MarkovClassifier

Package: inet.queueing.classifier

MarkovClassifier

simple module

This module implements a packet classifier using a Markov process that has as many states as output gates the classifier has. The output gate for a given packet is determined by the current state of the Markov process.

MarkovClassifier

Inheritance diagram

The following diagram shows inheritance relationships for this type. Unresolved types are missing from the diagram.

Extends

Name Type Description
PacketClassifierBase simple module

This is a base module for various packet classifier modules. Derived modules must implement a single packet classifier function which determines the index of the output gate for the next pushed packet.

Parameters

Name Type Default value Description
displayStringTextFormat string "classified %p pk (%l)\ncurrent state: %s"

determines the text that is written on top of the submodule

initialState int 0

the index of the start state of the Markov process

transitionProbabilities string

the transition matrix (N x N) of the Markov process, specified as a list of probabilities

waitIntervals string

the amount of time the Markov process stays in a given state, a list of intervals (N) indexed by the state

Properties

Name Value Description
display i=block/classifier
class MarkovClassifier

Gates

Name Direction Size Description
in input
out [ ] output

Signals

Name Type Unit
packetPushed inet::Packet

Statistics

Name Title Source Record Unit Interpolation Mode
packetPushed packets pushed count, sum(packetBytes), vector(packetBytes) none

Source code

//
// This module implements a packet classifier using a Markov process that has
// as many states as output gates the classifier has. The output gate for
// a given packet is determined by the current state of the Markov process.
//
simple MarkovClassifier extends PacketClassifierBase like IPacketClassifier
{
    parameters:
        displayStringTextFormat = default("classified %p pk (%l)\ncurrent state: %s");
        int initialState = default(0); // the index of the start state of the Markov process
        string transitionProbabilities; // the transition matrix (N x N) of the Markov process, specified as a list of probabilities
        string waitIntervals; // the amount of time the Markov process stays in a given state, a list of intervals (N) indexed by the state 
        @class(MarkovClassifier);
}
File: src/inet/queueing/classifier/MarkovClassifier.ned