NED File src/inet/physicallayer/common/packetlevel/Radio.ned
Name | Type | Description |
---|---|---|
Radio | compound module |
The radio model describes the physical device that is capable of transmitting and receiving signals on the medium. It contains an antenna model, a transmitter model, a receiver model, and an energy consumer model. |
Source code
// // Copyright (C) 2013 OpenSim Ltd // // This program is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public License // as published by the Free Software Foundation; either version 2 // of the License, or (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public License // along with this program; if not, see <http://www.gnu.org/licenses/>. // package inet.physicallayer.common.packetlevel; import inet.physicallayer.contract.packetlevel.IRadio; import inet.physicallayer.contract.packetlevel.IAntenna; import inet.physicallayer.contract.packetlevel.IReceiver; import inet.physicallayer.contract.packetlevel.ITransmitter; import inet.power.contract.IEnergyConsumer; // // The radio model describes the physical device that is capable of transmitting // and receiving signals on the medium. It contains an antenna model, a // transmitter model, a receiver model, and an energy consumer model. // // The radio model supports changing radio mode, transmission power, or bitrate // via ~ConfigureRadioCommand, or with direct C++ function calls. // // switchingTimes parameter should be regarded as a 5x5 matrix: // // OFF SLEEP RECEIVER TRANSMITTER TRANSCEIVER // OFF 0 0 0 0 0 // SLEEP 0 0 0 0 0 // RECEIVER 0 0 0 0 0 // TRANSMITTER 0 0 0 0 0 // TRANSCEIVER 0 0 0 0 0 // // The corresponding RadioMode pairs contain the time needed to // switch from one state to another. // For example: the 6th number identifies the time needed to switch // from SLEEP to OFF. // // The first entry of the switchingTimes string indicates the // time-related metric prefix and it MUST be s, ms or ns. // module Radio like IRadio { parameters: string antennaType; // NED type of the antenna model string transmitterType; // NED type of the transmitter model string receiverType; // NED type of the receiver model string energyConsumerType = default(""); // NED type of the energy consumer model string radioMediumModule = default("radioMedium"); // module path of the medium module where this radio communicates string energySourceModule = default(""); // module path of the energy source module which provides energy to the radio string switchingTimes = default("ms 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0"); // time parameters to switch between radio modes bool separateTransmissionParts = default(false); // when enabled the transmission of preamble, header and data part are simulated separately bool separateReceptionParts = default(false); // when enabled the reception of preamble, header and data part are simulated separately bool displayCommunicationRange = default(false); // if true communication range is displayed as a blue circle around the node bool displayInterferenceRange = default(false); // if true interference range is displayed as a gray circle around the node *.energySourceModule = default(absPath(this.energySourceModule)); @class(Radio); @display("i=block/wrxtx"); @signal[packetSentToUpper](type=cPacket); @signal[packetReceivedFromUpper](type=cPacket); @signal[radioModeChanged](type=long); @signal[listeningChanged]; @signal[receptionStateChanged](type=long); @signal[transmissionStateChanged](type=long); @signal[receivedSignalPartChanged](type=long); @signal[transmittedSignalPartChanged](type=long); @signal[minSNIR]; @signal[packetErrorRate]; @signal[bitErrorRate]; @signal[symbolErrorRate]; @statistic[radioMode](title="Radio mode"; source=radioModeChanged; record=count,vector; interpolationmode=sample-hold); @statistic[receptionState](title="Radio reception state"; source=receptionStateChanged; record=count,vector; interpolationmode=sample-hold); @statistic[transmissionState](title="Radio transmission state"; source=transmissionStateChanged; record=count,vector; interpolationmode=sample-hold); @statistic[minSNIR](title="Min SNIR"; source=minSNIR; record=histogram); @statistic[packetErrorRate](title="Packet error rate"; source=packetErrorRate; record=histogram); @statistic[bitErrorRate](title="Bit error rate"; source=bitErrorRate; record=histogram); @statistic[symbolErrorRate](title="Symbol error rate"; source=symbolErrorRate; record=histogram); gates: input upperLayerIn @labels(ILinkLayerFrame/down); output upperLayerOut @labels(ILinkLayerFrame/up); input radioIn @labels(IRadioFrame); submodules: antenna: <antennaType> like IAntenna { parameters: @display("p=100,50"); } transmitter: <transmitterType> like ITransmitter { parameters: @display("p=100,150"); } receiver: <receiverType> like IReceiver { parameters: @display("p=100,250"); } energyConsumer: <energyConsumerType> like IEnergyConsumer if energyConsumerType != "" { parameters: @display("p=100,350"); } }