject classes and structs, STL
containers, etc., are hidden from Qtenv. You may wrap objects into cObjects to make them
visible for Qtenv; that’s what the WATCH macros do as well.

The following sections go into detail about various parts and functions of the Qtenv UI.

7.5 Parts of the Qtenv UI

7.5.1 The Status Bars

The status bars show the simulation’s progress. There is one row at the top of the main
window, and one at the bottom. The top one can be hidden using the View → Status Details
menu item.

Fig. 7.8: The top status bar

When the simulation is paused or runs with animation, the top row displays the next expected
simulation event. Note the word expected. Certain schedulers may insert new events before
the displayed event at the last moment. Some schedulers that tend to do that are those
that accept input from outside sources: real-time scheduler, hybrid or hardware-in-the-loop
schedulers, parallel simulation schedulers, etc. The top row contains the following:

1. Name, C++ class, and ID of the next message (event) object

2. The module where the next event will occur (i.e., the module where the message will be
delivered)

3. The simulation time of the next (expected) simulation event

4. Time of the next event, and delta from the current simulation time

When the simulation is running in Fast or Express mode, displaying the next event becomes
useless. The contents of the top row are replaced by the following performance gauges:

Fig. 7.9: The top status bar during Fast or Express run

1. Simulation speed: number of events processed per real second

2. Relative speed of the simulation (compared to real-time)

3. Event density: the number of events per simulated second

7.4. Using Qtenv with a Debugger 75

User Guide, Release 6.1

The bottom row contains the following items:

Fig. 7.10: The bottom status bar

1. Ini config name, run number, and the name of the network

2. Message statistics: the number of messages currently scheduled (i.e., in the FES); the
number of message objects that currently exist in the simulation; and the number of
message objects that have been created so far, including the already deleted ones. Out
of the three, the middle one is probably the most useful. If it is steadily growing without
apparent reason, the simulation model is probably missing some delete msg state-
ments and needs debugging.

7.5.2 The Timeline

Fig. 7.11: The timeline

The timeline displays the contents of the Future Events Set on a logarithmic time scale. Each
dot represents a message (event). Messages to be delivered in the current simulation time are
grouped into a separate section on the left between brackets.

Clicking an event will focus it in the Object Inspector, and double-clicking it will open a floating
inspector window. Right-clicking it will bring up a context menu with further actions.

The timeline is often crowded, limiting its usefulness. To overcome this, you can hide unin-
teresting events from the timeline. Right-click the event and choose Exclude Messages Like
‘x’ From Animation from the context menu. This will hide events with a similar name and the
same C++ class name from the timeline, and also skip the animation when such messages
are sent from one module to another. You can view and edit the list of excluded messages
on the Filtering page of the Preferences dialog. (Tip: the timeline context menu provides a
shortcut to that dialog).

The whole timeline can be hidden (and revealed again) using the View → Timeline menu item,
by pressing a button on the toolbar, or simply by dragging the handle of the separator under
it all the way up.

76 Chapter 7. The Qtenv Graphical Runtime Environment

User Guide, Release 6.1

7.5.3 The Object Navigator

Fig. 7.12: The object tree

The Object Navigator displays the hierarchy of objects in the current simulation and in the
FES in a tree form.

Clicking an object will focus it in the Object Inspector, and double-clicking it will open a
floating inspector window. Right-clicking it will bring up a context menu with further actions.

7.5.4 The Object Inspector

The Object Inspector is located below the Object Navigator and lets you examine the contents
of objects in detail. The Object Inspector always focuses on the object last clicked or selected
on the Qtenv UI. It can also be navigated directly using the Back, Forward, and Go to Parent
buttons, and by double-clicking objects shown inside the inspector’s area.

Fig. 7.13: The object inspector in Grouped
mode

Fig. 7.14: The object inspector in Flat mode

The inspector has four display modes: Grouped, Flat, Children, and Inheritance. You can
switch between these modes using the buttons on the inspector’s toolbar.

7.5. Parts of the Qtenv UI 77

User Guide, Release 6.1

In Grouped, Flat, and Inheritance modes, the tree shows the fields (or data members) of the
object. It uses meta-information generated by the message compiler to obtain the list of fields
and their values. (This is true even for the built-in classes – the simulation kernel contains
their description of msg format.)

The only difference between these three modes is the way the fields are arranged. In Grouped
mode, they are organized in categories; in Flat mode, they form a simple alphabetical list; and
in Inheritance mode, they are organized based on which superclass they are inherited from.

Fig. 7.15: The object inspector in Children
mode Fig. 7.16: The object inspector in Inheri-

tance mode

In Children mode, the tree shows the child objects of the currently inspected object. The child
list is obtained via the forEachChild() method of the object. This is very similar to how the
Object Navigator works, but this can have an arbitrary root.

7.5.5 The Network Display

The network view provides a graphical view of the network and modules in general. The
graphical representation is based on display strings (@display properties in the NED file).
You can go into any compound module by double-clicking its icon.

Message sending, method calls, and certain other events are animated in the graphical view.
You can customize animation in the Animation page of the Preferences dialog.

78 Chapter 7. The Qtenv Graphical Runtime Environment

User Guide, Release 6.1

Fig. 7.17: The network display

The built-in cCanvas of the inspected object is also rendered in this view together with the
module contents to allow overlaying custom annotations and animations. This canvas con-
tains the figures declared by the @figure properties in the NED source of the module.

By choosing the Show/Hide Canvas Layers item in the context menu of the inspected module,
you can filter the displayed figures based on the tags set on them.

Fig. 7.18: Figure filtering dialog

Since any figure can have any number of tags, a two-step filtering mechanism is applied to
provide sufficient control. The left side is a whitelist, while the right side is a blacklist. The
example above would only let all the figures with the “oval” tag appear, except those that also
have the “green” tag on them.

If the inspected module has a built-in cOsgCanvas (and Qtenv is built with OSG support
enabled), this inspector can also be switched into a 3D display mode with the globe icon
on its toolbar. In this case, the 2D network and canvas display is replaced by the scene
encapsulated by the cOsgCanvas.

7.5. Parts of the Qtenv UI 79

User Guide, Release 6.1

Fig. 7.19: The network display in 3D mode

The context menu of submodules provides further actions (see below).

80 Chapter 7. The Qtenv Graphical Runtime Environment

User Guide, Release 6.1

Fig. 7.20: Submodule context menu

Fig. 7.21: The Utilities submenu

7.5. Parts of the Qtenv UI 81

User Guide, Release 6.1

Zooming and Panning

There are several ways to zoom the canvas, both using the mouse and the keyboard:

• To zoom in around a point, double-click the canvas; use Shift + double-click to zoom
out or scroll while holding down Ctrl.

You can also zoom around the center of the viewport with the looking glass buttons on
the canvas toolbar.

• For marquee zoom, drag out a rectangle with the left mouse button while holding down
Ctrl; you can cancel the operation with the right mouse button.

• Panning: moving the mouse while holding down the left mouse button will move the
canvas; this is often a more comfortable way to navigate the canvas than using the
scroll bars. You can of course scroll in any direction with simply the mouse wheel or the
similar functionality of many touchpads.

7.5.6 The Log Viewer

When you run the simulation, Qtenv will remember the output from logging statements (EV
<< "Hello World\n";) and the messages sent between modules, and can present it to you
in a meaningful manner. Only the output from the last N events is preserved (N being config-
urable in the Preferences dialog), and only in Step, Run, and Fast Run modes. (Express mode
can be so fast because such overhead is turned off while it’s active.)

The Log Viewer shows log related to one compound module and its subtree. It has two modes:
Messages and Log mode, with Messages being the default. You can switch between the two
modes using tool icons on the inspector’s local toolbar.

In Messages mode, the window displays messages sent between the (immediate) submodules
of the inspected compound module, and messages sent out of or into the compound module.
The embedded Log Viewer shows content related to the module inspected in the Network
Display above it at any time. You can view details about any message in the Object Inspector
by clicking on it, and access additional functions in its context menu.

Note: In Messages mode, the Info column can be customized by writing and registering a
custom cMessagePrinter class. This string is split at the tab characters ('\t') into parts
that are aligned in additional columns.

Fig. 7.22: The log viewer showing message traffic

In Log mode, the window displays log lines that belong to submodules under the inspected
compound module (i.e., the whole module subtree).

82 Chapter 7. The Qtenv Graphical Runtime Environment

User Guide, Release 6.1

Fig. 7.23: The log viewer showing module log

You can filter the content of the window to only include messages from specific modules.
Open the log window’s context menu and select Filter Window Contents.

Fig. 7.24: The log filter dialog

General logging behavior, such as the prefix format, can be controlled in the Preferences
dialog. The log level of each module (and its descendants) can be set in its context menu.

It is also possible to open separate log windows for individual modules. A log window for a
compound module displays the log from all of its submodule tree. To open a log window,
find the module in the module tree or the network display, right-click it, and choose Open
Component Log from the context menu.

7.6 Inspecting Objects

7.6.1 Object Inspectors

In addition to the inspectors embedded in the main window, Qtenv lets you open floating
inspector windows for individual objects. The screenshot below shows Qtenv with several
inspectors open.

7.6. Inspecting Objects 83

User Guide, Release 6.1

Fig. 7.25: Qtenv with several floating inspectors open

7.6.2 Browsing the Registered Components

Fig. 7.26: The Inspect menu

Registered components (NED Types, classes, functions, enums) can be displayed with the
Inspect → Available components menu item. If an error message reports missing types or
classes, you can check here whether the missing item is in fact available, i.e., registered
correctly.

84 Chapter 7. The Qtenv Graphical Runtime Environment

User Guide, Release 6.1

7.6.3 Querying Objects

The Find/Inspect Objects dialog allows you to search the simulation for objects that meet
certain criteria. The criteria can be the object name, class name, the value of a field of the
object, or a combination of those. The results are presented in a table that can be sorted by
columns, and items in the table can be double-clicked to inspect them.

Some possible use cases:

• Identifying bottlenecks in the network by looking at the list of all queues and ordering
them by length (i.e. having the result table sorted by the Info column)

• Finding nodes with the highest packet drop count. If the drop counts are watched
variables (see the WATCH() macro), you can get a list of them.

• Finding modules that leak messages. If the live message count on the status bar keeps
increasing, you can search for all message objects and see where the leaked messages
are hiding.

• Easy access to some data structures or objects, such as routing tables. You can search
by name or class name and use the result list as a collection of hotlinks, saving you
from manually navigating the simulation’s object tree.

Fig. 7.27: Using the Find/Inspect Objects dialog to find long queues

The dialog allows you to specify the search root, as well as the name and class name of the
objects to find. The latter two accept wildcard patterns.

The checkboxes in the dialog can be used to select the object categories that interest you. If
you select a category, all objects of that type (and any types derived from it) will be included in
the search. Alternatively, if you specify an object class as a class filter expression, the search
dialog will try to match the object’s class name with the given string. Objects of derived types
will not be included in the search.

You can also provide a generic filter expression, which matches the object’s full path by
default. Wildcards ("?", "*") are allowed. "{a-exz}" matches any character in the range
"a" through "e" and the characters "x" and "z". You can match numbers using patterns
like "*.job{128..191}" to match objects named "job128", "job129", and "job191". You
can also use patterns like "job{128..}" and "job{..191}". Patterns can be combined
using AND, OR, NOT, and parentheses. Lowercase versions of these keywords (and, or, not)
are also accepted. You can match other object fields, such as queue length, message kind,
etc., using the syntax fieldname =~ pattern. If the pattern contains special characters or
spaces, you need to enclose it in quotes. (HINT: In most cases, you will want to start the
pattern with "*." to match objects anywhere in the network!).

7.6. Inspecting Objects 85

User Guide, Release 6.1

Examples:

• *.destAddr: Matches all objects with the name "destAddr" (likely module parameters).

• *.node[8..10].*: Matches anything inside module node[8], node[9], and node[10].

• className =~ omnetpp::cQueue AND NOT length =~ 0: Matches non-empty queue
objects.

• className =~ omnetpp::cQueue AND length =~ {10..}: Matches queue objects
with length greater than or equal to 10.

• kind =~ 3 OR kind =~ {7..9}: Matches messages with message kind equal to 3, 7,
8, or 9 (only messages have a "kind" attribute).

• className =~ IP* AND *.data-*: Matches objects whose class name starts with
"IP" and name starts with "data-".

• NOT className =~ omnetpp::cMessage AND byteLength =~ {1500..}: Matches
messages whose class is not cMessage and byteLength is at least 1500 (only messages
have a "byteLength" attribute).

• "TCP packet" OR "*.packet(15)": Quotation marks are needed when the pattern is
a reserved word or contains whitespace or special characters.

Note: Qtenv uses the cObject::forEachChild method to recursively collect all objects
from a tree. If you have your own objects derived from cObject, you should redefine the
cObject::forEachChild method to ensure correct object search functionality.

Note: The class names must be fully qualified, meaning they should contain the names-
pace(s) they are in, regardless of the related setting in the Preferences dialog.

Note: If you are debugging the simulation with a source level debugger, you can also use the
Inspect by pointer menu item. Let the debugger display the address of the object you want to
inspect, and paste it into the dialog. Please note that entering an invalid pointer will crash
the simulation.

7.7 The Preferences Dialog

Select File → Preferences from the menu to display the runtime environment’s configuration
dialog. The dialog allows you to adjust various display, network layouting, and animation
options.

86 Chapter 7. The Qtenv Graphical Runtime Environment

User Guide, Release 6.1

7.7.1 General

Fig. 7.28: General settings

The General tab can be used to set the default user interface behavior. You can choose
whether namespaces should be stripped off the displayed class names, and how often the
user interface should be updated while the simulation runs in Express mode.

7.7. The Preferences Dialog 87

User Guide, Release 6.1

7.7.2 Logs

Fig. 7.29: Logging settings

The Logs tab can be used to set the default logging behavior, such as the log level of modules
that do not override it, the prefix format for event banners, and the size limit of the log buffer.

88 Chapter 7. The Qtenv Graphical Runtime Environment

User Guide, Release 6.1

7.7.3 Configuring the Layouting Algorithm

Fig. 7.30: Layouting settings

Qtenv provides automatic layouting for submodules that do not have their locations specified
in the NED files. The layouting algorithm can be fine-tuned on the Layouting page of this
dialog.

7.7. The Preferences Dialog 89

User Guide, Release 6.1

7.7.4 Configuring Animation

Fig. 7.31: Animation settings

Qtenv provides automatic animation when you run the simulation. You can fine-tune the
animation settings using the Animation page of the settings dialog. If you do not need all of
the visual feedback that Qtenv provides, you can selectively turn off some of the features:

• Animate messages: Turns on/off the visualization of messages passing between mod-
ules.

• Broadcast animation: Handles message broadcasts in a special way (zero-time messages
sent within the same event will be animated concurrently).

• Show next event marker: Highlights the module that will receive the next event.

• Show a dotted arrow when a sendDirect() method call is executed.

• Show a flashing arrow when a method call occurs from one module to another. The call
is only animated if the called method contains the Enter_Method() macro.

• The display of message names and classes can also be turned off.

90 Chapter 7. The Qtenv Graphical Runtime Environment

User Guide, Release 6.1

7.7.5 Timeline and Animation Filtering

Fig. 7.32: Filtering

The Filtering page of the dialog serves two purposes. First, it allows you to filter the contents
of the Timeline. You can hide all self-messages (timers) or all non-self messages. Additionally,
you can further reduce the number of messages shown on the timeline by hiding the non-
animated messages, as explained below.

Second, you can suppress the animation of certain messages. For example, when you are
focused on routing protocol messages, you can suppress the animation of data traffic.

The text box allows you to specify multiple filters, with each filter on a separate line. You can
filter messages by name, class name, or any other property that appears in the Fields page of
the Object Inspector when focusing it on the given message object.

Note: When you select Exclude Messages Like ‘x’ From Animation from the context menu of
a message object in the UI, it will add a new filter on this dialog page.

For object names, you can use wildcards ("?", "*"). "{a-exz}" matches any character in
the range "a" through "e" and the characters "x" and "z". You can match numbers using
patterns like "job{128..191}" to match "job128", "job129", and "job191". You can also
use patterns like "job{128..}" and "job{..191}". Patterns can be combined using AND,
OR, NOT, and parentheses. Lowercase versions of these keywords (and, or, not) are also
accepted. You can match against other object fields, such as message length, message kind,
etc., using the syntax fieldname =~ pattern. If the pattern contains special characters or
spaces, you need to enclose it in quotes.

Some examples:

• m*: Matches any object whose name begins with “m”.

7.7. The Preferences Dialog 91

User Guide, Release 6.1

• m* AND *-{0..250}: Matches any object whose name begins with “m” and ends with a
dash and a number between 0 and 250.

• NOT *timer*: Matches any object whose name does not contain the substring “timer”.

• NOT (*timer* OR *timeout*): Matches any object whose name contains neither
“timer” nor “timeout”.

• kind =~ 3 OR kind =~ {7..9}: Matches messages with message kind equal to 3, 7,
8, or 9.

• className =~ IP* AND data-*: Matches objects whose class name starts with “IP”
and name starts with “data-“.

• NOT className =~ omnetpp::cMessage AND byteLength =~ {1500..}: Matches
objects whose class is not cMessage and whose byteLength is at least 1500.

• "TCP packet" OR "*.packet(15)": Quotation marks are needed when the pattern is
a reserved word or contains whitespace or special characters.

There is also a per-module setting that models can adjust programmatically
to prevent any animations from happening when inspecting a given module
(setBuiltinAnimationsAllowed()).

7.7.6 Configuring Fonts

Fig. 7.33: Font selection

The Fonts page of the settings dialog allows you to select the typeface and font size for various
user interface elements.

92 Chapter 7. The Qtenv Graphical Runtime Environment

User Guide, Release 6.1

7.7.7 The .qtenvrc File

Settings are stored in .qtenvrc files. There are two .qtenvrc files: one is stored in the
current directory and contains project-specific settings, such as the list of open inspectors;
the other is saved in the user’s home directory and contains global settings.

Note: Inspectors are identified by their object names. If you have several components that
share the same name (this is especially common for messages), you may end up with a lot of
inspector windows when you start the simulation. In such cases, you can simply delete the
.qtenvrc file.

7.8 Qtenv and C++

This section describes which C++ API functions various parts of Qtenv use to display data
and perform their functions. Most functions are member functions of the cObject class.

7.8.1 Inspectors

Inspectors display the hierarchical name (i.e., full path) and class name of the inspected
object in the title using the getFullPath() and getClassName() member functions of
cObject. The Go to parent feature in inspectors uses the getOwner() method of cObject.

The Object Navigator displays the full name and class name of each object (getFullName()
and getClassName()), and also the ID for classes that have one (getId() on cMessage
and cModule). When you hover with the mouse, the tooltip displays the info string (str()
method). The roots of the tree are the network module (simulation.getSystemModule())
and the FES (simulation.getFES()). Child objects are enumerated with the help of the
forEachChild() method.

The Object Inspector in Children mode displays the full name, class name, and info
string (getFullName(), getClassName(), str()) of child objects enumerated using
forEachChild(). forEachChild() can only enumerate objects that are subclasses of
cObject. If you want non-cObject variables (e.g., primitive types or STL containers) to
appear in the Children tree, you need to wrap them into cObject. The WATCH() macro does
exactly that: it creates an object wrapper that displays the variable’s value via the wrapper’s
str() method. There are also watch macros for STL containers; they present the wrapped
object to Qtenv in a more structured way using custom class descriptors (cClassDescriptor,
see below).

One might wonder how the forEachChild() method of modules can enumerate messages,
queues, and other objects owned by the module. The answer is that the module class main-
tains a list of owned objects, and cObject automatically joins that list.

The Object Inspector displays an object’s fields by making use of the class descriptor
(cClassDescriptor) for that class. Class descriptors are automatically generated for new
classes by the message compiler. Class descriptors for the OMNeT++ library classes are also
generated by the message compiler; see src/sim/sim_std.msg in the source tree.

The Network Display uses cSubmoduleIterator to enumerate submodules, and its Go to
parent module function uses getParentModule(). Background and submodule rendering is
based on display strings (getDisplayString() method of cComponent).

The module log page of Log Viewer displays the output to EV streams from modules and
channels.

The message/packet traffic page of Log Viewer shows information based on stored copies
of sent messages (the copy is created using dup()) and stored sendhop information. The

7.8. Qtenv and C++ 93

User Guide, Release 6.1

Name column displays the message name (getFullName()). However, the Info column does
not display the string returned from str(), but instead, it displays strings produced by a
cMessagePrinter object. Message printers can be dynamically registered.

7.8.2 During Simulation

Qtenv sets up a network by calling simulation.setupNetwork(), then immediately pro-
ceeds to invoke callInitialize() on the root module. During simulation, simulation.
takeNextEvent() and simulation.executeEvent() are called iteratively. When the sim-
ulation ends, Qtenv invokes callFinish() on the root module; the same happens when
you select the Conclude Simulation menu item. The purpose of callFinish() is to record
summary statistics at the end of a successful simulation run, so it will be skipped if an
error occurs during simulation. On exit, and before a new network is set up, simulation.
deleteNetwork() is called.

The Debug Next Event menu item issues the int3 x86 assembly instruction on Windows and
raises a SIGTRAP signal on other systems.

7.9 Reference

7.9.1 Command-Line Options

A simulation program built with Qtenv accepts the following command-line switches:

• -h: The program prints a help message and exits.

• -u Qtenv: Causes the program to start with Qtenv (this is the default, unless the pro-
gram hasn’t been linked with Qtenv or has another custom environment library with a
higher priority than Qtenv).

• -f filename: Specifies the name of the configuration file. The default is omnetpp.ini.
Multiple -f switches can be given; this allows partitioning your configuration file. For
example, one file can contain your general settings, another one can contain most of the
module parameters, and a third one can contain the module parameters you frequently
change. The -f switch is optional and can be omitted.

• -l filename: Loads a shared library (.so file on Unix, .dll on Windows, and .dylib
on Mac OS X). Multiple -l switches are accepted. Shared libraries may contain simple
modules and other arbitrary code. File names may be specified without the file extension
and the lib name prefix (i.e., foo instead of libfoo.so).

• -n filepath: When present, overrides the NEDPATH environment variable and sets the
source locations for simulation NED files.

• -c configname: Selects an INI configuration for execution.

• -r runnumber: Takes the same effect as (but takes priority over) the qtenv-default-run=
INI file configuration option. Run filters are also accepted. If there is more than one
matching run, they are grouped at the top of the combobox.

94 Chapter 7. The Qtenv Graphical Runtime Environment

User Guide, Release 6.1

7.9.2 Environment Variables

• OMNETPP_IMAGE_PATH: Controls where Qtenv loads images for network graphics (mod-
ules, background, etc.) from. The value should be a semicolon-separated list of direc-
tories, but on non-Windows systems, the colon is also accepted as a separator. The de-
fault is ./bitmaps;./images;<omnetpp>/images, which means that Qtenv looks into
the bitmaps and images folders of the simulation, as well as the images folder in your
installation’s working directory. The directories will be scanned recursively, and sub-
directory names become part of the icon name. For example, if an images/ directory
is listed, the file images/misc/foo.png will be registered as an icon named misc/foo.
Qtenv accepts PNG, JPG, and GIF files.

• OMNETPP_DEBUGGER_COMMAND: When set, it overrides the factory default for the com-
mand used to launch the just-in-time debugger (debugger-attach-command). It must
contain ‘%u’ (which will be substituted with the process ID of the simulation), and should
not contain any additional ‘%’ characters. Since the command has to return immedi-
ately, on Linux and macOS, it is recommended to end it with an ampersand (’&’). The
settings on the command line or in an .ini file take precedence over this environment
variable.

7.9.3 Configuration Options

Qtenv accepts the following configuration options in the INI file.

• qtenv-extra-stack: Specifies the extra amount of stack (in kilobytes) reserved for
each activity() simple module when the simulation is run under Qtenv. This value
is significantly higher than the similar one for Cmdenv (handling GUI events requires a
large amount of stack space).

• qtenv-default-config: Specifies which INI file configuration Qtenv should automati-
cally set up after startup. If there is no such option, Qtenv will ask which configuration
to set up.

• qtenv-default-run: Specifies which run of the selected configuration Qtenv should
set up after startup. If there is no such option, Qtenv will ask.

All other Qtenv settings can be changed via the GUI and are saved into the .qtenvrc file in
the user’s home directory or in the current directory.

7.9. Reference 95

User Guide, Release 6.1

96 Chapter 7. The Qtenv Graphical Runtime Environment

CHAPTER

EIGHT

SEQUENCE CHARTS

8.1 Introduction

This chapter describes the Sequence Chart and the Eventlog Table tools. Both of them display
an eventlog file recorded by the OMNeT++ simulation kernel.

An eventlog file contains a log of messages sent during the simulation and the details of
events that prompted their sending or reception. This includes both messages sent between
modules and self-messages (timers). The user can control the amount of data recorded from
messages, start/stop time, which modules to include in the log, and so on. The file also
contains the topology of the model (i.e. the modules and their interconnections).

Note: Please refer to the OMNeT++ Manual for further details on eventlog files and their
exact format.

The Sequence Chart displays eventlog files in a graphical form, focusing on the causes and
consequences of events and message sends. They help the user understand complex simula-
tion models and assist with the correct implementation of the desired component behaviors.
The Eventlog Table displays an eventlog file in a more detailed and direct way. It is in a
tabular format, so that it can show the exact data. Both tools can display filtered eventlogs
created via the Eventlog Tool filter command as described in the OMNeT++ Manual, by a
third-party custom filter tool, or by the IDE’s in-memory filtering.

Using these tools, you will be able to easily examine every detail of your simulation back and
forth in terms of simulation time or events. You will be able to focus on the behavior instead
of the statistical results of your model.

8.2 Creating an Eventlog File

The INI File Editor in the OMNeT++ IDE provides a group of widgets in the Output Files section
to configure automatic eventlog recording. To enable it, simply put a checkmark next to its
checkbox, or insert the line

record-eventlog = true

into the INI file. Additionally, you can use the --record-eventlog command-line option or
just click the record button on the Qtenv toolbar before starting the simulation.

97

User Guide, Release 6.1

Fig. 8.1: INI file eventlog configuration

By default, the recorded eventlog file will be put in the project’s results directory, with the
name $configname-$runnumber.elog .

Warning: If you override the default file name, please make sure that the file extension is
elog , so that the OMNeT++ IDE tools will be able to recognize it automatically.

The ‘recording intervals’ and ‘record events’ configuration keys control which events will be
recorded based on their simulation time and on the module where they occur. The ‘message
details’ configuration key specifies what will be recorded from a message’s content. Message
content will be recorded each time a message gets sent.

The amount of data recorded will affect the eventlog file size, as well as the execution speed
of the simulation. Therefore, it is often a good idea to tailor these settings to get a reasonable
tradeoff between performance and details.

Note: Please refer to the OMNeT++ Manual for a complete description of eventlog recording
settings.

8.3 Sequence Chart

This section describes the Sequence Chart in detail, focusing on its features without a par-
ticular example.

The Sequence Chart is divided into three parts: the top gutter, the bottom gutter, and the
main area. The gutters show the simulation time while the main area displays module axes,
events, and message sends. The chart grows horizontally with simulation time and vertically
with the number of modules. Module axes can optionally display enumerated or numerical
vector data.

There are various options that control how and what the Sequence Chart displays. Some of
these are available on the toolbar, while others are accessible only from the context menu.

8.3.1 Legend

Graphical elements on the Sequence Chart represent modules, events, and messages, as
listed in the following table.

98 Chapter 8. Sequence Charts

User Guide, Release 6.1

simple module axis

compound module axis

axis with attached vector data
module full path as axis label

(hollow circle) initialization event

(green disk) self-message processing event

(red disk) message processing event

event number

(blue arrow, arched) self-message

(blue arrow) message send

(green dotted arrow) message reuse

(brown dotted arrow) method call
(arrow with a dashed segment) message send that goes far away; split arrow

(arrow with zigzag) virtual message send; zigzag arrow
(blue parallelogram) transmission duration; reception at start

(blue parallelogram) transmission duration; reception at end
(blue strips) split transmission duration; reception at start
(blue strips) split transmission duration; reception at end
(blue letters) message name
(brown letters) method name

(gray background) zero simulation time region

(dashed gray line) simulation time hairline

8.3.2 Timeline

Simulation time may be mapped onto the horizontal axis in various ways; linear mapping
is only one of the ways. The reason for having multiple mapping modes is that intervals
between interesting events are often of different magnitudes (e.g. microsecond timings in a
MAC protocol versus multi-second timeouts in higher layers), which is impossible to visualize
using a linear scale.

The available timeline modes are:

• Linear – the simulation time is proportional to the distance measured in pixels.

• Event number – the event number is proportional to the distance measured in pixels.

• Step – the distance between subsequent events, even if they have non-subsequent event
numbers, is the same.

• Nonlinear – the distance between subsequent events is a nonlinear function of the sim-
ulation time between them. This makes the figure compact even if there are several

8.3. Sequence Chart 99

User Guide, Release 6.1

magnitudes difference between simulation time intervals. On the other hand, it is still
possible to decide which interval is longer and which one is shorter.

• Custom nonlinear – like nonlinear. This is useful in those rare cases when the automatic
nonlinear mode does not work well. The best practice is to switch to Nonlinear mode
first and then to Custom nonlinear, so that the chart will continuously refresh as the
parameters change. At the extreme, you can set the parameters so that the nonlinear
mode becomes equivalent to linear mode or step mode.

You can switch between timeline modes using the button on the toolbar or from the context
menu.

8.3.3 Zero Simulation Time Regions

It is quite common in simulation models for multiple events to occur at the same simulation
time, possibly in different modules. A region with a gray background indicates that the
simulation time does not change along the horizontal axis within the area, thus all events
inside it have the same simulation time associated with them.

Fig. 8.2: Nonlinear simulation time

8.3.4 Module Axes

The Sequence Chart’s vertical axis corresponds to modules in the simulation. By default,
each simple module is displayed on a separate horizontal axis, and events that occurred in
that module are shown as circles on it. A compound module is represented with a double
line, and it will display events from all contained simple modules, except internal events and
those that have their own axes displayed. An event is internal to a compound module if it
only processes a message from, and sends out messages to, other modules inside.

It is not uncommon for some axes to not have any events at all. These axes would waste space
by occupying some place on the screen, so by default, they are omitted from the chart unless
the Show Axes Without Events option is turned on. The discovery process is done lazily as
you navigate through the chart, and it may add new axes dynamically as soon as it turns out
that they actually have events.

Module axes can be reordered with the option Axis Ordering Mode . Ordering can be manual
or sorted by module name, module ID, or by minimizing the total number of axes that arrows
cross.

Note: The algorithm that minimizes crossings works by taking a random sample from the
file and determines the order of axes from that (which means that the resulting order will only
be an approximation). A more precise algorithm, which takes all arrows into account, would
not be practical because of the typically large size of eventlog files.

100 Chapter 8. Sequence Charts

User Guide, Release 6.1

8.3.5 Gutter

The upper and lower edges of the Sequence Chart show a gutter that displays the simulation
time. The left side of the top gutter displays a time prefix value, which should be added to
each individual simulation time shown at the vertical hairlines. This reduces the number
of characters on the gutter and allows easier recognition of simulation time changes in the
significant digits. The right side of the figure displays the simulation time range that is
currently visible within the window.

Tip: To see the simulation time at a specific point on the chart, move the mouse to the
desired place and read the value in the blue box horizontally aligned with the mouse on the
gutter.

Fig. 8.3: Gutter and range

8.3.6 Events

Events are displayed as filled circles along the module axes. A green circle represents the
processing of a self-message, while a red circle is an event caused by receiving a message
from another module. The event with event number zero represents the module initialization
phase and may spread across multiple module axes because the simulation kernel calls each
module during initialization. This event is displayed with a white background.

Event numbers are displayed below and to the right of their corresponding events and are
prefixed with ‘#’. Their colors change according to their events’ colors.

Fig. 8.4: Various event types

8.3.7 Messages

The Sequence Chart represents message sends with blue arrows. Vertically, the arrow starts
at the module that sent the message and ends at the module that processed the message.
Horizontally, the start and end points of the arrow correspond to the sender and receiver
events. The message’s name is displayed near the middle of the arrow, but not exactly in the
middle to avoid overlapping with other names between the same modules.

Sometimes, when a message arrives at a module, it simply stores it and later sends the
exact same message out. The events where the message arrived and where the message was
actually sent are in a so-called “message reuse” relationship. This is represented by a green
dotted arrow. These arrows are not shown by default because timer self-messages are usually
reused continuously. Showing these arrows would add unnecessary complexity to the chart

8.3. Sequence Chart 101

User Guide, Release 6.1

and make it hard to understand. To show and hide these arrows, use the button Show Reuse
Messages on the toolbar.

Sometimes, depending on the zoom factor, a message send goes far away on the chart. In
this case, the line is split into two smaller parts that are displayed at the two ends pointing
towards each other, but without a continuous line connecting them. At one end of both arrow
pieces is a dotted line while at the other end is a solid line. The solid line always points exactly
to or from the event to which it is connected. The other line, which is dotted, either specifies
the module where the arrow starts or ends, or in the case of a self-message, it points toward
the other arrow horizontally.

Fig. 8.5: Split arrows

8.3.8 Displaying Module State on Axes

It is possible to display module state on an axis. The axis is then rendered as a colored strip
that changes color every time the module state changes. The data is taken from an output
vector in an output vector file, normally recorded by the simulation together with the eventlog
file.

Fig. 8.6: Axis with state information displayed

To attach an output vector to an axis, right-click the desired axis and select Attach Vector to
Axis from the context menu. You will be prompted for an output vector file and for a vector in
the file. If the vector is of type enum (that is, it has metadata attached that assigns symbolic
names to values, e.g., IDLE for 0, TRANSMIT for 1, etc.), then the chart will display symbolic
names inside the strip; otherwise, it will display the values as numbers. The background
coloring for the strip is automatic.

Note: Recording output vectors is explained in the OMNeT++ Simulation Manual. It is recom-
mended to turn on recording event numbers (**.vector-record-eventnumbers = true ini
file setting), because that allows the Sequence Chart tool to display state changes accurately
even if there are multiple events at the same simulation time.

The format of output vector files is documented in an appendix of the Manual. To see
whether a given output vector is suitable for the Sequence Chart, search for the vec-
tor declaration (vector... `` line) in the file. When event numbers are enabled,
the vector declaration will end in ``ETV (not TV). If a vector has an enum attached,
there will be an attr enum line after the vector declaration. An example vector declaration
with an enum:

102 Chapter 8. Sequence Charts

User Guide, Release 6.1

8.3.9 Zooming

To zoom in or out horizontally along the timeline, use the Zoom In and Zoom Out but-
tons on the toolbar. To decrease or increase the distance between the axes, use the In-
crease/Decrease Spacing commands.

Warning: When you zoom out, more events and messages become visible on the chart,
making it slower. When you zoom in, message lines start breaking, making it less infor-
mative. Try to keep a reasonable zoom level.

8.3.10 Navigation

To scroll through the Sequence Chart, use either the scroll bars, drag with the left mouse
button, or scroll with the mouse wheel using the Shift modifier key for horizontal scroll.

There are also navigation options to go to the previous Shift+LEFT or next Shift+RIGHT
event in the same module.

Similar to navigating in the Eventlog Table, to go to the cause event, press Ctrl+LEFT. To go
to the arrival of a message send, press Ctrl+RIGHT while an event is selected.

8.3.11 Tooltips

The Sequence Chart displays tooltips for axes, events, message sends, and reuses. When a
tooltip is shown for any of the above, the chart will highlight the corresponding parts. Some-
times, when the chart is zoomed out, it might show a complex tooltip immediately because
there are multiple items under the mouse.

Tip: To measure the simulation time difference between two events, select one of them while
staying at the other to display the tooltip.

Fig. 8.7: Event tooltip

8.3. Sequence Chart 103

User Guide, Release 6.1

8.3.12 Bookmarks

Just like the Eventlog Table, the Sequence Chart also supports bookmarks to make navi-
gation easier. Bookmarks are saved for the files rather than the various editors; therefore,
they are shared between them. The chart highlights bookmarked events with a circle around
them, similar to primary selection but with a different color.

8.3.13 Exporting

The Sequence Chart supports exporting continuous parts into SVG format for documentation
purposes. This function is available from the context menu . You can export the whole
Sequence Chart, a region between two selected events, or the currently visible area.

8.3.14 Associated Views

When you open an eventlog file in the Sequence Chart editor, it will automatically open the
Eventlog Table View with the same file. If you select an event on the Sequence Chart editor,
then the Eventlog Table View will jump to the same event, and vice versa. This interconnection
makes navigation easier, and you can immediately see the details of the selected event’s raw
data.

8.3.15 Filtering

You can also filter the contents of the Sequence Chart. This actually means that some of the
events are not displayed on the chart, so that the user can focus on the relevant parts. When
filtering is turned on (displayed in the status line), some of the message arrows might have
a filter sign (a double zigzag crossing the arrow line’s center). Such a message arrow means
that there is a message going out from the source module, which after processing in some
other filtered-out modules, reaches the target module. The message name of the arrow in this
case corresponds to the first and the last message in the chain that was filtered out.

Fig. 8.8: Zigzag arrows

When a module filter is used, it will determine which modules will have axes. If the events that
occurred in a module are completely filtered out, then the Sequence Chart will not display
the superfluous axis belonging to that module. This reduces the number of axes and makes
it easier to understand the figure.

Events may not have subsequent event numbers, which means that the events in between
have been filtered out. At the extreme, the chart may even be empty, meaning that there are
no matching events at all.

To filter the Sequence Chart, open the Filter Dialog using the filter button on the toolbar.
You can also filter from the context menu using the shortcuts provided for events and message
sends currently under the mouse.

104 Chapter 8. Sequence Charts

User Guide, Release 6.1

8.4 Eventlog Table

This section describes the Eventlog Table in detail, focusing on its features without a partic-
ular example.

The Eventlog Table has one row per line in the eventlog file. It has three columns. The
first two are called event number and simulation time respectively. They show the values
corresponding to the simulation event where the line was recorded. The third column, called
details, contains the actual data, which varies for each line kind. The different kinds of lines
can be easily recognized by their icons. Some lines, such as sending a message through a
sequence of gates, relate to each other and are indented so that the user can recognize them
more easily.

There are various options that control how and what the Eventlog Table displays. Some of
these are available on the toolbar, while others are accessible only from the context menu.

8.4.1 Display Mode

The eventlog file content may be displayed in two different notations. The Raw data notation
shows exactly what is present in the file.

Fig. 8.9: Raw notation

The Descriptive notation, after some preprocessing, displays the log file in a readable format.
It also resolves references and types so that less navigation is required to understand what
is going on. To switch between the two, use the Display Mode button on the toolbar or the
context menu.

Fig. 8.10: Descriptive notation

8.4. Eventlog Table 105

User Guide, Release 6.1

8.4.2 Name Mode

There are three different ways to display names in the Eventlog Table; it is configurable with
the Name Mode option. Full path and full name show what you would expect. The smart
mode uses the context of the line to decide whether a full path or a full name should be
displayed. For each event line, this mode always displays the full path. For all other lines,
if the name is the same as the enclosing event’s module name, then it shows the full name
only. This choice makes lines shorter and allows for faster reading.

8.4.3 Type Mode

The option called Type Mode can be used to switch between displaying the C++ class name
or the NED type name in parentheses before module names. This is rarely used, so it is only
available from the context menu.

8.4.4 Line Filter

The Eventlog Table may be filtered by using the Line Filter button on the toolbar. This
option allows filtering for lines with specific kinds. There are some predefined filters.

You can also provide a custom filter pattern, referring to fields present in Raw mode, using
a match expression. The following example is a custom filter that will show message sends
where the message’s class is AirFrame.

BS and c(AirFrame)

Please refer to the OMNeT++ Manual for more details on match expressions.

Note: To avoid confusion, event lines marked with green circles are always shown in the
Eventlog Table and are independent of the line filter.

8.4.5 Navigation

You can navigate using your keyboard and mouse just like in any other table. There are a
couple of non-standard navigation options in the context menu, which can also be used with
the keyboard.

The simplest are the Goto Event and the Goto Simulation Time, both of which simply jump to
the designated location.

There are navigation options for going to the previous Alt+UP or next Alt+DOWN event in
general, and to go to the previous Shift+UP or next Shift+DOWN event in the same module.

Some of the navigation options focus on the causes of events and consequences of message
sends. To go to the cause event, press Ctrl+UP. To go to the arrival of a message send, press
Ctrl+DOWN, after selecting the message being sent.

Finally, there are navigation options for message reuse relationships. You can go to the
original event of a message from the line where it was being reused. In the other direction,
you can go to the reused event of a message from the event where it was received. These
options are enabled only if they actually make sense for the current selection.

106 Chapter 8. Sequence Charts

User Guide, Release 6.1

Fig. 8.11: Navigation context menu

8.4.6 Selection

The Eventlog Table uses multiple selection even though most of the user commands require
single selection.

8.4.7 Searching

For performance reasons, the search function works directly on the eventlog file and not
the text displayed in the Eventlog Table. It means that some static text present in Descriptive
mode cannot be found. Usually, it is easier to figure out what to search for in Raw mode,
where the eventlog file’s content is directly displayed. The search can work in both directions,
starting from the current selection, and may be case insensitive. To repeat the last search,
use the Find Next command.

8.4.8 Bookmarks

For easier navigation, the Eventlog Table supports navigation history. This is accessible from
the standard IDE toolbar just like for other kinds of editors. It works by remembering each
position where the user stayed more than 3 seconds. The navigation history is temporary and
thus it is not saved when the file is closed.

Persistent bookmarks are also supported, and they can be added from the context menu.
A Bookmarked event is highlighted with a different background color.

Fig. 8.12: A bookmark

8.4. Eventlog Table 107

User Guide, Release 6.1

To jump to a bookmark, use the standard Bookmark View (this is possible even after restart-
ing the IDE).

8.4.9 Tooltips

Currently, only the message send lines have tooltips. If message detail recording was config-
ured for the simulation, then a tooltip will show the recorded content of a message send over
the corresponding line.

Fig. 8.13: A message send tooltip

8.4.10 Associated Views

When you open an eventlog file in the Eventlog Table editor, it will automatically open the
Sequence Chart View with the same file. If you select an event on the Eventlog Table editor,
then the Sequence Chart View will jump to the same event, and vice versa. This interconnec-
tion makes navigation easier, and you can immediately see the cause and effect relationships
of the selected event.

8.4.11 Filtering

If the Eventlog Table displays a filtered eventlog, then subsequent events may not have sub-
sequent event numbers. This means that the events in between have been filtered out. At the
extreme, the table may even be empty, which means that there are no matching events at all.

8.5 Filter Dialog

The content of an eventlog can be filtered within the OMNeT++ IDE. This is on-the-fly filtering
as opposed to the file content filtering provided by the Eventlog tool. To use on-the-fly filtering,
open the filter configuration dialog with the button on the toolbar, enable some of the range,
module, message, or trace filters, set the various filter parameters, and apply the settings.
The result is another eventlog, resident in memory, that filters out some events.

Note: Similar to the command line opp_eventlogtool described in the OMNeT++ Manual,
the in-memory filtering can only filter out whole events.

In-memory, on-the-fly filtering means that the filter’s result is not saved into an eventlog file,
but it is computed and stored within memory. This allows rapid switching between different
views of the same eventlog within both the Sequence Chart and the Eventlog Table.

The filter configuration dialog shown in Fig. 8.14 has many options. They are organized into
a tree with each part restricting the eventlog’s content. The individual filter components may
be turned on and off independent of each other. This allows remembering the filter settings
even if some of them are temporarily unused.

108 Chapter 8. Sequence Charts

User Guide, Release 6.1

The combination of various filter options might be complicated and hard to understand. To
make it easier, the Filter Dialog automatically displays the current filter in a human-readable
form at the bottom of the dialog.

Fig. 8.14: Filter Dialog

8.5.1 Range Filter

This is the simplest filter, which filters out events from the beginning and end of the eventlog.
It might help to reduce the computation time dramatically when defining filters that would
otherwise be very expensive to compute for the whole eventlog file.

8.5.2 Module Filter

With this kind of filter, you can filter out events that did not occur in any of the specified
modules. The modules that will be included in the result can be selected by their NED type,
full path, module ID, or by a match expression. The expression may refer to the raw data
present in the lines marked with ‘MC’ in the eventlog file.

8.5.3 Message Filter

This filter is the most complicated one. It allows filtering for events that either process or send
specific messages. The messages can be selected based on their C++ class name, message
name, various message IDs, and a match expression. The expression may refer to the raw
data present in the lines marked with ‘BS’ in the eventlog file.

There are four different message IDs to filter, each with different characteristics. The most
basic one is the ID, which is unique for each constructed message, independent of how it
was created. The tree ID is special because it gets copied over when a message is created
by copying (duplicating) another. The encapsulation ID is different in that it gives the ID of
the innermost encapsulated message. Finally, the encapsulation tree ID combines the two by
providing the innermost encapsulated message’s tree ID.

8.5. Filter Dialog 109

User Guide, Release 6.1

8.5.4 Tracing Causes/Consequences

The trace filter allows filtering for causes and consequences of a particular event specified by
its event number. The cause/consequence relation between two events means that there is
a message send/reuse path from the cause event to the consequence event. If there was a
message reuse in the path, then the whole path is considered to be a message reuse itself.

Warning: Since computing the causes and consequences in an eventlog file that is far
away from the traced event might be a time-consuming task, the user can set extra range
limits around the traced event. These limits are separate from the range filter due to being
relative to the traced event. This means that if you change the traced event, there is no
need to change the range parameters. It is strongly recommended that users provide these
limits when tracing events to avoid long-running operations.

8.5.5 Collection Limits

When an in-memory filter is applied to an eventlog, it does not only filter out events, but it
also provides automatic discovery for virtual message sends. It means that two events far
away and not directly related to each other might have a virtual message send (or reuse)
between them. Recall that there is a virtual message send (or reuse) between two events if
and only if there is a path of message sends (or reuses) connecting the two.

The process of collecting these virtual message dependencies is time-consuming and thus
has to be limited. There are two options. The first one limits the number of virtual message
sends collected per event. The other one limits the depth of cause/consequence chains during
collection.

8.5.6 Long-Running Operations

Sometimes, computing the filter’s result takes a lot of time, especially when tracing
causes/consequences without specifying proper range limits in terms of event numbers or
simulation times. If you cancel a long-running operation, you can go back to the Filter Dia-
log to modify the filter parameters, or simply turn the filter off. To restart drawing, use the
refresh button on the toolbar.

Tip: Providing a proper range filter is always a good idea to speed up computing the filter’s
result.

8.6 Other Features

Both the Sequence Chart and the Eventlog Table tools can be used as editors and also as
views. The difference between an editor or a view is quite important because there is only at
most one instance of a view of the same kind. It means that even if multiple eventlog files
are open in Sequence Chart editors, there is no more than one Eventlog Table view shared
between them. This single view will automatically display the eventlog file of the active editor.
It will also remember its position and state when it switches among editors. For more details
on editors and views, and their differences, please refer to the Eclipse documentation.

Note: Despite the name “editor,” which is a concept of the Eclipse platform, neither the
Sequence Chart, nor the Eventlog Table can be used to actually change the contents of an
eventlog file.

110 Chapter 8. Sequence Charts

User Guide, Release 6.1

It is possible to open the same eventlog file in multiple editors and to navigate to different
locations or use different display modes or filters in a location. Once an eventlog is open in
an editor, you can use the Window → New Editor to open it again.

Tip: Dragging one of the editors from the tabbed pane to the side of the editor’s area allows
you to interact with both simultaneously.

8.6.1 Settings

There are various settings for both tools that affect the display, such as display modes, con-
tent position, filter parameters, etc. These user-specified settings are automatically saved
for each file and are reused whenever the file is revisited. The per-file settings are stored
under the OMNeT++ workspace in the directory .metadata.pluginsorg.eclipse.core.
resources.projects<project-name>.

8.6.2 Large File Support

Since an eventlog file might be several gigabytes, both tools are designed in a way that allows
for efficient displaying of such a file without requiring large amounts of physical memory to
load it at once. As you navigate through the file, physical memory is filled up with the content
lazily. Since it is difficult to reliably identify when the system is getting low on physical
memory, it is up to the user to release the allocated memory when needed. This operation,
although usually not required, is available from the context menu as Release Memory. It does
not affect the user interface in any way.

The fact that the eventlog file is loaded lazily and optionally filtered also means that the exact
number of lines and events it contains cannot be easily determined. This affects the way
scrollbars work in the lazy directions: horizontal for the Sequence Chart and vertical for the
Eventlog Table. These scrollbars act as a non-linear approximation in that direction. For the
most part, the user will be unaware of these approximations unless the file is really small.

8.6.3 Viewing a Running Simulation’s Results

Even though the simulation kernel keeps the eventlog file open for writing while the simula-
tion is running, it may also be open in the OMNeT++ IDE simultaneously. Both tools can be
guided by pressing the END key to follow the eventlog’s end as new content is appended to it.
If you pause the simulation in the runtime environment, then after a few seconds the tools
will refresh their content and jump to the very end. This process makes it possible to follow
the simulation step-by-step on the Sequence Chart.

8.6.4 Caveats

Sometimes, drawing the Sequence Chart may take a lot of time. Zooming out too much, for
example, might result in slow response times. A dialog might pop up telling the user that a
long-running eventlog operation is in progress. You can safely cancel these operations at any
time you like or just wait until they finish. To restart the rendering process, simply press the
refresh button on the toolbar. Before refreshing, it is a good idea to revert to some defaults
(e.g. default zoom level) or revert the last changes (e.g. navigate back, turn filter off, etc.).

Warning: An operation that runs for an unreasonably long time might be a sign of a
problem that should be reported.

8.6. Other Features 111

User Guide, Release 6.1

8.7 Examples

This section will guide you through the use of the Sequence Chart and Eventlog Table tools,
using example simulations from OMNeT++ and the INET Framework. Before running any of
the simulations, make sure that eventlog recording is enabled by adding the line

record-eventlog = true

to the omnetpp.ini file in the simulation’s directory. To open the generated eventlog in the
OMNeT++ IDE, go to the example’s results directory in the Resource Navigator View and
double-click the log file. By default, the file will open in the Sequence Chart.

Tip: To open the file in the Eventlog Table as an editor, right-click the file and choose the
corresponding item from the context menu’s Open With submenu.

8.7.1 Tictoc

The Tictoc example is available in the OMNeT++ installation under the directory samples/
tictoc. Tictoc is the most basic example in this chapter and it provides a quick overview of
how to use and understand the Sequence Chart.

Start the simulation and choose the simplest configuration, ‘Tictoc1,’ which specifies only
two nodes called ‘tic’ and ‘toc.’ During initialization, one of the nodes will send a message to
the other. From then on, every time a node receives the message, it will simply send it back.
This process continues until you stop the simulation. In Fig. 8.15, you can see how this is
represented on a Sequence Chart. The two horizontal black lines correspond to the two nodes
and are labeled ‘tic’ and ‘toc.’ The red circles represent events, and the blue arrows represent
message sends. It is easy to see that all message sends take 100 milliseconds and that the
first sender is the node ‘tic.’

Fig. 8.15: Tictoc with two nodes

In the next Tictoc example, there are six nodes tossing a message around until it reaches its
destination. To generate the eventlog file, restart the simulation and choose the configuration
‘Tictoc9.’ In Fig. 8.16, you can see how the message goes from one node to another, starting
from node ‘0’ and passing through it twice more until it finally reaches its destination, node ‘3.’
The chart also shows that this example, unlike the previous one, starts with a self-message
instead of immediately sending a message from initialize to another node.

112 Chapter 8. Sequence Charts

User Guide, Release 6.1

Fig. 8.16: Tictoc with six nodes

Let us demonstrate with this simple example how filtering works with the Sequence Chart.
Open the Filter Dialog with the toolbar button and put a checkmark for node ‘0’ and ‘3’
on the Module filter → by name panel, and apply it. The chart now displays only two axes
that correspond to the two selected nodes. Note that the arrows on this figure are decorated
with zigzags, meaning that they represent a sequence of message sends. Such arrows will
be called virtual message sends in the rest of this chapter. The first two arrows show the
message returning to node ‘0’ at event #9 and event #13, and the third shows that it reaches
the destination at event #16. The events where the message was in between are filtered out.

Fig. 8.17: Filtering for nodes ‘0’ and ‘3’

8.7.2 FIFO

The FIFO example is available in the OMNeT++ installation under the directory samples/
fifo. The FIFO is an important example because it uses a queue, which is an essential part
of discrete event simulations and introduces the notion of message reuses.

When you start the simulation, choose the configuration ‘low job arrival rate’ and let it run
for a while. In Fig. 8.18, you can see three modules: a source, a queue, and a sink. The
simulation starts with a self-message, and then the generator sends the first message to the
queue at event #1. It is immediately obvious that the message stays in the queue for a certain
period of time, between event #2 and event #3.

Tip: When you select one event and hover with the mouse over the other, the Sequence

8.7. Examples 113

User Guide, Release 6.1

Chart will show the length of this time period in a tooltip.

Finally, the message is sent to the sink, where it is deleted at event #4.

Fig. 8.18: The FIFO example

Something interesting happens at event #12, where the incoming message suddenly disap-
pears. It seems like the queue does not send the message out. Actually, what happens is that
the queue enqueues the job because it is busy serving the message received at event #10.
Since this queue is a FIFO, it will send out the first message at event #13. To see how this
happens, turn on Show Reuse Messages from the context menu; the result is shown in Fig.
8.19. It displays a couple of green dotted arrows, one of which starts at event #12 and arrives
at event #17. This is a reuse arrow; it means that the message sent out from the queue at
event #17 is the same as the one received and enqueued at event #12. Note that the service
of this message actually begins at event #13, which is the moment that the queue becomes
free after it completes the job received at event #10.

Fig. 8.19: Showing reuse messages

Another type of message reuse is portrayed with the arrow from event #3 to event #6. The
arrow shows that the queue reuses the same timer message instead of creating a new one
each time.

Note: Whenever you see a reuse arrow, it means that the underlying implementation re-
members the message between the two events. It might be stored in a pointer variable, a
queue, or some other data structure.

The last part of this example is about filtering out the queue from the chart. Open the Filter
Dialog, select sink and source on the Module filter → by NED type panel, and apply the change

114 Chapter 8. Sequence Charts

User Guide, Release 6.1

in settings. If you look at the result in Fig. 8.20, you will see zigzag arrows going from the
‘source’ to the ‘sink.’ These arrows show that a message is being sent through the queue from
‘source’ to ‘sink.’ The first two arrows do not overlap in simulation time, which means the
queue did not have more than one message during that time. The third and fourth arrows
do overlap because the fourth job reached the queue while it was busy with the third one.
Scrolling forward, you can find other places where the queue becomes empty and the arrows
do not overlap.

Fig. 8.20: Filtering for the queue

8.7.3 Routing

The Routing example is available in the OMNeT++ installation under the directory samples/
routing. The predefined configuration called ‘Net10’ specifies a network with 10 nodes,
with each node having an application, a few queues, and a routing module inside. Three
preselected nodes, namely the node ‘1,’ ‘6,’ and ‘8,’ are destinations, while all nodes are
message sources. The routing module uses the shortest path algorithm to find the route to
the destination. The goal of this example is to create a sequence chart that shows messages
traveling simultaneously from multiple sources to their destinations.

Fig. 8.21: Network with 10 nodes

Since we do not care about the details regarding what happens within nodes, we can simply
turn on filtering for the NED type node.Node. The chart will have 10 axes, with each axis
drawn as two parallel solid black lines close to each other. These are the compound modules
that represent the nodes in the network. So far, events could be directly drawn on the simple

8.7. Examples 115

User Guide, Release 6.1

module’s axis where they occurred, but now they will be drawn on the compound module’s
axis of their ancestor.

Fig. 8.22: Filtering for the nodes

To reduce clutter, the chart will automatically omit events that are internal to a compound
module. An event is internal to a compound module if it only processes a message from, and
sends out messages to, other modules inside the compound module.

If you look at Fig. 8.22, you will see a message going from node ‘7’ at event #10 to node ‘1’
at event #23. This message stays in node ‘2’ between event #15 and event #17. The gray
background area between them means that zero simulation time has elapsed (i.e., the model
does not account for processing time inside the network nodes).

Note: This model contains both finite propagation delay and transmission time; arrows in
the sequence chart correspond to the interval between the start of the transmission and the
end of the reception.

This example also demonstrates message detail recording configured by

eventlog-message-detail-pattern = Packet:declaredOn(Packet)

in the INI file. The example in Fig. 8.23 shows the tooltip presented for the second message
send between event #17 and event #23.

Fig. 8.23: Message detail tooltip

It is very easy to find another message on the chart that goes through the network parallel in
simulation time. The one sent from node ‘3’ at event #13 to node ‘8’ arriving at event #19 is
such a message.

116 Chapter 8. Sequence Charts

User Guide, Release 6.1

8.7.4 Wireless

The Wireless example is available in the INET Framework under the directory examples/
adhoc/ieee80211. The predefined configuration called ‘Config1’ specifies two mobile hosts
moving around on the playground and communicating via the IEEE 802.11 wireless protocol.
The network devices are configured for ad-hoc mode, and the transmitter power is set so that
hosts can move out of range. One of the hosts is continuously pinging the other.

In this section, we will explore the protocol’s MAC layer using two sequence charts. The first
chart will show a successful ping message being sent through the wireless channel. The
second chart will show ping messages getting lost and being continuously resent.

We would also like to record some message details during the simulation. To perform that
function, comment out the following line from omnetpp.ini:

eventlog-message-detail-pattern = *:(not declaredOn(cMessage) and not
→˓declaredOn(cNamedObject) and not declaredOn(cObject))

To generate the eventlog file, start the simulation environment and choose the configuration
‘host1 pinging host0.’ Run the simulation in fast mode until event #5000.

Preparing the Result

When you open the Sequence Chart, it will show a couple of self-messages named ‘move’ being
scheduled regularly. These are self-messages that control the movement of the hosts on the
playground. There is an axis labeled ‘pingApp,’ which starts with a ‘sendPing’ message that
is processed in an event far away on the chart. This is indicated by a split arrow.

Fig. 8.24: The beginning

You might notice that there are only three axes in Fig. 8.24, even though the simulation model
clearly contains more simple modules. This is because the Sequence Chart displays the first
few events by default, and in this scenario, they all happen to be within those modules. If
you scroll forward or zoom out, new axes will be added automatically as needed.

For this example, ignore the ‘move’ messages and focus on the MAC layer instead. To begin
with, open the Filter Dialog, select ‘Ieee80211Mac’ and ‘Ieee80211Radio’ on the Module filter
→ by NED type panel, and apply the selected changes. The chart will have four axes, two for
the MAC and two for the radio simple modules.

The next step is to attach vector data to these axes. Open the context menu for each axis
by clicking on them one by one, and select the Attach Vector to Axis submenu. Accept the
default vector file offered. Then, choose the vector ‘mac:State’ for the MAC modules and
‘mac:RadioState’ for the radio modules. You will have to edit the filter in the vector selection
dialog (i.e., delete the last segment) for the radio modules because at the moment, the radio
state is recorded by the MAC module, so the default filter will not be right. When this step is

8.7. Examples 117

User Guide, Release 6.1

completed, the chart should display four thick colored bars as module axes. The colors and
labels on the bars specify the state of the corresponding state machine at the given simulation
time.

To aid comprehension, you might want to manually reorder the axes, so that the radio mod-
ules are put next to each other. Use the button on the toolbar to switch to manual ordering.
With a little zooming and scrolling, you should be able to fit the first message exchange be-
tween the two hosts into the window.

Successful Ping

The first message sent by ‘host1’ is not a ping request but an ARP request. The processing of
this message in ‘host0’ generates the corresponding ARP reply. This is shown by the zigzag
arrow between event #85 and event #90. The reply goes back to ‘host1,’ which then sends a
WLAN acknowledge in return. In this process, ‘host1’ discovers the MAC address of ‘host0’
based on its IP address.

Fig. 8.25: Discovering the MAC address

The send procedure for the first ping message starts at event #105 in ‘host1’ and finishes
by receiving the acknowledge at event #127. The ping reply send procedure starts at event
#125 in ‘host0’ and finishes by receiving the WLAN acknowledge at event #144. If you scroll
forward, you can see, as in Fig. 8.26, the second complete successful ping procedure between
event #170 and event #206. To focus on the second successful ping message exchange, open
the Filter Dialog and enter these numbers in the range filter.

Timing is critical in a protocol implementation, so we will take a look at it using the Sequence
Chart. The first self message represents the fact that the MAC module listens to the radio for
a DIFS period before sending the message out. The message send from event #171 to event
#172 occurs in zero simulation time as indicated by the gray background. It represents the
moment when the MAC module decides to send the ping request down to its radio module.
The backoff procedure was skipped for this message because there was no transmission
during the DIFS period. If you look at event #172 and event #173, you will see how the
message propagates through the air from ‘radio1’ to ‘radio0.’ This finite amount of time is
calculated from the physical distance of the two modules and the speed of light. Additionally,
by looking at event #172 and event #174, you will notice that the transmission time is not
zero. This time interval is calculated from the message’s length and the radio module’s bitrate.

118 Chapter 8. Sequence Charts

User Guide, Release 6.1

Fig. 8.26: The second ping procedure

Another interesting fact seen in the figure is that the higher-level protocol layers do not add
delay for generating the ping reply message in ‘host0’ between event #176 and event #183.
The MAC layer procedure ends with sending back a WLAN acknowledge after waiting a SIFS
period.

Finally, you can get a quick overview of the relative timings of the IEEE 802.11 protocol by
switching to linear timeline mode. Use the button on the toolbar and notice how the figure
changes dramatically. You might need to scroll and zoom in or out to see the details. This
shows the usefulness of the nonlinear timeline mode.

You can export this sequence chart for documentation purposes using the context menu’s
Export to SVG option.

Unsuccessful Ping

To see how the chart looks when the ping messages get lost in the air, first turn off range
filtering. Then, go to event #1269 by selecting the Goto Event option from the Eventlog Table
View’s context menu. In Fig. 8.27, you can see how the receiver radio does not send up the
incoming message to its MAC layer due to the signal level being too low. This actually happens
at event #1274 in ‘host0.’ Shortly thereafter, the transmitter MAC layer in ‘host1’ receives the
timeout message at event #1275 and starts the backoff procedure before resending the very
same ping message. This process goes on with statistically increasing backoff time intervals
until event #1317. Finally, the maximum number of retries is reached, and the message is
dropped.

8.7. Examples 119

User Guide, Release 6.1

Fig. 8.27: Ping messages get lost

The chart also shows that during the unsuccessful ping period, there are no events occurring
in the MAC layer of ‘host0,’ and it is continuously in the ‘IDLE’ state.

120 Chapter 8. Sequence Charts

CHAPTER

NINE

ANALYZING THE RESULTS

9.1 Overview

Analyzing simulation results is crucial for validating models and understanding their behav-
ior. The Analysis Tool in the IDE is an editor that edits an analysis (.anf) file. The analysis file
captures the set of inputs and the processing steps necessary for creating the desired plots
and tables.

In OMNeT++, the results of simulations are captured as scalar values, vector values, statis-
tic summaries (hereafter just “statistics”), and histograms, and are recorded into result files.
Result files are tagged with metadata like the network name, iteration variables, and configu-
ration settings. The analysis typically begins with the user specifying a set of result files either
directly by name or through patterns that match multiple files. Once loaded, these results
can be explored through an intuitive interface where users can browse, filter, transform, and
visualize data using various chart types.

Charts can be opened from the selected data with a few clicks. Charts use queries in the form
of filter expressions to select the desired subset of results. Users can refine these expressions
or write new ones to tailor the data being visualized. The plotting capabilities range from
using Matplotlib for complex visualizations to employing the IDE’s own Native Plots for more
straightforward, interactive displays. Each chart allows adjustments such as labels, colors,
line styles, and other visual properties through a configuration dialog.

The charts and their associated settings are remembered as part of the analysis (.anf) file.
When the user re-runs the simulations due to modifications in simulation configurations or
model adjustments and a new set of result files is created, the analysis tool can automatically
fill or refresh the charts with new data.

Each chart in the analysis tool is backed by a customizable Python script and a set of prop-
erties that can be edited through a chart configuration dialog. The IDE allows users to edit
the chart script to fit their precise needs, to add or modify properties, and even update the
configuration dialog to accommodate additional inputs.

Finally, the analysis results can be reproduced and utilized outside the IDE through
opp_charttool, a command-line tool that recreates chart views from the analysis files. This
capability facilitates the integration of results into batch processes, such as compiling LaTeX
articles, or sharing them for independent review. Detailed information on this tool and its
functionalities is provided in the Simulation Manual, offering a comprehensive framework for
managing simulation outputs.

121

User Guide, Release 6.1

9.2 Creating Analysis Files

The usual way of creating an analysis file is to “imitate” opening an OMNeT++ result file (.
sca or .vec) by double-clicking it in the Project Explorer view. Result files cannot be opened
directly, so the IDE will offer creating an analysis file for it instead.

If the result file name looks like the file was created as part of an experiment or parameter
study, the IDE creates an analysis file that includes all result files from that experiment
as input. In the resulting inputs, the variable part of the file name will be replaced by an
asterisk (*), and an input will be added with both the .sca and .vec file extensions. For
example, double-clicking a file called PureAloha-numHosts=10,iaMean=1-#3.sca will add
PureAloha-*.sca and PureAloha-*.vec to the analysis.

Upon double-clicking, the New Analysis File dialog will open. The folder and the file name
are pre-filled according to the location and name of the result file. Press Finish to create the
new analysis file.

The same dialog is also available from the menu as File → New → Analysis File. However,
analysis files created that way will contain no reference to result files, so file name patterns
will need to be added later.

Fig. 9.1: New Analysis File dialog

Tip: If the analysis file already exists, double-clicking on the result file will open it.

122 Chapter 9. Analyzing the Results

User Guide, Release 6.1

9.3 Opening Older Analysis Files

The format of the analysis files (*.anf) has changed in OMNeT++ 6.0 in a non-backward
compatible way, meaning that older OMNeT++ versions will not be able to open new analysis
files. OMNeT++ 6.0, however, attempts to open and convert analysis files created by older
versions. Keep in mind that the conversion is a “best-effort” attempt: the result may be
incomplete or incorrect. Always check that the converted charts indeed correspond to the
original ones, and refine the result if needed.

9.4 Using the Analysis Editor

The usual workflow of result analysis consists of a few distinct steps. These are: adding input
files to the analysis, browsing simulation results, and selecting those of interest, creating a
chart of an appropriate type from the results, then viewing them as plots, and finally exporting
data and/or images if needed.

The Analysis Editor is implemented as a multi-page editor. What the editor edits is the
“recipe”: what result files to take as inputs, and what kind of charts to create from them. The
pages (tabs on the bottom) of the editor roughly correspond to some of the steps described
above.

In the next sections, we will go through the individual pages of the editor and which analysis
steps can be performed using them.

9.5 The Inputs Page

The first page in the editor is the Inputs page, where you specify input files for analysis. You
can add a set of file name patterns that specify which result files to load. When the IDE
expands the patterns, it displays the list of matched files under each one. The contents of
files are also displayed in a tree structure.

9.3. Opening Older Analysis Files 123

User Guide, Release 6.1

Fig. 9.2: The Inputs page

New input files can be added to the analysis by dragging vector and scalar files from the
Project Explorer view, or by opening a dialog with the New Input button on the local toolbar.

9.5.1 Resolution Rules

Input file patterns are resolved with the following rules:

1. An asterisk (*) matches files/folders within a single folder.

2. A double asterisk (**) may match multiple levels in the folder hierarchy.

3. If the pattern starts with a slash (/), it is understood as a workspace full path, with its
first component being a project name.

4. If the pattern does not start with a slash (/), it is interpreted as relative to the folder of
the analysis file.

5. If the pattern identifies a folder, it will match all result files in it (i.e. /foo/results is
equivalent to /foo/results/**.sca plus /foo/results/**.vec).

9.5.2 Refresh Files

The input files are loaded when the analysis file is opened.

If files change on the disk or new files are created while the analysis is open (for example,
because a simulation was re-run), a refresh can be triggered with the Refresh Files button on
the toolbar. Refresh Files expands the file name patterns again, then loads any new matching
files, unloads files that no longer exist on the disk, and reloads the files that have changed
since being loaded. Open charts are also refreshed.

124 Chapter 9. Analyzing the Results

User Guide, Release 6.1

Note: In the design of the Analysis Tool, it was a conscious choice to opt for explicit reload
in favor of an automatic one. Automatic reload would make it difficult to look at partial
results due to excessive refreshing while a large simulation campaign is underway, or when
a simulation is continually writing into a loaded vector file.

9.5.3 Reload Files

It is also possible to let the Analysis Tool completely forget all loaded result files, and have
them reloaded from scratch. The functionality is available from the context menu as Reload
All Files.

9.5.4 Are Files Kept in Memory?

The contents of scalar files are loaded in memory.

Vector files are not loaded directly; instead, a much smaller index file (*.vci) is created and
the vector attributes (name, module, run, statistics, etc.) are loaded from the index file. The
index files are generated during the simulation, but can be safely deleted without loss of
information. If the index file is missing or the vector file was modified, the IDE rebuilds the
index in the background.

Tip: The Progress view displays the progress of the indexing process if it takes a long time.

9.6 The Browse Data Page

The second page of the Analysis editor displays results (parameters, scalars, histograms, and
vectors) from all files in tables and lets the user browse them. Results can be sorted and
filtered. Simple filtering is possible with combo boxes, or when that is not enough, the user
can write arbitrarily complex filters using a generic pattern-matching expression language.
Selected or filtered data can be immediately plotted.

Tip: You can switch between the All, Parameters, Scalars, Histograms, and Vectors pages us-
ing the underlined shortcuts (Alt+letter combination) or the Ctrl+PgUp and Ctrl+PgDown
keys.

9.6. The Browse Data Page 125

User Guide, Release 6.1

Fig. 9.3: Browsing all data generated by the simulation

The All tab shows a tree containing all loaded result items. The structure of this tree can
be altered with the Tree Levels and Flat Module Tree options on the local toolbar and in the
context menu.

The other tabs show tables containing the values and attributes of all results of the given type.
To hide or show table columns, open Choose table columns from the context menu and select
the columns to be displayed. The settings are persistent and applied in each subsequently
opened editor. The table rows can be sorted by clicking on the column name.

Fig. 9.4: Browsing a subset of result items selected using a filter expression

126 Chapter 9. Analyzing the Results

User Guide, Release 6.1

Individual fields of composite results (e.g. the :mean and :count fields of statistics, his-
tograms, or vectors) can also be included as scalars by enabling the Show Statistics/Vector
Fields as Scalars option.

9.6.1 Filtering

Filtering of the table contents is possible with the combo boxes above the tables. The strings
in the combo boxes may contain wildcards, and the combo boxes also support content assist
(Ctrl+SPACE), both of which are useful if there are a huge number of items with different
names.

If a more sophisticated selection criteria is needed, it is possible to switch to a more generic
filter expression. After pressing the Filter Expression button in the filter row, you can enter an
arbitrary filter expression. The expression language is described in section Filter Expressions.

9.6.2 Plotting

You can display the selected data items on a chart. To open the chart, choose one of the Plot
items from the context menu, or press Enter (double-click also works for single data lines).
See section Basic Chart Usage for more information.

9.6.3 Viewing the Details of Result Items

To see the properties of the selected result item, open the Properties view. This is useful
for checking properties that are not displayed in the table, such as result attributes (title,
unit, interpolationmode, etc.), or the full list of bins of a histogram.

9.6.4 Viewing the Contents of a Vector

When selecting a vector, its data can also be displayed in a table. Make sure that the Output
Vector view is opened. If it is not open, you can open it from the context menu (Show Output
Vector View). This view always shows the contents of the selected vector.

Fig. 9.5: The Output Vector View With its Context Menu

9.6. The Browse Data Page 127

User Guide, Release 6.1

9.6.5 Exporting Data

Selected results can be exported to files in different data formats using the Export Data con-
text menu option. After selecting the data format, a dialog to select the output file and
configure additional exporting options is shown.

A variety of formats is available, including two CSV-based ones (CSV-R for programmatic
consumption and CSV-S for loading into spreadsheets), SQLite, JSON, and so on. Vectors
can be also cropped to a time interval in the export.

Tip: You can switch between the Inputs, Browse Data, and Charts pages using the Alt+PgUp
and Alt+PgDown keys.

9.7 The Charts Page

The third page displays the charts created during the analysis.

This page works much like a usual graphical file manager. Each icon represents a chart, and
the charts can be selected, reordered by dragging, copied, pasted, renamed, deleted, opened,
or their context menu accessed. Different view modes like “icon” and “list” module can be
selected.

The Charts page also enables you to organize your charts into “folders,” providing a more
structured and accessible view. This is especially useful when managing a large number of
charts.

Fig. 9.6: Charts Page

9.8 The Outline View

The Outline view shows an overview of the current analysis. Clicking on an element will select
the corresponding element in the editor.

Tip: If you select a chart that is currently open, the editor will switch to its page in the editor
instead of selecting it in the Charts page. If there are many charts open, this can actually be
a more convenient way of switching between them than using the tabs at the bottom of the
editor window.

128 Chapter 9. Analyzing the Results

User Guide, Release 6.1

Fig. 9.7: Outline View of the analysis

9.9 Basic Chart Usage

This section introduces you to the basics of working with charts in the OMNeT++ IDE. It
shows how to navigate plots, configure their appearance, and export data and images.

Charts can be created in two ways: first, based on the set of selected results on the Browse
Data page, and second, choosing from the list of available chart types on the Charts page.

9.9.1 Plotting Data

Most often, a new chart is created from a set of simulation results displayed on the Browse
Data page.

To visualize data, first identify the set of simulation results you wish to plot. By double-
clicking on a result item or selecting multiple results and pressing Enter, the editor will
automatically open an appropriate chart. Alternatively, you can right-click on the selected
results to access a context menu that offers a selection of chart templates compatible with
the chosen data.

For a more detailed view, select the Choose from Template Gallery context menu option. This
displays a curated list of templates – filtered to only show those suitable for your data – in
the gallery dialog. Here, each template is accompanied by a description and screenshots,
providing a comprehensive preview.

Fig. 9.8: Plotting the selected results

Charts opened this way are temporary charts, designed to allow users the flexibility to explore
simulation results and their various visualizations without permanent commitment. If you

9.9. Basic Chart Usage 129

User Guide, Release 6.1

find a chart that provides valuable insights and wish to keep it for ongoing analysis, you can
preserve it by selecting Save Chart from the toolbar or the context menu of the chart’s page.
Once saved, the chart will then be listed on the Charts page, making it a permanent part of
your analysis.

If you have many charts open, it is easy to lose track of which ones have already been saved
into the analysis. To identify if an open chart is temporary, look for the Save Chart icon on the
leftmost part of the local toolbar. This icon indicates that the chart is temporary. Conversely,
if you see the Go To Chart Definition icon, the chart has been saved as part of your analysis.
Clicking this button will direct you to the Charts page, where the saved chart is displayed.

Tip: After saving a temporary chart, it is recommended that you check the filter expression
on the Inputs page of the chart configuration dialog, and refine or simplify it as needed. When
the temporary chart is created, the IDE generates a filter expression based on the selection,
but the generated expression is not always optimal, and it may not accurately express your
intended selection criteria.

9.9.2 Starting From a Blank Chart

On the Charts page, you can create a new chart by right-clicking in an empty area and
selecting a chart template from the New submenu. Simply clicking on an item from this list
will create a new chart based on it.

Alternatively, use the New Chart button on the toolbar to open a gallery-like dialog that
provides detailed information, including a short description and screenshots, for each chart
template. By selecting a template and pressing OK, you will instantiate that template into a
new chart.

Charts created using either method will initially be empty, as they have not yet been config-
ured with a result selection filter expression.

130 Chapter 9. Analyzing the Results

User Guide, Release 6.1

Fig. 9.9: The chart template gallery dialog

9.9.3 Opening an Existing Chart

To open an existing chart, double-click it in the Charts page, or select it and hit Enter.

9.9.4 Plot Navigation

This section outlines the mouse and keyboard bindings for navigating two types of plots in
the Analysis Tool: native plots and Matplotlib-based plots.

• Native Plots: These plots support two main modes: Pan mode and Zoom mode. In Pan
mode, you can scroll with the mouse wheel and drag the chart. In Zoom mode, the user
can zoom in on the chart by left-clicking and zoom out by doing a Shift plus left-click
or using the mouse wheel. Dragging selects a rectangular area for zooming. The toolbar
icons switch between Pan and Zoom modes. You can also find toolbar buttons to zoom
in, zoom out, and zoom to fit. Zooming and moving actions are remembered in the
navigation history.

• Matplotlib plots: Navigation in Matplotlib plots generally follows standard Matplotlib
interactions but includes a few enhancements for better control. One addition is the
following: the mouse wheel, Shift plus mouse wheel, and Ctrl plus mouse wheel pans

9.9. Basic Chart Usage 131

User Guide, Release 6.1

vertically / horizontally or zooms. There is also a third mode, called Interactive mode,
which is used to manipulate interactive elements on the plot, such as widgets, if present.

9.9.5 The Chart Properties Dialog

Charts have a set of properties that define their behavior and appearance. These properties
can be edited in a configuration dialog, accessible from the Configure Chart toolbar button
and context menu item.

The dialog has a tabbed layout, where the list of tabs and the form on each page differ for
each chart type. Pages that are common to nearly all chart types (albeit with slightly differing
contents) are:

• Input: Defines which simulation results should be used as input for the chart and their
roles (e.g., which ones to use for the horizontal axis, iso lines, etc.).

• Plot, Lines, Bars, etc.: For configuring the labels, markers, ticks, grid, etc.

• Styling: Visual properties for the plot.

• Advanced: Lets you manually add plot properties that are not configurable on the other
pages.

• Export: Properties to be used during image/data export.

Fig. 9.10: The Chart Properties Dialog

For many input fields, autocompletion and smart suggestions are available by pressing
Ctrl+SPACE.

132 Chapter 9. Analyzing the Results

User Guide, Release 6.1

9.9.6 Exporting Data

Both the input data used by a chart and the final result after processing can be exported.

The first one is essentially the same as the result exporting option on the Browse Data page,
except that it uses the result filter expression of the given chart to select which results to
export. This is available under the Export Chart Input As context menu item of charts.

The second one is available under the common Export Chart option, as discussed in section
Batch Export.

9.9.7 Exporting Images

There are multiple, significantly different ways of exporting a chart to an image:

• You can copy the chart to the clipboard by selecting Copy to Clipboard from the context
menu. The chart is copied as a bitmap image the same size as the chart on the screen,
taking the current navigation state into account.

• The Save Image option saves the currently shown part of the chart to an image file.
Popular raster and vector formats are accepted, including PNG, JPG, SVG, GIF, TIFF,
etc.

• Finally, the Export Chart option opens the combined image/data exporting dialog (see
section Batch Export) for this chart only. This option relies on the chart script for doing
the actual exporting.

9.9.8 Batch Export

When exporting multiple charts or when selecting the Export Chart option for a single chart,
a common export dialog is opened.

9.9. Basic Chart Usage 133

User Guide, Release 6.1

Fig. 9.11: Export Charts Dialog

Individual file names and image dimensions can be specified for each chart in their respective
chart configuration dialog.

Note that native charts exported this way will be emulated with Matplotlib, so the saved
images may look a bit different than in the IDE.

This is also the way opp_charttool exports charts from the command line.

9.10 Configuring Charts

This section discusses working with charts in more detail.

134 Chapter 9. Analyzing the Results

User Guide, Release 6.1

9.10.1 Available Chart Types

The Analysis Tool offers two distinct methods for displaying plots:

• Matplotlib: Utilizes the full functionality of Matplotlib within the IDE, allowing for the
creation of virtually any type of plot.

• Native Plots: Although limited to bar, line, and histogram plots, these widgets are more
responsive and scalable compared to Matplotlib.

Chart templates can be categorized according to whether they use native plot widgets for
displaying the plot or Matplotlib. It is usually indicated in the name of a chart type whether
it is Matplotlib-based or uses a native plot.

There are a number of chart templates in the library of the Analysis Tool. We list the most
frequently used ones below.

Based on Native Plots:

• Line Chart: Plots vector results as line charts, with the native plot widget. The de-
fault interpolation mode is determined automatically from the result attributes. Many
kinds of vector operations (smoothing, accumulating, mathematical formulas, etc.) can
be easily performed on the vector data. Interpolation, markers, and line style can be
configured. Hovering over legend entries with the mouse highlights the corresponding
series, clicking on the labels hides/shows the series.

• Scatter Chart (Scalars in the Function of Itervars): Displays scalar results on scatter
plots, using the native plot widget. X-axis values are taken from a numeric iteration
variable. Optionally, results can be grouped into series by iteration variables, run at-
tributes, or result attributes. Markers and line style can be configured. Hovering over
legend entries with the mouse highlights the corresponding points/iso line, clicking on
the labels hides/shows the points/iso line.

• Bar Chart: Plots scalar results as a bar chart, with the native plot widget. The bars can
optionally be grouped. Individual bars in each group can be stacked, or positioned in dif-
ferent ways. Hovering over legend entries with the mouse highlights the corresponding
data series, clicking on the labels hides/shows the series.

• Histogram Chart: Plots histogram results with the native plot widget. The drawing
style can be filled or outline. Transformations to cumulative and normalized forms are
available. Hovering over legend entries with the mouse highlights the corresponding
histogram, clicking on the labels hides/shows the histogram.

• Histogram from Vectors Chart: Plots histograms from vector results with the native
plot widget. The drawing style can be filled or outline. Transformations to cumulative
and normalized forms are available. Hovering over legend entries with the mouse high-
lights the corresponding histogram, clicking on the labels hides/shows the histogram.

Their Matplotlib equivalents:

• Line Chart with Matplotlib: Plots vector results as line charts, with Matplotlib. The
default interpolation mode is determined automatically from the result attributes. Many
kinds of vector operations (smoothing, accumulating, mathematical formulas, etc.) can
be easily performed on the vector data. Interpolation, markers, and line style can be
configured.

• Scatter Chart with Matplotlib (Scalar in the Function of Itervars): Plots scalar re-
sults as scatter charts, using Matplotlib, with the X-axis values taken from a numeric
iteration variable. Optionally, results can be grouped into series by iteration variables,
run attributes, or result attributes. Markers and line style can be configured. Confi-
dence intervals of averaged points are drawn as error bars.

• Bar Chart with Matplotlib: Plots scalar results as a bar chart, with Matplotlib. The bars
can optionally be grouped. Individual bars in each group can be stacked, or positioned
in different ways. Confidence intervals are displayed as error bars.

9.10. Configuring Charts 135

User Guide, Release 6.1

• Histogram Chart with Matplotlib: Plots histogram results with Matplotlib. The draw-
ing style can be filled or outline. Transformations to cumulative and normalized forms
are available.

• Histogram Chart from Vectors with Matplotlib: Plots histograms from vector results
with Matplotlib. The drawing style can be filled or outline. Transformations to cumula-
tive and normalized forms are available.

Since Matplotlib has vastly more possibilities than the native plots, there are some additional
Matplotlib-based charts:

• Box and Whiskers Chart (Matplotlib): A box and whiskers plot from statistics or his-
tograms. Shows the minimum, mean, maximum, and the 25th and 75th percentile
marks (estimated from the standard deviation) of the results.

• Line Chart on Separate Axes with Matplotlib: Plots vector results as line charts, with
Matplotlib, each on its own axes. This is very similar to the regular “Line Chart with Mat-
plotlib” template; the only difference is that every vector is drawn into its own separate
coordinate system, arranged in a column, all sharing their X axes. The default inter-
polation mode is determined automatically from the result attributes. Many kinds of
vector operations (smoothing, accumulating, mathematical formulas, etc.) can be easily
performed on the vector data. Interpolation, markers, and line style can be configured.

• 3D Chart (Scalar in the Function of Itervars): Plots a scalar result with respect to
two iteration variables as a 3D chart. Data points can be rendered as bars, points, or a
surface. Various color maps can be chosen.

Generic charts, which can serve as a starting point for custom plots:

• Generic Matplotlib Plot: An almost blank template using Matplotlib. It only contains
an example script, which you are expected to replace with your own code.

• Generic Matplotlib X-Y Plot: An example line plot using Matplotlib. It only contains
an example script, which you are expected to replace with your own code.

• Generic X-Y Plot: An example line plot using the native plot widget. It only contains an
example script, which you are expected to replace with your own code.

The configuration dialog is a little different for each chart type, but they are structured simi-
larly and there are a lot of similarities. The next sections detail how to configure the charts.

Remember that it is straightforward to create new chart templates by customizing existing
charts (its chart script and/or the dialog pages) and saving them as a chart template. See
the Editing the Chart Script, Editing Dialog Pages, and Custom Chart Templates sections for
details.

9.10.2 Defining the Chart Input

Defining the input for the chart is the first step in the process of producing the desired plot.
It is normally done on the Inputs page of the chart dialog.

The filter expression is the most prominent field on the Inputs page. It selects from the
results loaded into the analysis, that is, from the contents of the result files selected on the
Input page of the editor. The filter expression can be as simple as module =~ "*.host[*].
app[*]" AND name =~ "pkLatency:mean" for selecting the mean packet latencies from all
apps in the network, or can be composed of many more selectors combined with AND, OR,
and parentheses. The detailed syntax of the filter expression is described in the section Filter
Expressions.

The filter expression is normally used in a results.get_vectors(), results.
get_scalars(), or results.get_statistics() call in the chart script. To see the result of
the query in the Console view, add the print(df) line after the call in the chart script (see
“Editing the chart script” section).

136 Chapter 9. Analyzing the Results

User Guide, Release 6.1

In charts working from vector input, the Inputs dialog page allows specifying a crop interval
and the possibility to leave out empty vectors from the result. These options are implemented
as additional arguments to results.get_vectors().

Charts that work from scalar input contain the Include fields checkbox, that allows the filter
expression to match various fields (min, max, mean, stddev, etc.) of recorded statistics.
(Use the Show fields as scalars button on the Browse Data page to see them.) This is also
implemented as an additional argument to results.get_scalars().

To include additional input, modify the Python script to add your own data. Use cases: To
use multiple filter expressions (and combining the results); to add external reference data; to
compute new scalars from vectors or other scalars as input.

After executing a result query, most charts require additional processing before the data can
be visualized. Charts utilizing scalar data typically involve a pivoting step, while those working
with vector data may incorporate vector operations such as summation, computing running
averages, or window averages. Details on pivoting and vector operations will be covered in
subsequent sections. However, we will first explore the syntax of the filter expression in detail.

9.10.3 Filter Expressions

Filter expressions are primarily used on the Input page of chart dialogs for selecting simula-
tion results as input for the chart. They can also be used on the Browse Data editor page for
filtering the table/tree contents, and they also appear, in more generic forms, in other parts
of the IDE.

A filter expression is composed of terms that can be combined with the AND, OR, NOT operators,
and parentheses. A term filters for the value of some property of the item and has the
form <property> =~ <pattern>, or simply <pattern>. The latter is equivalent to name =~
<pattern>.

A typical example is to select certain simulation results recorded by specific modules. For ex-
ample, the expression module =~ "**.app[*]" AND name =~ "pkRecvd*" selects results
whose name begins with pkRecvd from modules whose name is app[0], app[1], etc.

Patterns only need to be surrounded with quotes if they contain whitespace or other charac-
ters that would cause a parsing ambiguity.

Here is the full list of available properties:

• name: Name of the result or item.

• module: Full path of the result’s module.

• type: Type of the item. The value is one of: scalar, vector, parameter,
histogram, statistics.

• isfield: true if the item is a synthetic scalar that represents a field of a statistic
or a vector, false if not.

• file: File name of the result or item.

• run: Unique run ID of the run that contains the result or item.

• runattr:<name>: Run attribute of the run that contains the result or item. Exam-
ple: runattr:measurement.

• attr:<name>: Attribute of the result. Example: attr:unit.

• itervar:<name>: Iteration variable of the run that contains the result or item.
Example: itervar:numHosts.

• config:<key>: Configuration key of the run that contains the result or item. Ex-
ample: config:sim-time-limit, config:**.sendIaTime.

In the values, the match pattern may contain the following wildcards:

9.10. Configuring Charts 137

User Guide, Release 6.1

• ? matches any character except ‘.’

• * matches zero or more characters except ‘.’

• ** matches zero or more characters (any character)

• {a-z} matches a character in range a-z

• {^a-z} matches a character not in the range a-z

• {32..255} any number (i.e., sequence of digits) in the range 32..255 (e.g., 99)

• [32..255] any number in square brackets in the range 32..255 (e.g., [99])

• \\ takes away the special meaning of the subsequent character

Tip: Content Assist is available in text fields where you can enter filter expressions. Press
Ctrl+SPACE to get a list of appropriate suggestions at the cursor position.

9.10.4 Pivoting

Charts utilizing scalar data, such as bar charts and scatter plots, typically involve a pivoting
step, which converts the data from a linear, list-like format into a more structured table
format, which is essential for these types of visualizations.

The results.get_scalars() call produces a data frame with the essential columns module,
name (result name), and value, along with additional columns for potential result attributes
and various properties describing the simulation run. After pivoting along the module and
name columns, this data is transformed so that each module becomes a row, each result
name becomes a column, and the values fill the cells at the intersection of these rows and
columns. If the data includes results from multiple simulations, the values are averaged to
provide a consolidated overview.

9.10.5 Vector Operations

The charts that show vector results offer a selection of operations to transform the data before
plotting.

These can be added to the chart under the Apply or Compute context menu items. Both ways
of adding operations compute new vectors from existing ones. The difference between them is
that Apply replaces the original data with the computation result, while Compute keeps both.

Some operations have parameters that can be edited before adding them.

The operations are added to a field on the Input page of the chart configuration dialog.

Most operations perform a fairly simple transformation on each individual vector indepen-
dently.

For example, see the screenshots illustrating the effects of the following vector operations:

apply:sum
apply:diffquot
apply:movingavg(alpha=0.05)

The operations apply:sum, apply:diffquot, and apply:movingavg(alpha=0.05) trans-
form vector data by computing cumulative sums, rate of change between consecutive values,
and applying an exponentially weighted moving average, respectively.

138 Chapter 9. Analyzing the Results

User Guide, Release 6.1

Fig. 9.12: Vector Operations - Before

Fig. 9.13: Vector Operations - After

The list of available operations includes:

9.10. Configuring Charts 139

User Guide, Release 6.1

• mean(): Computes the cumulative average of values up to each point.

• sum(): Calculates the cumulative sum of values up to each point.

• add(c): Adds a specified constant to all values.

• compare(threshold, less=None, equal=None, greater=None): Compares each value against
a threshold and replaces it based on specified conditions.

• crop(t1, t2): Discards values outside a specified time interval.

• difference(): Subtracts each value from its predecessor.

• diffquot(): Computes the rate of change between consecutive values.

• divide_by(a): Divides all values by a constant.

• divtime(): Divides each value by its corresponding time.

• expression(expression, as_time=False): Evaluates a Python expression for each value,
optionally updating time instead of values.

• integrate(interpolation=”sample-hold”): Integrates the series using the specified interpo-
lation.

• lineartrend(a): Adds a linear trend to the series.

• modulo(m): Applies modulo operation to the series with a constant.

• movingavg(alpha): Applies an exponentially weighted moving average to the series.

• multiply_by(a): Multiplies all values by a constant.

• removerepeats(): Removes consecutive repeated values.

• slidingwinavg(window_size, min_samples=None): Computes the average of values within
a sliding window.

• subtractfirstval(): Subtracts the first value from all subsequent values.

• timeavg(interpolation): Computes the average of values over time using the specified
interpolation.

• timediff(): Calculates the time difference between consecutive values.

• timeshift(dt): Shifts the time series by a constant.

• timedilation(c): Scales the time series by a constant factor.

• timetoserial(): Converts time values to their sequential index.

• timewinavg(window_size=1): Computes the average of values within a fixed time window.

• timewinthruput(window_size=1): Calculates the throughput over a fixed time window.

• winavg(window_size=10): Computes the average of values within each batch of a speci-
fied size.

See a description of all built-in vector operations in the Simulation Manual.

140 Chapter 9. Analyzing the Results

User Guide, Release 6.1

9.10.6 Plot Options

The configuration dialogs for charts contain specific pages tailored to customizing the plot:

• The Plot page allows setting the plot title, adjusting axis labels, setting axis limits, con-
figuring axis scales (linear or logarithmic), toggling and configuring grid display, and
managing legend display and placement.

• The Lines page appears in line plots, and allows you to customize plot line attributes
such as style, color, and width, and marker characteristics including type and size.

• The Bars page appears with bar charts, and allows changing the baseline, the bar place-
ment (aligned, overlap, in-front, or stacked), and details like label rotation.

• The Histogram page appears in histogram plots, and allows the user to configure his-
tograms by setting a baseline, choosing between solid or outline draw styles, normalizing
data, displaying cumulative results, and managing under/overflows.

The majority of the settings mentioned are straightforward and intuitive; however, there is an
important aspect regarding how colors and markers are determined in the plots. Unlike static
configurations, the number of data items represented in the plot is dynamic, varying based
on the results retrieved by a query. Consequently, colors and markers cannot be assigned
directly to each individual data point.

Instead, these visual attributes are managed through “cyclers,” which systematically rotate
through a predefined set of colors and markers. This approach ensures an appealing visual
representation regardless of the number of data items displayed. To customize the sequence
of colors and markers used in Auto mode, you can adjust the cycle seed on the Styling page.
This allows for the modification of the appearance of plot elements dynamically, accommo-
dating the varying result sets returned by different queries.

9.10.7 Legend Labels

The labels of data items in the legend are normally produced automatically, making use of
the properties that differ across the data items. (The properties that are the same in all items
are, on the other hand, used for producing the chart title.) With automatic legend labels, the
user is given the choice of stating the preference between using result names instead of result
titles, and module display paths instead of module full paths. (The result title is the content
of the title attribute of the result. The display path is a variant of the full path where, if
available, the display names of modules are used instead of the normal names; the display
name is set using the display-name configuration option.)

For those who require more detailed control, the Manual mode allows users to define a custom
format string for the legend labels. This string can include placeholders like $name, $title,
$module. These placeholders refer to dataframe columns, so the exact list varies depending
on the chart type and the kind of simulation results. When in doubt, insert a print(df)
statement in the chart script and check the log in the Console.

The labels produced like that can be further tweaked using replacements. You can input
plain substrings or regular expressions to be replaced with the strings you specify. Using
this feature, you can achieve things like replacing abbreviations with full terms, discarding
unwanted parts, replacing module names with more descriptive names, or adjusting separa-
tor/punctuation characters or spacing. For example, the /host\[(\d+)\]/Host \1/ regex
replacement will turn strings like host[0], host[1], etc. into Host 0, Host 1, and so on.

9.10. Configuring Charts 141

User Guide, Release 6.1

9.10.8 Ordering

Charts normally allow controlling the order of the data items (series) in the plot. The ordering
affects both the chart presentation and the legend, enabling users to place important or
related items together.

When exporting multiple charts, or when selecting the Export Chart option for a single chart,
a common export dialog is opened.

The order is defined via a list of regular expressions that are matched against the legend
labels of the items. The plot items will be ranked based on the index of the regular expression
the item first matches. Case-sensitive substring match is done, so ^ and $ should be used to
match the beginning and end of the label, respectively. For example, the regex list (router,
host) will place all items whose label contains the “router” string in front of items that contain
“host”, and items that contain neither will follow. The list (^B, ^A) will move items starting
with capital “B” to the top, followed by items starting with capital “A”, and the rest below.

There are two regular expression lists, defining a primary and secondary ordering. The pri-
mary ordering takes precedence, and the secondary ordering is used to further refine the
arrangement of items that are equivalently ranked in the primary order.

A further checkbox allows users to enable or disable alphabetical sorting as a tertiary or-
dering mechanism. This is useful when two items do not match any of the specified regular
expressions, ensuring that there is still a consistent rule to fall back on for their ordering.
When activated, this setting ensures that after considering the regex-based rankings, items
will be alphabetically ordered.

9.10.9 Styling

The Styling page of the dialog allows setting a number of options that affect the presentation
of the plot.

For Matplotlib-based charts, you can select the plot style. This is the same that you can
select in plain Matplotlib using the matplotlib.style.use(style) command. There are a
number of built-in styles, and you can add new styles by installing packages like seaborn or
prettyplotlib.

You can set the background colors, some legend display options, etc.

You can set the seed used for the color and marker cyclers. Experimenting with different
seeds allows you to choose a new set of colors/markers for the plot if you do not like the
default ones. If you want to have even more control over the colors and markers, you can
define your own cycler and enter it as properties on the Advanced page of the dialog.

The Advanced page enables even more fine-grained customization by allowing users to di-
rectly set visual plot properties that are not explicitly configurable in the dialog. For Matplotlib
charts, you can enter settings in the format known as “rcParams” in Matplotlib terminology.
Native plots have their own visual properties; content assistance in the dialog will help dis-
cover them. Native plots also allow directly setting colors for individual items via properties.

142 Chapter 9. Analyzing the Results

User Guide, Release 6.1

9.11 Editing the Chart Script

All charts are powered by Python scripts, which take their configuration settings from prop-
erties that can be edited in the Chart Configuration dialog. All of these elements are under
your full control so that you can create exactly the plots that you need for your analysis: you
can edit the chart script, you can edit the properties using the configuration dialog, and you
can also modify/tweak the configuration dialog itself to add input fields for extra properties,
for example. Each chart has its own copy of everything (the chart script, properties and config
dialog pages), so modifying one chart will not affect other similar charts.

9.11.1 Editing

To see or edit the chart’s Python script, click the Show Code Editor button on the toolbar of
an open chart. With the code editor open, you are free to make any changes to the chart’s
script.

The integrated editor is that of the PyDev project. It provides syntax highlighting, code naviga-
tion (go to definition, etc.), helpful tooltips (using docstrings), and content assist (completion
suggestions).

Fig. 9.14: Chart Script Editor

9.11. Editing the Chart Script 143

User Guide, Release 6.1

9.11.2 Refreshing the Chart

Normally, the chart script is automatically re-executed with some delay after each edit. This
functionality can be enabled/disabled using the Automatic Refresh button on the chart page
toolbar. Independent of the auto-refresh state, you can always trigger a manual refresh (re-
execution of chart script) by pressing the Refresh on the toolbar. If the chart script execution
takes too long, you can abort it by clicking the Kill Python Process of the Chart button on the
toolbar.

Tip: The viewport (zoom/pan state) is usually preserved after refresh. If the area occupied
by the displayed data changes significantly for some reason, it is possible that you will see an
empty plot after the refresh, simply because valuable content now falls outside the viewport.
Push the Home icon on the toolbar in these cases to bring all plotted elements into view.

9.11.3 Console Output

The console output of the script, i.e. text written to the stdout and stderr streams, is displayed
in the Console view. Each chart has a console of its own in the view, which is activated when
switching to the chart’s page in the editor. Text written to the standard error stream appears
in red. You can write to the console using Python’s print() statement. Notably, print(df)
is a very useful line that you’ll probably end up using quite often.

Note: Even though PyDev offers a variety of tools for debugging Python scripts, these un-
fortunately don’t work on chart scripts. Limited debugging can be performed using print
statements, throwing exceptions, and dumping stack traces, which is usually enough. If you
really need debugging to get a piece of code working, one way is to factor out the code to
be able to run independently, and use an external debugger (or the IDE’s debugger) on the
resulting .py file.

9.11.4 Errors

Errors are marked in the source code with a red squiggle and a sidebar icon. Hover over
them to see a tooltip describing the error. The errors are also entered into the Problems view.
Double-clicking these problem entries will reveal the line in the code editor where the error
came from. Errors marked this way include Python syntax errors, and runtime errors that
manifest themselves in the form of Python exceptions. For exceptions, the stack trace is
printed in the Console view.

144 Chapter 9. Analyzing the Results

User Guide, Release 6.1

Fig. 9.15: A Python error is marked on the GUI

9.12 Editing Dialog Pages

9.12.1 The Edit Pages Dialog

If you need to add support for new configuration properties to the chart, you will need to
edit the forms on the Configure Chart dialog. Pages (tabs) in the configuration dialog are
represented as XSWT forms. To see or edit the pages and forms within, click the Edit Dialog
Pages button on the property editor dialog.

The action will bring up the Edit Chart Dialog Pages dialog, which lets you edit the forms that
make up the configuration dialog of the chart. You can add, remove, reorder, and rename
tabs, and you can edit the XSWT form on each tab. A preview of the edited form is also
shown.

9.12. Editing Dialog Pages 145

User Guide, Release 6.1

9.12.2 XSWT Page Descriptions

XSWT is an XML-based UI description language for SWT, the widget toolkit of Eclipse on
which the OMNeT++ IDE is based. The content of XSWT files closely mirrors SWT widget
trees.

Fig. 9.16: Editing Chart Properties Editor Pages

The New Page in the dialog brings up a mini wizard, which can create a full-fledged XSWT
page from a shorthand notation of its content provided by you.

146 Chapter 9. Analyzing the Results

User Guide, Release 6.1

Fig. 9.17: The Creating a New Dialog Page From a Shorthand Notation

Some XML attributes in the XSWT source have special roles:

• x:id binds the contents of the widget to a chart property. For example, an edit con-
trol defined as <text x:id="title"> edits the title chart property, which can be
accessed as props["title"] in the chart script.

• x:id.default provides a default value for the chart property named in the x:id at-
tribute.

• Further x:id.* attributes are also used, e.g., x:id.contentAssist defines the kind of
content assist requested for the edit control, or x:id.isEnabler denotes a checkbox as
the enabler of the widget group that contains it.

Tip: The easiest way to add a new field to a page is to look at other pages (or other charts’
pages) and copy/paste from them.

9.13 Chart Programming

Data processing in chart scripts is based on the NumPy and Pandas packages, with some
modules provided by OMNeT++.

9.13. Chart Programming 147

User Guide, Release 6.1

9.13.1 Python Modules

The chart scripts can access some functionality of the IDE through a couple of modules
under the omnetpp.scave package. These include: chart, results, ideplot, vectorops,
and utils. The complete API of these modules is described in the Simulation Manual.

The chart module exposes information about the chart object (as part of the analysis, and
visible on the Charts page), most importantly its set of properties but also its name and what
type of chart it is.

The results module provides access to the set of result items (and corresponding metadata)
currently loaded in the analysis in the IDE. This data is accessible through a set of query
functions, each taking a filter expression, and returning a Pandas DataFrame.

The ideplot module is the interface for displaying plots using the IDE’s native (non-
Matplotlib) plotting widgets from chart scripts. The API is intentionally very close to
matplotlib.pyplot. When ideplot is used outside the context of a native plotting widget
(such as during the run of opp_charttool, or in the IDE during image export), the functions
are emulated with Matplotlib.

The vectorops module contains the implementations of the built-in vector operations.

The utils module is a collection of utility functions for processing and plotting data. Most
chart scripts heavily rely on utils.

Additionally, the well-known numpy, pandas, matplotlib, and sometimes the scipy and
seaborn packages are often utilized. All other packages installed on the system are also fully
available.

Tip: See the Simulation Manual for details on the OMNeT++ result analysis Python modules.
It contains a section on chart programming, and an API reference in the Appendix.

9.13.2 Tips and Tricks

This section is a collection of tips for use cases that might come up often when working with
charts, especially when editing their scripts.

Sharing Code Among Charts

For future releases, we are planning to support “snippets” as part of the analysis file, as a
means of sharing code among charts. Until that feature is implemented, a workaround is to
put shared code in .py files. These scripts can be imported as modules. They will be looked
for in the folder containing the .anf file and in the python folders of the containing project
and all of its referenced projects. Chart scripts can import these files as modules and thereby
use the functionality they provide. This also makes it possible to use external code editors
for parts of your code.

148 Chapter 9. Analyzing the Results

User Guide, Release 6.1

Adding Extra Data Items to the Plot

It’s possible to add new data items to the queried results before plotting. These can be
computed from existing items or synthesized from a formula. Example uses:

• Computing derived results:

df["bitrate"] = df["txBytes"] / df["sim-time-limit"]

• Adding analytical references, like theoretical values in an ideal scenario:

df["analytical"] = df["p"] * (1 - df["p"]) ** (df["N"]-1)

• Summarizing results:

df["mean"] = df["vecvalues"].map(np.mean)

Simplifying Complex Queries

Instead of coming up with an elaborate filter expression, it is sometimes more straightforward
to query results multiple times within a script and combine them with pd.concat, pd.join,
or pd.merge. Other functions like pf.pivot and pd.pivot_table are also often useful in
these cases.

Defining New Vector Operations

You can define your own vector operations by injecting them into the vectorops module,
even if this injection is done in an external module (.py file imported from the directory of the
.anf file).

from omnetpp.scave import vectorops
def myoperation(row, sigma):

row["vecvalue"] = row["vecvalue"] + sigma
return row

vectorops.myoperation = myoperation

After injection, use it like any other vector operation, on the Input page of Line Charts for
example: apply: myoperation(sigma=4)

Customized Export

If the built-in image/data exporting facilities are not sufficient for your use case, you can
always add your export code, either by manually open()-ing a file or by utilizing a data
exporter library/function of your liking. Functions such as plt.savefig() and df.to_*()
can be useful for this.

Caching the Result of Expensive Operations

Since the entire chart script is executed on every chart refresh, even if only a visual property
has changed, it can sometimes help to cache the result of some expensive data querying or
processing procedure in the script. And because every execution is in a fresh Python process,
caching can only really be done on the disk.

There are existing packages that can help you with this, such as diskcache, cache.py, or
memozo. (Note that caching the result of a function call is often called memoization; using
that term in online searches may give you additional insight.)

If the sequence of operations whose result is cached includes simulation result querying
(results.get_scalars(), etc.), it is important to invalidate (clear) the cache whenever there

9.13. Chart Programming 149

User Guide, Release 6.1

is a change in the loaded result files. The change can be detected by calling the results.
get_serial() function, which returns an integer that is incremented every time a result file
is loaded, unloaded, or reloaded.

Arbitrary Plot Types

In charts using Matplotlib, the whole range of its functionality is available:

• Arbitrary plots can be drawn (heatmaps, violin plots, geographical maps, 3D curves,
etc.)

• Advanced functionality like mouse event handlers, graphical effects, animations, and
widgets all work

• It’s also possible to just add small customizations, like annotations

• Any extension library on top of Matplotlib can be used, such as: seaborn, ggplot,
holoviews, plotnine, cartopy, geoplot

• The built-in plotting capability of Pandas DataFrames (under df.plot) works too

Per-Item Styling on Native Plots

For native plots, properties affecting individual data items can be specified with the following
additional syntax: <propertyname>/<itemkey>. Unless overridden manually, the data item
keys are sequentially increasing integers, starting with 1. For example, adding the following
line on the Advanced tab in the property editor dialog of a line chart will set the color of the
second line (or of the line identified with the key 2) to red.

Line.Color/2 : #FF0000

9.14 Custom Chart Templates

When charts are created, they are instantiated from a template. The list of available chart
templates can be browsed in the template gallery dialog, available from the Charts page as
New Chart and from the Browse Data page as Choose from Template Gallery. The dialog shows
some properties (chart type, accepted result types), a description, and often also sample
images for each one.

The IDE contains a number of built-in chart templates, but the user can add their own too.
Custom chart templates live in the charttemplates folder of every project and are available
in analyses in the same project and all projects that depend on it.

9.14.1 Exporting a Chart as Template

The easiest way of creating a custom chart template is by customizing a chart, then saving it
as a template. The Save as Template option in the chart’s context menu writes the contents
of the given chart into the charttemplates directory of the project.

150 Chapter 9. Analyzing the Results

User Guide, Release 6.1

Fig. 9.18: An Exported Chart Template

You may want to tweak some properties (e.g., the descriptive name) of the saved chart tem-
plate before use, but regardless, the new chart template is immediately available for use.

9.14.2 Parts of a Chart Template

A chart template consists of several parts, describing the initial contents of charts created
from it: what kind of drawing widget it needs (Matplotlib or one of the native plot widgets),
what script it executes, how its configuration dialog looks like, what types of result items it
can process/show, and which icon should be used for it.

Namely, there are several files:

• <name>.properties: This is the main file. It defines the name and other attributes of
the chart template and references all other files by name. The syntax is Java property
file.

• <name>.py: The Python file that contains the chart script.

• *.xswt: The dialog pages.

Note: Scripts and dialog pages can be shared by multiple chart templates.

Notable keys in the properties file:

• id: Internal identifier

• name: Descriptive name

• type: MATPLOTLIB, or one of LINE, BAR, and HISTOGRAM for native plots

• scriptFile: The chart script Python file

• icon: Icon file, e.g. in PNG format

• resultTypes: One or more of scalar, vector, parameter, histogram, and
statistics, separated by commas

• description: Long description of the chart in HTML format

• dialogPage.<n>.id: Internal identifier of the nth dialog page

• dialogPage.<n>.label: Label of the tab of the nth dialog page

• dialogPage.<n>.xswtFile: XSWT file of the nth dialog page

9.14. Custom Chart Templates 151

User Guide, Release 6.1

9.15 Under the Hood

This section details the internal workings of the Python integration in the Analysis Tool. Its
contents are not directly useful for most users, only for those who are curious about the
technicalities or want to troubleshoot an issue.

Chart scripts are executed by separate Python processes, launched from the python3[.exe]
found in $PATH. This decision was made so that a rogue chart script can’t make the entire
IDE unresponsive or crash it. Also, it’s possible to put resource or permission constraints on
these processes without hindering the IDE itself, and they can be killed at any time with no
major consequences to the rest of the Analysis Tool - for example, in the event of a deadlock
or thrashing.

These processes are ephemeral, and a fresh one is used for each refresh, so no interpreter
state is preserved across executions. A small number of processes are kept pre-spawned in a
pool, so they can be put to use quickly when needed.

If you wish to utilize virtual environments, start the entire IDE from a shell in which the
environment to use has been activated. This way, the spawned Python interpreter processes
will also run in that environment.

The level of flexibility offered by this arbitrary scripting unfortunately comes with its own
dangers too. Note that the scripts running in charts have full access to everything on your
computer without any sandboxing, so they can read/write/delete files, open graphical win-
dows, make network connections, utilize any hardware resources, etc.! Because of this, make
sure to only ever open analysis files from sources you trust! (Or open files from untrusted
sources only on systems that are not critical.)

Communication between the Eclipse IDE and the spawned Python processes is done via the
Py4J project, through an ordinary network (TCP) socket.

To avoid the CPU and RAM inefficiencies caused by the string-based nature of the Py4J pro-
tocol, bulk data is transferred in shared memory (POSIX SHM or unnamed file mappings on
Windows) instead of the socket. Without this, binary data would have to be base64 encoded,
then represented as UTF-16, which would be about 3x the size on top of the original content,
which is already present in both processes. Data passed this way includes any queried re-
sults (in pickle format), and in the other direction, the data to plot on native plot widgets, or
the raw pixel data rendered by Matplotlib.

Many other kinds of information, like GUI events or smaller pieces of data (like chart proper-
ties) are passed through the Py4J socket as regular function call parameters.

152 Chapter 9. Analyzing the Results

CHAPTER

TEN

NED DOCUMENTATION GENERATOR

10.1 Overview

This chapter describes how to use the NED Documentation Generator from the IDE.

Please refer to the OMNeT++ Manual for a complete description of the documentation gener-
ation features and the available syntax in NED and MSG file comments.

The generator has several project-specific settings that can be set from the project context
menu through the Properties menu item. The output folders for both NED documentation
and C++ documentation can be set separately. The doxygen-specific configuration is read
from the text file doxy.cfg by default. The IDE provides a sensible default configuration for
doxygen in case you do not want to go through all the available options. The generated HTML
uses CSS to make its style customizable. You can provide your own style sheet if the default
does not meet your needs. In general, all project-specific settings have good defaults that
work well with the documentation generator.

Fig. 10.1: Configuring project-specific settings

To generate NED documentation, you need to select one or more projects. Then, either
go to the main Project menu or to the project context menu and select the Generate NED
Documentation menu item. This will bring up the configuration dialog where you can set
various settings for the current generation before starting it.

153

User Guide, Release 6.1

Fig. 10.2: Opening the NED documentation generator

The IDE can generate documentation for multiple projects at the same time. Other options
control the content of the documentation, including what kind of diagrams will be generated
and whether NED sources should be included. You can enable doxygen to generate C++
documentation that will be cross-linked from the NED documentation. The tool can generate
the output into each project as configured in the project-specific settings, or into a separate
directory. The latter is useful for exporting standalone documentation for several complex
projects at once.

Fig. 10.3: Configuring the NED documentation generator

The NED generation process might take a while for big projects, so please be patient. For
example, building the complete documentation for the INET project, including the C++ doxy-
gen documentation, takes a few minutes. You can track the progress in the IDE’s progress
monitor.

154 Chapter 10. NED Documentation Generator

User Guide, Release 6.1

Fig. 10.4: Generating NED documentation in progress

The result is a number of cross-linked HTML pages that can be opened by double-clicking the
generated index.html. On the left side, you will see a navigation tree, while on the right side,
there will be an overview of the project. If you have not yet added a @titlepage directive to
your NED comments, then the overview page will display default content.

Fig. 10.5: The resulting NED documentation

The documentation contains various inheritance and usage diagrams that make it easier
to understand complex models. The diagrams are also cross-linked, so when you click on
a box, the corresponding model element’s documentation will be opened. The NED model
elements are also exported graphically from the NED Editor. These static images provide
cross-referencing navigation for submodules.

Fig. 10.6: NED usage diagram

There are also a number of tables that summarize various aspects of modules, networks,
messages, packets, etc. The most interesting is the list of assignable parameters. It shows
all parameters from all submodules down the hierarchy that do not have fixed values. These
can be set either through inheritance, encapsulation, or from the INI file as experiments.

10.1. Overview 155

User Guide, Release 6.1

Fig. 10.7: NED assignable parameters

There are other tables that list parameters, properties, gates, using modules or networks,
and various other data along with the corresponding descriptions. In general, all text might
contain cross-links to other modules, messages, classes, etc. to make navigation easier.

156 Chapter 10. NED Documentation Generator

CHAPTER

ELEVEN

EXTENDING THE IDE

There are several ways to extend the functionality of the OMNeT++ IDE. The Simulation IDE
is based on the Eclipse platform but extends it with new editors, views, wizards, and other
functionality.

11.1 Installing New Features

Because the IDE is based on the Eclipse platform, it is possible to add additional features
that are available for Eclipse. The installation procedure is exactly the same as with a stan-
dard Eclipse distribution. Choose the Help → Install New Software menu item and select
an existing Update Site to work with or add a new Site (using the site URL) to the Available
Software Sites. After the selection, you can browse and install the packages the site offers.

To learn about installing new software into your IDE, please visit the Updating and installing
software topic in the Workbench User Guide. You can find the online help system in the Help
→ Help Contents menu.

Tip: There are thousands of useful components and extensions for Eclipse. The best places
to start looking for extensions are the Eclipse Marketplace (http://marketplace.eclipse.org/)
and the Eclipse Plugins info site (http://www.eclipse-plugins.info).

11.2 Adding New Wizards

The Simulation IDE makes it possible to contribute new wizards to the wizard dialogs under
the File → New menu without writing Java code or requiring any knowledge of Eclipse inter-
nals. Wizards can create new simulation projects, new simulations, new NED files, or other
files by using templates or perform export/import functions. Wizard code is placed under the
templates folder of an OMNeT++ project, which makes it easy to distribute wizards with the
model. When the user imports and opens a project that contains wizards, the wizards will
automatically become available.

Tip: The way to create wizards is documented in the ide-customization-guide.

157

http://marketplace.eclipse.org/
http://www.eclipse-plugins.info

User Guide, Release 6.1

11.3 Project-Specific Extensions

It is possible to install an Eclipse plug-in by creating a plugins folder in an OMNeT++ project
and copying the plug-in JAR file to that folder (this mechanism is implemented as part of
the Simulation IDE and does not work in generic Eclipse installations or with non-OMNeT++
projects). This extension mechanism allows the distribution of model-specific IDE extensions
together with a simulation project without requiring the end user to do extra deployment steps
to install the plug-in. Plugins and wizards that are distributed with a project are automatically
activated when the host project is opened.

Eclipse plug-in JAR files can be created using the Plug-in Development Environment. The
OMNeT++ IDE does not contain the PDE by default; however, it can be easily installed if
necessary.

Tip: Read the ide-developers-guide for more information on how to install the PDE and how
to develop plug-in extensions for the IDE.

158 Chapter 11. Extending the IDE

https://eclipse.org/pde

	Introduction
	The Workbench
	Workspaces
	The Simulation Perspective
	Configuring OMNeT++ Preferences
	Creating OMNeT++ Projects
	Project References
	Getting Help

	Editing NED Files
	Overview
	Opening Older NED Files
	Creating New NED Files
	NED Source Folders

	Using the NED Editor
	Editing in Graphical Mode
	Creating Modules
	Creating Types and Inner Types
	Creating and Changing Connections
	Reconnecting Modules
	Selecting Elements
	Undo, Redo, Deleting Elements
	Moving and Resizing Elements
	Copying Elements
	Zooming
	Pinning, Unpinning, Re-Layouting
	Changing a Module Property
	Changing a Module Parameter
	Renaming Modules
	Exporting a Module as an Image
	Navigation
	Opening a NED Type
	Setting Properties

	Editing in Source Mode
	Basic Functions
	Converting to the New NED Syntax
	View Documentation
	Content Assist
	Searching in NED Files
	Organizing Imports
	Cleaning Up NED Files
	Commenting
	Formatting the Source Code
	Navigation

	Other Features
	Exporting Images

	Associated Views
	Outline View
	Property View
	Palette View
	Problems View
	NED Inheritance View
	Module Hierarchy View
	Parameters View

	Editing INI Files
	Overview
	Creating INI Files
	Using the INI File Editor
	Editing in Form Mode
	Editing in Text Mode
	Opening Old INI Files
	Content Assist
	Tooltip
	Add Unassigned Parameters
	Commenting
	Navigation
	Error Markers

	Associated Views
	Outline View
	Problems View
	Parameters View
	Module Hierarchy View
	NED Inheritance View

	Editing Message Files
	Creating Message Files
	The Message File Editor

	C++ Development
	Introduction
	Prerequisites
	Creating a C++ Project
	Editing C++ Code
	The C++ Editor
	Basic Functions
	View Documentation
	Content Assist
	Navigation
	Commenting
	Open Type
	Exploring the Code
	Refactoring

	Include Browser View
	Outline View
	Type Hierarchy View

	Building the Project
	Basics
	Build Output
	Makefile Generation
	Cleaning the Project
	Referenced Projects and the Build Process
	Build Configurations

	Console View
	Problems View

	Configuring the Project
	Configuring the Build Process
	Managing Build Configurations
	Configuring the Project Build System
	Folders and Makefiles
	Source Folders
	Makefile Generation
	Command-line Build

	Configuring Makefile Generation for a Folder
	The Target Tab
	The Scope Tab
	The Compile Tab
	The Link Tab
	The Custom Tab
	The Preview Tab

	Project References and Makefile Generation

	Project Features
	Motivation
	What is a Project Feature
	The Project Features Dialog
	What Happens When You Enable/Disable a Feature
	Using Features from the Command Line
	The .oppfeatures File
	How to Introduce a Project Feature

	Project Files

	Launching and Debugging
	Introduction
	Launch Configurations
	Running a Simulation
	Quick Run
	The Run Configurations Dialog
	Creating a Launch Configuration
	Related Command-Line Arguments

	Debug vs. Release Launch

	Batch Execution
	Debugging a Simulation
	Starting a Debug Session
	Using the Debugger
	Pretty Printers

	Just-in-Time Debugging
	Profiling a Simulation on Linux
	Controlling the Execution and Progress Reporting
	Progress Reporting

	The Qtenv Graphical Runtime Environment
	Features
	Overview of the User Interface
	Using Qtenv
	Starting Qtenv
	Setting Up and Running the Simulation
	Set up a Configuration
	Open Primary Ini File
	Step
	Run (or Normal Run)
	Fast Run
	Express Run
	Run Until
	Run Until Next Event
	Debug Next Event
	Debug On Errors
	Recording an Event Log
	Capturing a Video
	Conclude Simulation
	Rebuild Network

	Inspecting Simulation Objects
	Inspectors
	Opening Inspectors
	History
	Restoring Inspectors
	Extending Qtenv

	Using Qtenv with a Debugger
	Parts of the Qtenv UI
	The Status Bars
	The Timeline
	The Object Navigator
	The Object Inspector
	The Network Display
	Zooming and Panning

	The Log Viewer

	Inspecting Objects
	Object Inspectors
	Browsing the Registered Components
	Querying Objects

	The Preferences Dialog
	General
	Logs
	Configuring the Layouting Algorithm
	Configuring Animation
	Timeline and Animation Filtering
	Configuring Fonts
	The .qtenvrc File

	Qtenv and C++
	Inspectors
	During Simulation

	Reference
	Command-Line Options
	Environment Variables
	Configuration Options

	Sequence Charts
	Introduction
	Creating an Eventlog File
	Sequence Chart
	Legend
	Timeline
	Zero Simulation Time Regions
	Module Axes
	Gutter
	Events
	Messages
	Displaying Module State on Axes
	Zooming
	Navigation
	Tooltips
	Bookmarks
	Exporting
	Associated Views
	Filtering

	Eventlog Table
	Display Mode
	Name Mode
	Type Mode
	Line Filter
	Navigation
	Selection
	Searching
	Bookmarks
	Tooltips
	Associated Views
	Filtering

	Filter Dialog
	Range Filter
	Module Filter
	Message Filter
	Tracing Causes/Consequences
	Collection Limits
	Long-Running Operations

	Other Features
	Settings
	Large File Support
	Viewing a Running Simulation’s Results
	Caveats

	Examples
	Tictoc
	FIFO
	Routing
	Wireless
	Preparing the Result
	Successful Ping
	Unsuccessful Ping

	Analyzing the Results
	Overview
	Creating Analysis Files
	Opening Older Analysis Files
	Using the Analysis Editor
	The Inputs Page
	Resolution Rules
	Refresh Files
	Reload Files
	Are Files Kept in Memory?

	The Browse Data Page
	Filtering
	Plotting
	Viewing the Details of Result Items
	Viewing the Contents of a Vector
	Exporting Data

	The Charts Page
	The Outline View
	Basic Chart Usage
	Plotting Data
	Starting From a Blank Chart
	Opening an Existing Chart
	Plot Navigation
	The Chart Properties Dialog
	Exporting Data
	Exporting Images
	Batch Export

	Configuring Charts
	Available Chart Types
	Defining the Chart Input
	Filter Expressions
	Pivoting
	Vector Operations
	Plot Options
	Legend Labels
	Ordering
	Styling

	Editing the Chart Script
	Editing
	Refreshing the Chart
	Console Output
	Errors

	Editing Dialog Pages
	The Edit Pages Dialog
	XSWT Page Descriptions

	Chart Programming
	Python Modules
	Tips and Tricks
	Sharing Code Among Charts
	Adding Extra Data Items to the Plot
	Simplifying Complex Queries
	Defining New Vector Operations
	Customized Export
	Caching the Result of Expensive Operations
	Arbitrary Plot Types
	Per-Item Styling on Native Plots

	Custom Chart Templates
	Exporting a Chart as Template
	Parts of a Chart Template

	Under the Hood

	NED Documentation Generator
	Overview

	Extending the IDE
	Installing New Features
	Adding New Wizards
	Project-Specific Extensions

